首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
Understanding the sources of sediments deposited in tidal flats is critical for reconstructing the evolution of coastal regions impacted by large rivers. Environmental magnetism can be an effective tool to track sediment sources and analyze the sediment properties. We evaluate several magnetic parameters from the tidal flat sediments along the Jiangsu coast. The results show that the sediments of Liandao Island have the lowest values of magnetic susceptibility (χ), anhysteretic remanent magnetization (ARM) and saturation isothermal remanence magnetization (SIRM). In addition to these, the values of χ, ARM and SIRM display a generally increasing trend from the north to the south along the Jiangsu coast. The strong relations between χ, ARM and SIRM show that the changes of magnetization of the tidal flat sediments mainly reflect the changes of concentration rather than those in grain sizes of magnetic particles. The main magnetic phase is magnetite, with a small amount of hematite. The strong relationship between χ and the 2-16 μm grain-size fraction suggests that magnetite is enriched in the finer silt fraction. The sediment sources is the main factor that influences the magnetic properties of the tidal flat sediments from the Jiangsu coast. Combined with the previous studies, the results indicate that the tidal flat sediments of Liandao Island were mainly derived from the nearshore rock weathering. The Yellow River is the dominant supplier for the north of Dafeng, while the Yangtze River is the dominant supplier for the south of Rudong. The coast between Dafeng and Rudong is a transition zone influenced by both rivers. This study provides a basis against which possible future variations in sediment composition resulting from catchment changes can be assessed.  相似文献   

2.
The relative intensities of anhysteretic remanent magnetization (RAM) and thermoramanent magnetization (TRM) are strongly dependent on grain size, blocking temperature and applied field, and are poorly predicted by existing theories. Analog techniques that substitute ARM for TRM probably yield adequate relative paleointensities in suites of mineralogically similar rocks, but they yield uncertain estimates of absolute paleointensity.  相似文献   

3.
Re-deposition of some deep-sea clay material in the earth's magnetic field is described. At the time of an induced reversal of the ambient field declination, calcium carbonate layers were introduced for identification purposes. NRM and bulk susceptibility measurements along the still moist sediment cores showed the presence of a time lag of around 10 days between a change in the ambient field direction and a corresponding change in the stable magnetization. AF-demagnetization of discs sampled from a dried core suggested that this time lag was caused by a post-depositional remanent magnetization mechanism. Magnetomineralogical investigations show the presence of the thermally unstable magnetic mineral phase, probably titano-maghemite. A positive correlation between NRM-intensities and water temperature during deposition is discussed. It is suggested that consolidation-rate is a major factor influencing the NRM intensity in deep-sea sediments.  相似文献   

4.
Drying remanent magnetization is shown to be a physical phenomenon which is dependent on water content and magnetic grain shape. Anhysteretic remanent magnetization (ARM) acquisition studies show that no significant chemical changes occur on drying. There is a critical water content below which grain motion ceases. In a clay matrix, this water content is about 75% for single-domain needles and below 70% for single-domain euhedral grains. The rotation of grains during drying causes the magnetic moment to rotate toward the plane perpendicular to drying compression, and toward the external magnetic field. The rotation for euhedral grains is not restricted by shape anisotropy, while that for acicular grains is. Drying remanence cannot be completely removed once a sample has dried below its critical water content; however, most natural samples may be near or below their critical water content when cored.  相似文献   

5.
Anhysteretic remanent magnetization (DC field = 1 Oe, peak AC field = 1000 Oe) was given to an artificial sediment consisting of a kaolinite matrix and a 0.03% magnetic fraction of needle-shaped magnetite grains. The mean grain size of the clay flakes and the magnetite needles was approximately 0.5 μm. This sediment was subjected to plane strain while maintaining constant volume. The axis of maximum compression was shortened by as much as 331/3%, which produced no significant change in the direction of magnetization with a decrease in intensity of 28%. A continuous deformation model, in which the magnetite needles are embedded in a plastically deforming linearly homogeneous medium, failed to explain these results. A discontinuous deformation model was more successful. In this model, deformation occurs mainly in shear zones bounding blocks which translate along the shears. Only those magnetite grains in the shear zones rotate, and from symmetry considerations no net change in the direction of magnetization is predicted. Because magnetite grains rotate in opposite directions in complementary sets of shears, the model predicts a decrease in intensity comparable to that which was observed.  相似文献   

