首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
We utilized 234Th, a naturally occurring radionuclide, to quantify the particulate organic carbon (POC) export rates in the northern South China Sea (SCS) based on data collected in July 2000 (summer), May 2001 (spring) and November 2002 (autumn). Th-234 deficit was enhanced with depth in the euphotic zone, reaching a subsurface maximum at the Chl-a maximum in most cases, as commonly observed in many oceanic regimes. Th-234 was in general in equilibrium with 238U at a depth of ∼100 m, the bottom of the euphotic zone. In this study the 234Th deficit appeared to be less significant in November than in July and May. A surface excess of 234Th relative to 238U was found in the summer over the shelf of the northern SCS, most likely due to the accumulation of suspended particles entrapped by a salinity front. Comparison of the 234Th fluxes from the upper 10 m water column between 2-D and traditional 1-D models revealed agreement within the errors of estimation, suggesting the applicability of the 1-D model to this particular shelf region. 1-D model-based 234Th fluxes were converted to POC export rates using the ratios of bottle POC to 234Th. The values ranged from 5.3 to 26.6 mmol C m−2d−1 and were slightly higher than those in the southern SCS and other oligotrophic areas. POC export overall showed larger values in spring and summer than in autumn, the seasonality of which was, however, not significant. The highest POC export rate (26.6 mmol C m−2d−1) appeared at the shelf break in spring (May), when Chl-a increased and the community structure changed from pico-phytoplankton (<2 μm) dominated to nano-phytoplankton (2–20 μm) and micro-phytoplankton (20–200 μm) dominated.  相似文献   

2.
Observations of primary productivity, 234Th, and particulate organic carbon (POC) were made from west to east across the northern North Pacific Ocean (from station K2 to Ocean Station Papa) during September–October 2005. Primary productivities in this region varied longitudinally from approximately 236 to 444 mgC m−2d−1 and clearly indicate the West High East Low (WHEL) trend. We estimated east-west variations in the POC flux from the surface layer (0–100 m) by using 234Th as a tracer. POC fluxes in the western region (44–53 mgC m−2d−1) were higher than those in the eastern region (21–34 mgC m−2d−1). However, the export ratios (e-ratios) ranged from approximately 8% to 16% and did not show the WHEL trend. Contrary to our expectation, no relation between POC flux (or e-ratio) and diatom biomass (or dominance) was apparent in autumn in the northern North Pacific.  相似文献   

3.
Export fluxes of particulate organic carbon (POC) were estimated from the 234Th/238U disequilibrium in the Ulleung Basin1 (UB) of the East/Japan Sea1 (EJS) over four seasons. The fluxes were calculated by multiplying the average POC/234Th ratio of sinking particles larger than 0.7 μm at 100- and 200-m water depths to 234Th fluxes by the integrated 234Th/238U disequilibrium from the surface to 100-m water depth. In spring, the 234Th profiles changed dramatically with sampling time, and hence a non-steady-state 234Th model was used to estimate the 234Th fluxes. The 234Th flux estimated from the non-steady-state model was an order of magnitude higher than that estimated from the steady-state model. The 234Th fluxes estimated using the steady-state model showed distinct seasonal variation, with high values in summer and winter and low values in autumn. In spring, the phytoplankton biomass had the highest value, and primary production was higher than in summer and autumn, but the 234Th fluxes were moderate. However, these values might have been significantly underestimated, as the 234Th fluxes were estimated using the steady-state model. The POC export fluxes estimated in autumn were about four times lower than those in other seasons when they were rather similar. The annually averaged POC flux was estimated to be 161 ± 76 mgC m−2 day−1, which was somewhat lower than that in highly productive coastal areas, and higher than that in oligotrophic regions. The export/primary production (ThE) ratios ranged from 7.0 to 56.1%, with higher values in spring and summer and lower values in autumn and winter. In summer, a high ThE ratio of 48.4 ± 7.0% was measured. This may be attributed to the mass diatom sinking event following nitrate depletion. In the UB1, the annually averaged ThE ratio was estimated to be 34.4 ± 12.9%, much higher than that in oligotrophic oceans. The high ThE ratio may have contributed to the high organic carbon accumulation in the UB1.  相似文献   

