首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Some results of the double station television meteor observations provided in Kiev during the Perseid shower period in years 1991 – 1993 are presented. The dependence of the beginning hights of meteors on their initial velocities based on 57 best reduced double station meteors is constructed. Exceptionaly great beginning heights of meteors are discussed, as well as the exceptional case of a Perseid bolide.  相似文献   

2.
A new method of processing of visual meteor data has been worked outand applied to Perseid meteor shower observations. Reduced meteor hourly rates with magnitudes brighter than +3 are proportional to meteor flux densities with a coefficient equals to the effective collecting area. Corrections due to moon light and for meteor path lenghts were applied. Our observations 1972–1979 and 1982–1990 gave similar hourly rate profiles with a maximum rate of 71 meteors at solar longitude L=140.36°. Perseids 1980 and 1981 were about 1.5 times more active. The maximum Perseid activity in 1991–1992 was 119 meteors at solar longitude 139.54° and narrow peaks are observed at the same longitude showing an enhanced activity up to 225 meteors.  相似文献   

3.
Abstract— We report spectroscopic observations of meteors made from the FISTA aircraft on 1998 November 17 as a part of the Leonid multi-instrument aircraft campaign. Low-resolution spectra of 119 meteors of apparent visual magnitudes from +3 to ?4, corresponding to meteoroid masses from 10?6 to 10?3 kg, were obtained. After analyzing a representative sample of the spectra and comparing them to the spectra of Perseid meteors from the Ondrejov archive, the following conclusions were reached: Leonid meteoroids are very loose and disintegrate easily in the atmosphere. This leads to much faster evaporation of volatile Na than of other elements, an effect which is not observed in the Perseid meteors. Relative bulk abundances of Mg, Fe, Ca, and Na in Leonid meteors are nearly CI-chondritic within the uncertainty of the method (factor of 3). Smaller meteoroids tend to be poorer in Na, which is true also for Perseid meteors. Most meteoric vapor emissions could be reasonably well explained with the temperature of 4500 K. High-temperature meteoric emissions (Ca+, Mg+) are present only in bright meteors. Leonid spectra are very rich in atmospheric emissions of O, N, and N2, even at high altitudes and in faint meteors. These emissions are therefore not connected with the meteor shock wave. Thermal continuum is also present in the spectra. Organic material was not revealed.  相似文献   

4.
Jack D. Drummond 《Icarus》1982,51(3):655-659
Seven doubly photographed meteors reported in the literature are shown to be members of the Delta Aurigids, which now appear to extend from September 29 to October 18. Visual observations from the second half of activity in 1980 reveal a zenith hourly rate of no more than 2 or 3. The mean orbital elements of the stream point to an unknown short period (115 years) retrogade comet as a parent.  相似文献   

5.
Abstract— We report on two surveys conducted during the times of Perseid shower maximum in 1997 and 1998. The first survey entailed the video monitoring of the Moon's disk with the intent of recording the optical flashes that should result when large meteoroids strike the lunar surface. The second survey consisted of a combination video camera and very low frequency (VLF) radiowave receiver system capable of detecting electrophonic meteors during their ablation in the Earth's atmosphere. Using standard ablation theory, we find that for a Perseid meteoroid to be capable of generating electrophonic sounds, it must have an initial mass in excess of 495 kg. We also find, as a result of the surveys, an upper limit of 2 × 10?17 m?2 s?1 to the flux of electrophonic Perseid meteors entering the Earth's atmosphere. Although our study indicates that large, meter-sized meteoroids must, at best, be sparsely distributed within the Perseid stream, we briefly discuss some tantalizing lines of evidence, found from within the astronomical literature, that hint at their true existence.  相似文献   

6.
Abstract— A shutter-chopped, direct photograph of a 1980 Perseid meteor is discussed in which no shutter breaks are apparent. Evidence is considered that it is indeed a Perseid and that the phenomenon is the result of an extraordinary fragmentation of the meteoroid. Tentative evidence is presented for the existence in 1980 of a second radiant from which the apparently unchopped meteor and a second meteor, also showing marked fragmentation, emanated. The fragmentation of these two meteors and the concentration of their radiant are consonant with the concept of their origin from recently released material from the nearby parent comet.  相似文献   