6.
Since the 1970s, environmental magnetism has found extensive applications in diverse research areas of geoscience[1]. In China, a lot of environmental magnetic studies have been carried out on loess, lake and marine sediments for the purpose of paleoclima…  相似文献   

7.
Inversion of magnetic data is complicated by the presence of remanent magnetization, and it provides limited information about the magnetic source because of the insufficiency of data and constraint information. We propose a Fourier domain transformation allowing the separation of magnetic anomalies into the components caused by induced and remanent magnetizations. The approach is based on the hypothesis that each isolated source is homogeneous with a uniform and specific Koenigsberger ratio. The distributions of susceptibility and remanent magnetization are subsequently recovered from the separated anomalies. Anomaly components, susceptibility distribution and distribution of the remanent and total magnetization vectors (direction and intensity) can be achieved through the processing of the anomaly components. The proposed method therefore provides a procedure to test the hypotheses about target source and magnetic field, by verifying these models based on available information or a priori information from geology. We test our methods using synthetic and real data acquired over the Zhangfushan iron-ore deposit and the Yeshan polymetallic deposit in eastern China. All the tests yield favourable results and the obtained models are helpful for the geological interpretation.  相似文献   

8.
A phenomenological model based on a linear relationship between the magnetic coercivity field and the reciprocal of the grain diameter is applied to explain the anhysteretic remanent magnetization (ARM) imparted to artificial samples with different concentrations of a very well characterized magnetite powder. By analyses of scanning electron microscopy images, the spherically shaped single domain synthetic magnetite is found to follow a lognormal grain size distribution with ~86 nm of mean diameter. The proposed model, fitted to ARM measurements up to a peak alternating field of 100 mT, yields a very good agreement. The coercivity behaviour predicted by micromagnetism theory disagrees with the experimental results of this work. A likely explanation for the discrepancy is that the magnetite particles, which consist of a mixture of grains in coherent rotation and curling modes, produce similar observations as domain processes.  相似文献   

9.
Thermal remanent magnetization (TRM) and anhysteretic remanent magnetization (ARM) components were imposed on natural rock samples. The artificial laboratory components had different directions and the blocking temperature and/or coercivity spectra were overlapping. Two methods, principal component analysis (PCA) by Kirschvink and analytical modelling of demagnetization data (by Stupavsky and Symons, S&S) were used to resolve these components. The PCA technique calculated lines fitted to the demagnetization path with ASD = 10° (angular standard deviation), and the S&S method used four types of intensity decay curves for calculated components.

Both methods (PCA and S&S) resolved perfectly the one-component case. The two- or three-component case results strongly depended on spectra overlapping, and on the angles between component directions and magnetic minerals in samples. Principal component analysis gave more reliable results for separated spectra of TRM and thermally cleaned samples, whereas the S&S technique was more efficient for the case of strong spectra overlapping of ARM components and the alternative current field (AF) demagnetization method. Remarkable anisotropy of RM was observed which influences the results for the haematite-bearing samples.  相似文献   


10.
Anhysteretic remanent magnetization (ARM) is used as a means of estimating lunar magnetic field palaeointensities from several Apollo 11 and 16 samples. A value of 1.4 Oe was obtained by this method for an Apollo 16 sample of age 3.9 AE and this value is in close agreement with the value obtained by the conventional Thellier method (1.2 Oe) carried out on the same sample. A further sample which was of age 4.0 AE and which had been reheated at 3.84 AE also showed evidence of a primary magnetization acquired in a field of this magnitude. Determinations on two younger samples (about 3.6 AE) gave palaeofields of about one quarter of this value (0.33 and 0.38 Oe respectively). These estimates of field strengths are considerably higher than previously reported.  相似文献   

11.
Summary The rock specimens found to have natural remanent magnetization of abnormally high intensity, have been generally from hill sides or tops, or from ridges high up from the local surroundings. A field of several hundred oersteds has been found sufficient to produce in some of the artificially demagnetized specimens an isothermal magnetization of the same order as the abnormal natural ones, and this magnetization has shown a similar degree of stability as the natural one. Variations in the direction and magnitude of the natural magnetic vector have been found over a distance of a few centimetres. Laboratory tests indicate a normal chemical composition for the specimens. The lightning discharge seems to be the plausible cause of abnormally high magnetization of rocks, which is generally isothermal and might have originated in the recent past, but the magnetization is sometimes complicated probably by the thermal effect of the discharge.  相似文献   