4.
234Th is widely used to quantify the magnitude of upper ocean particulate organic carbon(POC)export in oceans.In the present work,the rates of particulate organic carbon export were measured based on the distribution patterns of234Th/238U disequilibrium in the water column within the continental slope of the East China Sea(ECS)during May 2011.The profiles of particulate and dissolved234Th activities at all three stations showed a relative deficit with respect to238U in the upper 100 m of the water column.The dissolved234Th scavenging rates and the particulate234Th removal rates and their residence times were calculated by a one-dimensional steady state model.The results showed that the dissolved234Th scavenging rates and the particulate234Th removal rates ranged from 12.4–61.4 dpm/(m3·d)andfrom3.8–21.8 dpm/(m3·d),respectively.The residence times of dissolved and particulate234Th were in the range of 3.4–158 d and 63.7–96.5 d,respectively.Combined with the measurement of POC/234Th ratios of suspended particles,POC export flux(calculated by carbon)from the euphotic zone was estimated in the study region,which ranged from 4.14–14.7 mmol/(m2·d),withanaverageof8.21mmol/(m2·d),occupying35%oftheprimeproductivity in the study area.The results of this study can provide new information for better understanding the carbon biogeochemical cycle within the continental slope of the ECS.  相似文献   

5.
The activity of234Th (t 1/2=24.1 days) in dissolved, particulate and sediment trap samples was determined in the water column off southwestern Taiwan during 2–4 October, 1993. Vertical234Th fluxes measured by the free-floating sediment traps ranged from 363 to 2290 dpm m–2 d–1 in the upper 450 m. Th-234 fluxes predicted from the irreversible scavenging model concur with those measured by the sediment traps. Comparison of the residence times of particulate234Th and particulate organic carbon showed that their respective values differ by a factor of approximately 23, which suggests organic carbon is preferentially recycled relative to234Th in the euphotic zone.  相似文献   

6.
234 Th was utilized as a tracer of particulate organic carbon (POC) export in the northwestern South China Sea (SCS) on the basis of the data collected at four stations during a spring cruise.Depth profiles of dissolved and particulate 234 Th activities were measured in the upper 60 m,showing a significant deficit relative to 238 U over the investigated stations.A stratified structure of 234 Th-238 U disequilibrium was in general observed in the upper 60 m water column,indicating that the euphotic zone of t...  相似文献   

7.
中国第22次南极科学考察(2005年11月至2006年3月)期间,测定了南极普里兹湾海域5个站位的从表层至150 m水深的不同层位水样中溶解态和颗粒态234Th,238U的放射性比活度以及颗粒有机碳.利用234Th/238U在上层水体中的不平衡,计算了南极普里兹湾上层水体中234Th的平均停留时间和输出通量.结果显示,随着纬度的增加,上层水体中颗粒态和溶解态234Th的平均停留时间总体趋向减小,并在中纬度站位出现了最低值,分别为1~8和29~48 d,而颗粒态和溶解态234Th的输出通量则在中纬度站位出现了最大值,分别为21~38和26~39 dpm/(m3·d).运用箱型清除模式,利用两种不同的方法估算了各水柱中从真光层底部输出的POC通量,平均值分别达到104.7 mmol/(m2·d)(E法)和120.6 mmol/(m2·d)(B法),表明南极普里兹湾夏季存在很高的新生产力,它将会对该海域碳的生物泵过程产生重要作用.  相似文献   