7.
Abstract— Precise atmospheric trajectories including dynamic and photometric data on thirteen of the brightest Leonid fireballs have been determined from the double‐station photographic observations of Leonid meteors during the ground‐based expedition to China in 1998 November. the expedition was organized as a collaboration between the dutch and chinese academy of sciences and was supported by the leonid multi‐instrument aircraft campaign (mac) program (jenniskens and butow, 1999). All data presented here were taken at Xinglong Observatory and at a remote station, Lin Ting Kou near Beijing, on the night of 1998 November 16/17. At the Xinglong station, photographic cameras were accompanied by an all‐sky television camera equipped with an image intensifier and 15 mm fish‐eye objective in order to obtain precise timings for all observed meteors up to magnitude +2. Whereas beginning heights of photographed meteors are all lower than 130 km, those observed by the all‐sky television system are at ~160 km, and for three brightest events, even > 180 km. Such high beginnings for meteors have never before been observed. We also obtained a precise dynamic single‐body solution for the Leonid meteor 98003, including the ablation coefficient, which is an important material and structural quantity (0.16 s2 km?2). From this and from known photometry, we derived a density of this meteoroid of 0.7 g/cm3. Also, all PE coefficients indicate that these Leonid meteors belonged to the fireball group IIIB, which is typical for the most fragile and weak interplanetary bodies. From a photometric study of the meteor lightcurves, we found two typical shapes of light curves for these Leonid meteors.  相似文献   

8.
Abstract— In this paper, we provide an overview of meteors with high beginning height. During the recent Leonid meteor storms, as well as within the regular double station video observations of other meteor showers, we recorded 164 meteors with a beginning height above 130 km. We found that beginning heights between 130 and 150 km are quite usual, especially for the Leonid meteor shower. Conversely, meteors with beginning heights above 160 km are very rare even among Leonids. From the meteor light curves, we are able to distinguish two different processes that govern radiation of the meteors at different altitudes. Light curves vary greatly above 130 km and exhibit sudden changes in meteor brightness. Sputtering from the meteoroid surface is the dominating process during this phase of the meteor luminous trajectory. Around 130 km, the process switches to ablation and the light curves become similar to the light curves of standard meteors. The sputtering model was successfully applied to explain the difference in the beginning heights of high‐altitude Leonid and Perseid meteors. We show also that this process in connection with high altitude fragmentation could explain the anomalously high beginning heights of several relatively faint meteors.  相似文献   

9.
The state of the art in the theory of processing of visual observations of meteor streams is considered. Of the three widely used methods of visual-observation processing, the method developed at the Engel'gardt Astronomical Observatory provides the highest accuracy of conversion to the hourly rate of meteors. For the first time, the dependence of the fine structures of the Geminid, Perseid, and Leonid streams on the minimum detected mass of meteor bodies is obtained from visual observations. A shift in the position of an activity maximum for smaller masses in the direction of lower solar longitudes is confirmed for the Geminids. For the Perseids, an activity maximum for meteor bodies with mass exceeding 0.01 g, sets in earlier than for smaller particles. In the Leonid swarm, no correlation was found between the node longitude of the mean swarm orbit and mass of meteor bodies.  相似文献   

10.
Image intensified video detection systems were used to observe the 1991 Perseid meteor shower from two locations in eastern Canada. In 29.6 hours of total observing time a total of 668 meteors were detected, of which 403 were Perseids. We derived a profile of TVZHR (television zenithal hourly rate) values for the 1991 Perseid shower over the solar longitude (epoch 2000) interval 138°51 to 141°01. The apparent limiting stellar magnitudes of the observing systems were +9.4 and +8.8 (corresponding to limiting meteor magnitudes for our geometry ranging from +8.7 to +7.0). Within the observing period, the maximum TVZHR rate was approximately 1600, and occurred at solar longitude 139.9°. This is in good agreement with the second peak observed by visual observers. The data suggest that TVZHR values should be divided by a factor of approximately 5 to compare TVZHR and ZHR values.  相似文献   