12.
Coagulation of particles into aggregates during their deposition in a reservoir is numerically simulated with regard for Brownian motion, Van der Waals forces, gravitation, Stokes friction, and magnetostatic interaction, and the effect of this process on the depositional magnetization (DRM) is estimated. Clusters obtained due to random aggregation of smaller clusters have a loose and branching structure. The average fractal dimension of the clusters is d = 1.83 ± 0.23. In the process of coagulation, magnetic particles do not form chains or clusters, as was supposed in a number of preceding works, but become rather uniformly distributed among nonmagnetic particles, which provides an additional argument in favor of the fact that chains of magnetite particles in marine sediments are of biogenic origin rather than a result of mutual attraction of magnetic particles due to magnetostatic interaction. The deposition process is shown to obey a kind of the principle of scale invariance: the number of clusters and their average number of particles do not change if the basin depth H and the surface concentration of initial material c 0 simultaneously change (provided that temperature and the initial particle size r are constant) in such a way that Hc 0 = const. Coagulation is the most important factor forming the bottom layer structure and the magnetization of the suspension at a relatively high concentration c 0 Typical of redeposition conditions, lakes, and shelf seas. Coagulation virtually does not influence oceanic sediments because of the smallness of c 0.  相似文献   

13.
Summary ARM has been measured in a range of inducing, steady fields up to 50 oersteds and for 6 sizes of magnetite grains with average diameters 5 m to 174 m. For all sizes a slight non-linearity of ARM with inducing field was found, apparently comprising a non-linear contribution independent of grain size plus a linear contribution which increased with decreasing grain size. In the largest grains induced ARM agreed well with multidomain grain theory. Relative enhancement of ARM in smaller grains is comparable to the enhancement of thermoremanence and therefore appears to indicate a pseudosingle domain contribution to ARM in small grains. However the observations allow an alternative explanation in terms of more extreme dimension ratios in the smaller grains. Presentation of the equations for multidomain ARM and TRM using observed instead of intrinsic susceptibilities makes it appear that the inadequacy of multidomain theory (and consequent necessity for pseudo-single domain theory) are less serious than has been supposed.  相似文献   

14.
Very fine samples from the mineralized zones of the Jacupiranga complex at the Cajati mine were selected for crystallographic identification of Ti-magnesioferrite (TMf) nanostructures embedded in titanomagnetite (TM) using high-resolution transmission electron microscopy (TEM). A magnetic concentrate obtained of pyroxenite samples (sites 4 to 7) was reduced and divided into fractions of distinct range sizes: 26±2 μm, 19±1 μm, 13±1 μm, 9±1 μm, 6±1 μm and 6-0.1 μm. The mineralized samples of carbonatite and pyroxenite were characterized by X-ray diffraction, transmitted and reflected light microscope, and scanning electron microscope with multielemental analysis. The finest magnetic concentrate sample (MC6) was analyzed under high-resolution transmitted electron microscopy (TEM) and high angle annular dark field and Raman spectroscopy. Magnetic properties were measured for the distinct granulometric fractions, showing drastic changes when grain sizes go beyond the frontier from micro to nanometer sizes. Frequency-dependent magnetic susceptibility percentage (÷fd%) report higher values (10.2%) for the finer fractions (6±1 μm and 6-0.1 μm) attributed to dominant fractions of superparamagnetic particles. Nanometer and < 6 μm grain size TMf in TM particles require a magnetic field up to 249 mT to reach saturation during the isothermal remanent magnetization experiment. Coercivity and remanent magnetization of these samples increase when the particle size decreases, probably due to parallel coupling effects. Magnetic susceptibility versus temperature experiments were conducted two times on the same (< 35 nm) sample, showing that the repetition during the second heating is probably due to the formation of new TMf nanoparticles and growth of those already present during the first heating process.  相似文献   

15.
Summary The effect of uniaxial elastic deformation on the remanent magnetization of some basalts, containing generalized titanomagnetities of different chemical composition, was studied. The irreversible changes of the saturated and natural remanent magnetizations were measured. With the deformed samples no permanent change of the spectrum of micro-coercive forces, or change in the magnitude of the specific saturated remanent magnetization were observed. The experimental results agree with the model of mutual interaction of structural defects with magnetic domatins [10] under the assumption of predominantly reversible changes of the dislocation structure of the sample due to elastic deformation.  相似文献   