8.
Repeated measurements of depth profiles of 234Th (dissolved, 1–70 and >70 μm particulate) at three stations (Orca, Minke, Sei) in the Ross Sea have been used to estimate the export of Th and particulate organic carbon (POC) from the euphotic zone. Sampling was carried out on three JGOFS cruises covering the period from October 1996 (austral early spring) to April 1997 (austral fall). Deficiencies of 234Th relative to its parent 238U in the upper 100 m are small during the early spring cruise, increase to maximum values during the summer, and decrease over the course of the fall. Application of a non-steady-state model to the 234Th data shows that the flux of Th from the euphotic zone occurs principally during the summer cruise and in the interval between summer and fall. Station Minke in the southwestern Ross Sea appears to sustain significant 234Th removal for a longer period than is evident at Orca or Sei. Particulate 234Th activities and POC are greater in the 1–70 μm size fraction, except late in the summer cruise, when the >70 μm POC fraction exceeds that of the 1–70 μm fraction. The POC/234Th ratio in the >70 μm fraction exceeds that in the 1–70 μm fraction, likely due in part to the greater availability of surface sites for Th adsorption in the latter. Particulate 234Th fluxes are converted to POC fluxes by multiplying by the POC/234Th ratio of the >70 μm fraction (assumed to be representative of sinking particles). POC fluxes calculated from a steady-state Th scavenging model range from 7 to 91 mmol C m−2 d−1 during late January–early February, with the greatest flux observed at station Minke late in the cruise. Fluxes estimated with a non-steady-state Th model are 85 mmol C m−2 d−1 at Minke (1/13–2/1/97) and 50 mmol C m−2 d−1 at Orca (1/19–2/1/97). The decline in POC inventories (0–100 m) is most rapid in the southern Ross Sea during the austral summer cruise (Smith et al., 2000. The seasonal cycle of phytoplankton biomass and primary productivity in the Ross Sea, Antarctica. Deep-Sea Research II 47, 3119–3140. Gardner et al., 2000. Seasonal patterns of water column particulate organic carbon and fluxes in the Ross Sea, Antarctica. Deep-Sea Research II 47, 3423–3449), and the 234Th-derived POC fluxes indicate that the sinking flux of POC is 30–50% of the POC decrease, depending on whether steady-state or non-steady-state Th fluxes are used. Rate constants for particle POC aggregation and disaggregation rates are calculated at station Orca by coupling particulate 234Th data with 228Th data on the same samples. Late in the early spring cruise, as well as during the summer cruise, POC aggregation rates are highest in near-surface waters and decrease with depth. POC disaggregation rates during the same time generally increase to a maximum and are low at depth (>200 m). Subsurface aggregation rates increase to high values late in the summer, while disaggregation rates decrease. This trend helps explain higher values of POC in the >70 m fraction relative to the 1–70 m fraction late in the summer cruise. Increases in disaggregation rate below 100 m transfer POC from the large to small size fraction and may attenuate the flux of POC sinking out of the euphotic zone.  相似文献   

9.
To gain new insights into the variability of particulate organic carbon (POC) fluxes and to better understand the factors controlling the POC/234Th ratios in suspended and sinking particulate matter, we investigated the relationships between POC/234Th ratios and biochemical composition (uronic acids, URA; total carbohydrates, TCHO; acid polysaccharides, APS; and POC) of suspended and sinking matter from the Gulf of Mexico in 2005 and 2006. Our data show that URA/POC in sediment traps (STs), APS/POC in the suspended particles, and turnover times of particulate 234Th in the water column and those of bacteria in STs inside eddies usually increased with depth, whereas particulate POC/234Th (10–50 μm) and the sediment-trap parameters (POC flux, POC/234Th ratio, bacterial biomass, and bacterial production) decreased with depth. However, this trend was not the case for most biological parameters (e.g., phytoplankton and bacterial biomass) or for the other parameters at the edges of eddies or at coastal-upwelling sites.In general, the following relationships were observed: 1) 234Th/POC ratios in STs were correlated with APS flux, and these ratios in the 10–50 μm suspended particles also correlated with URA/POC ratios; 2) neither URA fluxes nor URA/POC ratios were significantly related to bacterial biomass; 3) the sum of two uronic acids (G2, glucuronic, and galacturonic acid, which composed most of the URA pool) was positively related to bacterial biomass; and 4) the POC/234Th ratios in intermediate-sized particles (10–50 μm) were close to those in sinking particles but much lower than those in > 50 μm particles. The results indicate that acid polysaccharides, though a minor fraction (~ 1%) of the organic carbon, act more likely as proxy compound classes that might contain the more refractory 234Th-binding biopolymer, rather than acting as the original 234Th “scavenger” compound. Moreover, these acid polysaccharides, which might first be produced by phytoplankton and then modified by bacteria, also influence the on-and-off “piggy-back” processes of organic matter and 234Th, thus causing additional variability of the POC/234Th in particles of different sizes.  相似文献   