11.
Abstract— Meteor science, aeronomy, and meteoritics are different disciplines with natural interfaces. This paper is an effort to integrate the chemistry and mineralogy of collected interplanetary dust particles (IDPs), micrometeorites, and meteorites with meteoric data and with atmospheric metal abundances. Evaporation, ablation, and melting of decelerating materials in the Earth's atmosphere are the sources of the observed metal abundances in the upper atmosphere. Many variables ultimately produce the materials and phenomena we can analyze, such as different accretion and parent‐body histories of incoming extraterrestrial materials, different interactions of meteors with the Earth's middle atmosphere, meteor data reduction, and complex chemical interactions of the metals and ions with the ambient atmosphere. The IDP‐like and unequilibrated ordinary chondrite matrix materials are reasonable sources for observed meteoric and atmospheric metals. The hypothesis of hierarchical dust accretion predicts that low, correlated refractory element abundances in cometary meteors may be real. It implies that the CI or cosmic standard is not useful to appreciate the chemistry of incoming petrologically heterogeneous cometary matter. The quasi steady‐state metal abundances in the lower thermosphere and upper mesosphere are derived predominantly from materials with cometary orbital characteristics and velocities such as comets proper and near‐Earth asteroids. The exact influence of atmospheric chemistry on these abundances still needs further evaluation. Metal abundances in the lower mesosphere and upper stratosphere region are mostly from materials from the asteroidal belt and the Kuiper belt.  相似文献   

12.
More than 600 double-station photographic recordings of Perseid meteor trails have been obtained at various stations in the period 1937–1985. This large data sample has recently been used to determine the activity profile and mean orbit of the Perseid meteoroid stream (Lindblad and Poruban, 1994). In the present paper the radiant of the Perseid meteoroid stream is studied based on a sample of 592 double-station photographic recordings. The daily motion of the radiant and the change of the size of the radiant area with date is investigated. A daily motion of 1.40° in right ascension and 0.20° in declination is derived. These values are slightly larger than those previously found by other researchers. The contraction of the radiant area at shower maximum previously reported from visual observations is confirmed. In a further study radiant areas derived for the dates of the new and the old Perseid maxima are compared. It is found that the radiant area of the new maximum is smaller than that of the old maximum.  相似文献   

13.
The thin atmosphere of Neptune's moon Triton is dense enough to ablate micrometeoroids as they pass through. A combination of Triton's orbital velocity around Neptune and its orbital velocity around the Sun gives a maximum meteoroid impact velocity of approximately 19 km s−1, sufficient to heat the micrometeoroids to visibility as they enter. The ablation profiles of icy and stony micrometeoroids were calculated, along with the estimated brightness of the meteors. In contrast to the terrestrial case, visible meteors would extend very close to the surface of Triton. In addition, the variation in the meteoroid impact velocity as Triton orbits Neptune produces a large variation in the brightness of meteors with orbital phase, a unique Solar System phenomenon.  相似文献   

14.
High dispersion photographic spectra of three Leonid and five Perseid meteors are used to derive relative abundances of nine chemical elements in the radiating meteoric vapors and in the meteoroids. Al and Ca were found to be incompletely evaporated in the main spectral component at 5000 K but completely evaporated in the second component at 10,000 K. Si lines are present in both components which enhances the reliability of determination of the Si abundance. The composition of the meteoroids was found to be more similar to comet Halley than to chondritic meteoroids. Fe, Cr, and Mn are depleted and Si, Na, and H are enhanced relative to Mg in comparison with CI chondrites.  相似文献   

15.
The orbital evolution of the two meteorites Příbram and Neuschwanstein on almost identical orbits and also several thousand clones were studied in the framework of the N-body problem for 5,000 years into the past. The meteorites moved on very similar orbits during the whole investigated interval. We have also searched for photographic meteors and asteroids moving on similar orbits. There were five meteors found in the IAU MDC database and six NEAs with currently similar orbits to Příbram and Neuschwanstein. However, only one meteor 161E1 and one asteroid 2002 QG46 had a similar orbital evolution over the last 2,000 years.  相似文献   