16.
A 290 m sequence of Maastrichtian and Danian limestones from Limhamn, southern Sweden, has been investigated magnetically. The observed mean natural remanent magnetization is 24 μ A m−1. The remanent magnetization is carried by pseudo-single-domain or single-domain magnetite particles, and was observed by various rock magnetic methods. Though influenced by diamagnetism, the anisotropy was determined. Paleomagnetically, polarity changes could be determined in several samples in spite of the low remanences measured. The results are in agreement with the magnetostratigraphy based upon ocean floor anomalies.  相似文献   

17.
The effects of various factors such as thermal agitation, coagulation, anisotropy of susceptibility, and shape irregularity on the alignment of magnetic carrier grains during the process of acquisition of depositional remanent magnetization in sedimentary rocks is discussed.  相似文献   

18.
In this paper some aspects concerning the interpretation of magnetic anomalies are treated, particularly when the remanent magnetization intensity is strong. In this case, since total and induced magnetization vectors can have very different directions, a correct anomaly interpretation strictly depends on the knowledge of their declinations and inclinations.Thus, a specific procedure is described to determine such parameters from well-known semi-empirical techniques and vectorial relations.Furthermore, the classical definition of apparent susceptibility is shown to be inadequate to this problem and a more general formulation is suggested, which is not only related to the true susceptibility and to the Koenisberger ratio, but also to the declinations and inclinations of the induced and remanent magnetization vectors.The two apparent susceptibilities are then compared for some synthetic magnetic anomalies and significant differences are found.  相似文献   

19.
Our rock magnetic analysis of core Ph05 from the West Philippine Sea demonstrates that the core preserves a strong, stable remanent magnetization and meets the magnetic mineral criteria for relative paleointensity (RPI) analyses. The magnetic minerals in the sequence are dominated by pseudosingle-domain magnetite, and the concentration of magnetic minerals is at the same scale. Both the conventional normalizing method and the pseudo-Thellier method were used in conjunction with the examination of the rock magnetic properties and natural remanent magnetization. Susceptibility (χ), anhysteretic remnant magnetization (ARM) and saturation isothermal remnant magnetization (SIRM) were used as the natural remanent magnetization normalizer. However, coherence analysis indicated that only ARM is more suitable for paleointensity reconstruction. The age model of core is established based on oxygen isotope data and AMS14C data, which is consistent with the age model estimated from RPI records. The relative paleointensity data provide a continuous record of the intensity variation during the last 200 ka, which correlates well with the global references RPI stacks. Several prominent low paleointensity values are identified and are correlated to the main RPI minima in the SINT-200 record, suggesting that the sediments have recorded the real changes of geomagnetic field. Supported by National Natural Science Foundation of China (Grant No. 90411014) and Pilot Project of the Knowledge Innovation Program of Chinese Academy of Sciences (No. KZCX2-YW-211)  相似文献   

20.
花东海盆浊流沉积的磁性特征及其环境意义   总被引:2,自引:0,他引:2       下载免费PDF全文
对取自台湾以东花东海盆GX168孔的浊流沉积物进行系统的岩石磁学研究,揭示其沉积学和岩石磁学特征,分析其物源和形成机制.研究结果显示,剖面上共识别出12层浊流沉积物,其分布存在规律,下部350~700cm共发育11层浊流沉积物,而0~350cm仅出现1层浊流沉积物.浊流沉积物粒径明显较背景沉积物粗,石英、长石含量更高,底部与下伏背景沉积呈突变接触,顶部与上覆背景沉积呈渐变接触,内部发育典型的正粒序韵律结构.浊流沉积物和背景沉积物具有相似的磁学特征,两者均以磁铁矿为主要载磁矿物类型,且磁铁矿颗粒均以准单畴和多畴颗粒为主.同时,两者也存在一定差异,浊流沉积物中磁铁矿较背景沉积物更为富集,磁化率和饱和等温剩磁更强,磁铁矿粒径更粗,这与浊流沉积物原始沉积区更靠近物源区有关.花东海盆浊流沉积形成的诱发机制可能是末次冰期以来频发的海平面波动造成陆坡之上沉积物重力失稳,导致陆坡沉积物向海盆搬运.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号