10.
1Introduction CarboncyclingintheArcticOceanplaysanim- portantroletoglobalchange.Traditionally,marine productivityintheArcticOceanisthoughttobevery low,andthussomebiogeochemicalprocessessuchas particleexportandcyclingofnutrientsarenotsoac- tivebecauseofthembeingcoveredperenniallybyice, lowtemperatureandshorttimeofphotosynthesis (PlattandRao,1975).Afewpreviousestimatesof particulateorganiccarbon(POC)exportindicateda neglectablemagnitudeinthecentralArcticOcean (Baconetal.,1989).However,recen…  相似文献   

11.
The phase partitioning of 234Th between dissolved (<10-kiloDalton, kD), colloidal (10 kD—0.4 μm), and particulate (⩾0.5 μm) matter across a horizontal transect, from a coastal station to the deep Canada Basin, and a vertical profile in the deep Canada Basin of the western Arctic Ocean was investigated. Concentrations of suspended particulate matter (SPM), dissolved, colloidal and particulate organic carbon, particulate organic nitrogen and nutrients (silicate, phosphate and nitrate) were also measured to assess transport and scavenging processes.Total 234Th (colloidal+particulate+dissolved) indicated deficiencies relative to secular equilibrium with its parent, 238U in the upper 100 m, which suggests active scavenging of 234Th onto particle surfaces. In contrast, at depths >200 m, general equilibrium existed between total 234Th and 238U. The inventory of SPM and the specific activity of particulate 234Th in the Canada Basin was about an order of magnitude higher than the profile reported for the Alpha Ridge ice camp station. This higher concentration of SPM in the southwestern Canada Basin is likely derived from ice-rafted sedimentary particles. Inventories of nutrients, and dissolved organic carbon and nitrogen in the upper 100 m of the Canada Basin are comparable to the other estimates for the central Arctic Ocean. Comparison of the mass concentrations of colloidal and filter-retained particulate matter as well as the activity of 234Th in these phases indicates that only a very small component of the colloidal material is actively involved in Th scavenging. Lower values of the conditional partition coefficient between the colloidal and dissolved phase indicate that the Arctic colloids are less reactive than colloidal material from other regions. The conditional partition coefficient between the filter-retained and dissolved phases (Kf) is generally higher than that for other regions, which is attributed to the higher complexation capacity of glacio-marine sedimentary particles in these waters. The 234Th-derived export of POC for the shelf and deep Canada Basin ranges between 5.6 and 6.5 mmol m−2 d−1, and is in agreement with other estimates reported for the central Arctic Ocean and Beaufort Sea.  相似文献   

12.
对厦门湾塔角附近海域某站位叶绿素 a、POC、初级生产力、234Th/238U不平衡进行的周日变化研究表明,POC含量介于14.4~34.6 mmol/m3之间,其中碎屑有机碳与活体有机碳所占份额分别为74%~92%和8%~26%.POC垂直分布呈现由表及底降低的趋势,且白昼期间POC含量高于晚间,说明研究海域POC含量与生物过程具有密切联系.初级生产力水平在1d之中变化达5倍,垂直分布亦随深度增加而降低,与叶绿素a的变化相对应.短时间(2h)培养获得的初级生产力水平明显高于长时间培养(24 h)的结果,证实部分新固定的碳被优先呼吸排出.结合234Th/238U不平衡法获得的颗粒态234Th输出通量及输出界面颗粒物中的POC/PTh比值,可计算出真光层 POC的垂向输出通量为16.0mmol/(m2·d),其中碎屑有机碳与活体有机碳贡献的数量分别为13.3和2.7mmol/(m2·d).POC输出通量与初级生产力的比值(ThE比值)平均为0.31,真光层POC停留时间平均为11d.上述结果与Aksnes和Wassmann[1]的模型计算结果相吻合,但与其他大多数模型的结果仍存在一定的差异.  相似文献   