16.
We present the first measurements of the radiant and orbit of meteoroids that are part of the unusual Perseid activity called the 'Perseid Filament'. This filament was encountered by Earth in the years before and after the return of the comet to perihelion in December of 1992. Between 1989 and 1996, there were brief meteor outbursts of near-constant duration with a symmetric activity profile. In 1993, however, rates increased more gradually to the peak. That gradual increase is identified here as a separate dust component, which we call the 'Nodal Blanket'. We find that the Nodal Blanket has a very small radiant dispersion. On the other hand, the Perseid Filament has a radiant that is significantly dispersed and systematically displaced by 0.3°. This dispersion implies that unusually high ejection velocities or planetary perturbations must have had time to disperse the stream. In both cases, one would expect a rapid dispersion of matter along the comet orbit. In order to explain the concentration of dust near the comet position, we propose a novel scenario involving long-term accumulation in combination with protection of the region near the comet against close encounters with Jupiter due to librations of the comet orbit around the 1:11 mean-motion resonance.  相似文献   

17.
We have carried out double-station TV meteor observations between 1990 and 1994. The orbits of 326 meteors have been determined from doubly observed meteors, and radiant distributions are studied. The mean magnitude of the observed meteors was as faint as +4.7, since I.I. (Image Intensifier) and Video cameras were used. Radiants were widely distributed over the celestial sphere. The velocity distribution showed some similarity with the distribution predicted by the theoretical radiant distribution from comets rather than that from asteroids. In all 13 showers including both major and minor meteor showers were detected from radiant distributions of the observed meteors; from the orbital elements and meteor velocities as well as from the radiant directions.  相似文献   

18.
Object 2003 EH1 was recently identified as the parent body of the Quadrantid meteor shower. The origin of this body is still uncertain. We use data on 51 Quadrantid meteors obtained from double-station video observations as an insight on the parent body properties. A data analysis shows that the Quadrantids are similar to other meteor showers of cometary origin in some aspects, but in others to Geminid meteors. Quadrantid meteoroids have partially lost volatile component, but are not depleted to the same extent as Geminid meteoroids. In consideration of the orbital history of 2003 EH1, these results lead us to the conclusion that the parent body is a dormant comet.  相似文献   

19.
Experimental and theoretical work on the transverse dimensions of meteoric plasma trains have not converged to provide generally accepted values especially uncertain is the dependence of the train radii on meteor speeds. The roles of the meteoroid structure, fragmentation and plasma processes such as ion–electron instabilities need establishing. Knowledge of the quantitative spatial distribution of plasma in meteor trains is essential for a correct interpretation of fluxes and orbital characteristics. A current project is described which employs the AMOR 26 MHz radar facility in conjunction with a frequency managed radar operating at longer wavelengths designed to measure the ionization train radii, heights, atmospheric speeds and orbits of individual meteors.  相似文献   

20.
The tristatic EISCAT 930-MHz UHF system is used to determine the absolute geocentric velocities of meteors detected with all three receivers simultaneously at 96 km, the height of the common radar volume. The data used in this study were taken between 2002 and 2005, during four 24-h runs at summer/winter solstice and vernal/autumnal equinox to observe the largest seasonal difference. The observed velocities of 410 tristatic meteors are integrated back through the Earth atmosphere to find their atmospheric entry velocities using an ablation model. Orbit calculations are performed by taking zenith attraction, Earth rotation as well as obliquity of the ecliptic into account. The results are presented in the form of different orbital characteristics. None of the observed meteors appears to be of extrasolar or asteroidal origin; comets, particularly short-period (<200 yr) ones, may be the dominant source for the particles observed. About 40 per cent of the radiants can be associated with the north apex sporadic meteor source and 58 per cent of the orbits are retrograde. There is evidence of resonance gaps at semimajor axis values corresponding to commensurabilities with Jupiter, which may be the first convincing evidence of Jupiter's gravitational influence on the population of small sporadic meteoroids surveyed by radar. The geocentric velocity distribution is bimodal with a prograde population centred around 38 km s−1 and a retrograde population peaking at 59 km s−1. The EISCAT radar system is located close to the Arctic Circle, which means that the North Ecliptic Pole (NEP) is near zenith once every 24 h, i.e. during each observational period. In this particular geometry, the local horizon coincides with the ecliptic plane. The meteoroid influx should therefore be directly comparable throughout the year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号