13.
The deficit of 234Th relative to its radioactive parent 238U in the surface ocean can yield reliable estimates of vertical Particulate Organic Carbon (POC) fluxes to deeper waters, but only when coupled with an accurate ratio of POC concentration to activity of 234Th on sinking matter. Assuming a simple partitioning of suspended phytoplankton mass between single cells and flocs, we calculate the ratio of the POC flux estimated from 234Th deficit to the actual POC flux (p ratio, Smith, J.N., Moran, S.B., Speicher, E.A., in press. The p-ratio: a new diagnostic for evaluating the accuracy of upper ocean particulate organic carbon export fluxes estimated from 234Th/238U disequilibrium. Deep-Sea Research I.). The p ratios are calculated under the assumption that particle surface area is correlated with 234Th activity and particle volume is correlated with POC concentration. The value of the p ratio depends on the relative contributions of single cells and flocs to the vertical flux. When large single cells make up a significant fraction of the vertical flux, p ratios are less than one, meaning POC fluxes estimated from 234Th deficits underestimate actual POC fluxes. When large single cells are abundant but do not sink fast enough to contribute to vertical POC flux, p ratios are greater than one (up to 3 × overestimate). Factor analysis of the model indicates that altering the extent of flocculation in suspension and changing the density and maximum size of phytoplankton cells have the greatest effects on the p ratio. Failure to measure the properties of flocs when characterizing the ratio of POC to thorium on sinking matter potentially leads to large overestimation of the POC flux (over 20 ×). Failure to characterize the POC to thorium ratio of large particles, by, for example, destruction of phytoplankton cells in pumps, can lead to underestimation of POC flux. Estimates of POC flux should be most reliable in highly flocculated suspensions populated by small cells and rapidly sinking flocs. These conditions are often associated with intense phytoplankton blooms.  相似文献   

14.
《Marine Chemistry》2002,80(1):11-26
Profiles of particulate and dissolved 234Th (t1/2=24.1 days) in seawater and particulate 234Th collected in drifting traps were analyzed in the Barents Sea at five stations during the ALV3 cruise (from June 28 to July 12, 1999) along a transect from 78°15′N–34°09′E to 73°49′N–31°43′E. 234Th/238U disequilibrium was observed at all locations. 234Th data measured in suspended and trapped particles were used to calibrate the catchment efficiency of the sediment traps. Model-derived 234Th fluxes were similar to 234Th fluxes measured in sediment traps based on a steady-state 234Th model. This suggests that the sediment traps were not subject to large trapping efficiency problems (collection efficiency ranges from 70% to 100% for four traps). The export flux of particulate organic carbon (POC) can be calculated from the model-derived export flux of 234Th and the POC/234Th ratio. POC/234Th ratios measured in suspended and trapped particles were very different (52.0±9.9 and 5.3±2.2 μmol dpm−1, respectively). The agreement between calculated and measured POC fluxes when the POC/234Th ratio of trapped particles was used confirms that the POC/234Th ratio in trap particles is representative of sinking particles. Large discrepancies were observed between calculated and measured POC fluxes when the POC/234Th ratio of suspended particles was used. In the Barents Sea, vertical POC fluxes are higher than POC fluxes estimated in the central Arctic Ocean and the Beaufort Sea and lower than those calculated in the Northeast Water Polynya and the Chukchi Sea. We suggest that the latter fluxes may have been strongly overestimated, because they were based on high POC/234Th ratios measured on suspended particles. It seems that POC fluxes cannot be reliably derived from thorium budgets without measuring the POC/234Th ratio of sediment trap material or of large filtered particles.  相似文献   

15.
In order to estimate the deposition rate of extraterrestrial material onto a manganese crust in a search for supernova debris, we analyzed the contents of 10Be, 230Th, 231Pa, and 239,240Pu in a sample of manganese crust collected from the North Pacific Ocean. On the basis of the depth profile of 10Be, the growth rate of the manganese crust was determined to be 2.3 mm Myr−1. The uptake rates of 10Be, 230Th, and 231Pa onto the manganese crust were estimated to be 0.22–0.44%, 0.11–0.73%, and 1.4–4.5%, respectively, as compared to the deposition rates onto the deep-sea sediments near the sampling station, while that for 239,240Pu was 0.14% as compared to the total inventory of seawater and sediment column. Assuming that sinking particles represent 0.11–4.5% of the uptake rates, the deposition rate of extraterrestrial material onto the manganese crust was estimated to be 2–800 μg cm−2Myr−1 according to the uptake of 10Be onto the manganese crust. Further, our estimate is similar to the value of 9–90 μg cm− 2Myr−1 obtained using the integrated global production rate of 10Be and the deposition rate of 10Be onto the manganese crust.  相似文献   

16.
In order to better understand the relationship between the natural radionuclide 234Th and particulate organic carbon (POC), marine particles were collected in the northwestern Mediterranean Sea (spring/summer, 2003 and 2005) by sediment traps that separated them according to their in situ settling velocities. Particles also were collected in time-series sediment traps. Particles settling at rates of >100 m d−1 carried 50% and 60% of the POC and 234Th fluxes, respectively, in both sampling years. The POC flux decreased with depth for all particle settling velocity intervals, with the greatest decrease (factor of 2.3) in the slowly settling intervals (0.68–49 m d−1) over trap depths of 524–1918 m, likely due to dissolution and decomposition of material. In contrast the flux of 234Th associated with the slowly settling particles remained constant with depth, while 234Th fluxes on the rapidly settling particles increased. Taking into account decay of 234Th on the settling particles, the patterns of 234Th flux with depth suggest that either both slow and fast settling particles scavenge additional 234Th during their descent or there is significant exchange between the particle classes. The observed changes in POC and 234Th flux produce a general decrease in POC/234Th of the settling particles with depth. There is no consistent trend in POC/234Th with settling velocity, such as might be expected from surface area and volume considerations. Good correlations are observed between 234Th and POC, lithogenic material and CaCO3 for all settling velocity intervals. Pseudo-Kds calculated for 234Th in the shallow traps (2005) are ranked as lithogenic material opal <calcium carbonate <organic carbon. Organic carbon contributes 33% to the bulk Kd, and for lithogenic material, opal and CaCO3, the fraction is 22% each. Decreases in POC/234Th with depth are accompanied by increases in the ratio of 234Th to lithogenic material and opal. No change in the relationship between 234Th and CaCO3 was evident with depth. These patterns are consistent with loss of POC through decomposition, opal through dissolution and additional scavenging of 234Th onto lithogenic material as the particles sink.  相似文献   

17.
Th sorption and export models in the water column: A review   总被引:2,自引:3,他引:2  
Over the past few decades, the radioisotope pair of 238U / 234Th has been widely and increasingly used to describe particle dynamics and particle export fluxes in a variety of aquatic systems. The present paper is one of five review articles dedicated to 234Th. It is focused on the models associated with 234Th whereas the companion papers (same issue) are focused on present and future methodologies and techniques (Rutgers van der Loeff et al.), C / 234Th ratios (Buesseler et al.), 234Th speciation (Santschi et al.) and present and future applications of 234Th [Waples, J.T., Benitez-Nelson, C.R., Savoye, N., Rutgers van der Loeff, M., Baskaran, M., Gustafsson, Ö., this issue. An Introduction to the application and future use of 234Th in aquatic systems. Marine Chemistry, FATE special issue]. In this paper, we review current 234Th scavenging models and discuss the relative importance of the non-steady state and physical terms associated with the most commonly used model to estimate 234Th flux. Based on this discussion we recommend that for future work the use of models should be accompanied by a discussion of the effect that model and data uncertainty have on the model results. We also suggest that future field work incorporate repeat occupations of sample sites on time scales of 1–4 weeks in order to evaluate steady state versus non-steady state estimates of 234Th export, especially during high flux events (> ca. 800 dpm m− 2 d− 1). Finally, knowledge of the physical oceanography of the study area is essential, particularly in ocean margins and in areas of established upwelling (e.g., Equatorial Pacific). These suggestions will greatly enhance the application of 234Th as a tracer of particle dynamics and flux in more complicated regimes.  相似文献   

18.
The distribution of the natural radionuclide 210Po in the water column along a horizontal transect of the continental shelf, slope and deep basin regions of the East Sea (Sea of Japan), a marginal sea of the Northwest Pacific Ocean, was investigated, and its behavior is described here. The settling fluxes of particulate 210Po in the deep basin along with 210Pb, 234Th and biogenic matter were also determined. 210Po inventories in the water column were observed to decrease from winter to summer in all stations, probably due to increased influx of 210Po-poor Kuroshio Water of the Northwest Pacific Ocean during summer. Vertical profiles of dissolved and particulate 210Po along with the settling fluxes of particulate 210Po in the deep basin station have enabled us to evaluate temporal variations and residence times of 210Po. In the slope and basin, activities of dissolved 210Po generally decreased from the surface to the bottom water, with maximum activity just below the subsurface chlorophyll a maximum at 50–75 m depth in spring and summer. These subsurface peaks of dissolved 210Po activity were attributed to the release of 210Po from the decomposition of 210Po-laden biogenic particulate organic matter. In the deep basin, despite the decrease in total mass flux, the sinking flux of particulate 210Po was higher in the deeper trap (2000 m) than in the shallower one (1000 m), probably due to scavenging of dissolved 210Po from the water column during particle descent and/or break-down of 210Po-depleted particulate matter between 1,000 m and 2,000 m depths. In general, the ratios of the particulate phase to the dissolved phase of 210Po (Kd) increased with depth in the slope and basin stations. 210Po removal from the water column appears to depend on the primary productivity in the upper waters. There is an inverse relationship between Kd and suspended particulate matter (SPM) concentration in the water column. From the 210Po activity/chlorophyll a concentration ratios, it appears that sinking particles arriving at 1000 m depth were similar to those in the surface waters.  相似文献   

19.
In 1998–1999, beam attenuation coefficient (bac) profiles, suspended particulate matter (SPM) and particulate organic carbon (POC) concentrations were assessed during five cruises in the Saronikos Gulf, eastern Mediterranean, Greece. SPM and POC concentrations (0.05–1.84 mg l−1 and 10.2–468.6 μg l−1, respectively) exhibited strong spatial and temporal variations, related to the different environmental characteristics of various sectors of the gulf, including wind regime and biological productivity. The Elefsis and Keratsini bays, as well as the area around Psyttaleia Island, showed the highest POC concentrations. The vertical distribution of POC at stations in the western basin, as well as in the inner and outer Saronikos Gulf is characterised by higher POC concentrations in surface waters, associated with higher biological activity. The wastewater treatment plant effluents discharged south of the Psyttaleia Island are a major source of organic particles which directly influence the intermediate water layers, at least during the stratification period. Assessments of relationships between bac and SPM or POC concentrations revealed a relatively strong correlation between bac and POC. An equation converting bac readings to POC concentration was established which can be applied to historical and/or future bac measurements, independently of season. POC concentrations estimated from calibrated continuous transmissometer readings were used to estimate the standing stock of POC in the Saronikos Gulf, which varied between 6,110×106 and 13,450×106 g C during the period June 1998 to February 1999.  相似文献   

20.
Measurements of 234Th/238U disequilibria and particle size-fractionated (1, 10, 20, 53, 70, 100 μm) organic C and 234Th were made to constrain estimates of the export flux of particulate organic C (POC) from the surface waters of the Ligurian, Tyrrhenian and Aegean Seas in March–June 2004. POC exported from the surface waters (75–100 m depth) averaged 9.2 mmol m−2 d−1 in the Ligurian and Tyrrhenian Seas (2.3±0.5–14.9±3.0 mmol m−2 d−1) and 0.9 mmol m−2 d−1 in the Aegean Sea. These results are comparable to previous measurements of 234Th-derived and sediment-trap POC fluxes from the upper 200 m in the Mediterranean Sea. Depth variations in the POC/234Th ratio suggest two possible controls. First, decreasing POC/234Th ratios with depth were attributed to preferential remineralization of organic C. Second, the occurrence of maxima or minima in the POC/234Th ratio near the DCM suggests influence by phytoplankton dynamics. To assess the accuracy of these data, the empirical 234Th-method was evaluated by quantifying the extent to which the 234Th-based estimate of POC flux, PPOC, deviates from the true flux, FPOC, defined as the p-ratio (p-ratio=PPOC/FPOC=STh/SPOC, where S=particle sinking rate). Estimates of the p-ratio made using Stokes’ Law and the particle size distributions of organic C and 234Th yield values ranging from 0.93–1.45. The proximity of the p-ratio to unity implies that differences in the sinking rates of POC- and 234Th-carrying particles did not bias 234Th-normalized POC fluxes by more than a factor of two.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号