首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 360 毫秒
1.
The estimation of the fluid/rock (W/R) ratio during serpentinization on the basis of oxygen isotope characteristics is peculiar, because this process is accompanied by not only changes in the stoichiometric proportions of oxygen in fluid and rock, but also by the formation of associated minerals. These factors should be taken into account for environments when the volume of aqueous fluid is limited, for instance, for serpentinization of the deep-seated rocks of oceanic lithosphere under low spreading rates. We studied isotope characteristics of samples collected in dives of submersible MIR during Cruise 50 of the R/V Akademik Mstislav Keldysh along vertical profile on the southern slope of the Atlantis Massif, which hosts the Lost City hydrothermal field. Almost all studied serpentinites have homogenous strontium isotope composition corresponding to the composition of the modern seawater. Oxygen isotope composition of these serpentinites shows systematic variations from 2. 6 to 6.1‰ with sampling depth, which indicates the preservation of stratigraphic position of samples in the sequence of the Atlantis Massif and the global serpentinization of the entire plutonic sequence. The value of the fluid–rock ratio during serpentinization in a system closed to fluid was estimated using the dissolution–crystallization model. This model takes into account the variable stoichiometry of oxygen and the effect of the simultaneous crystallization of brucite on the oxygen isotope composition of newly formed serpentine. The results show that at moderately elevated temperatures (≈300°C) and 0.1 < W/R < 5, fluid, crystallizing serpentine, and brucite are characterized by sharp variations in oxygen isotope composition: 1.3–7.8, 2.5–8.9, and 4.5–1.9‰, respectively. The model explains the observed range of δ18O in the serpentinized harzburgites of the Atlantis Massif. According to our estimates, the rocks of the studied sequence of the Atlantis Massif were serpentinized at 270–350°C and W/R = 0.7–3. For lower temperature serpentinization, for instance, at T = 250°C, the W/R ratio can be as high as 6. The present-day serpentinization of the deepseated zones of the Atlantis Massif with the Lost City fluid participance proceeds at T > 270°C and W/R ratio <1. These conditions are similar to those of serpentinization of harzburgites from the lower parts of the studied sequence of the Atlantis Massif.  相似文献   

2.
Stable isotope data of precipitation (δ18Op and deuterium excess), drip water (δ18Od), and modern calcite precipitates (δ18Oc and δ13Cc) from Yongxing Cave, central China, are presented, with monthly sampling intervals from June 2013 to September 2016. Moderate correlations between the monthly variation of δ18Op values (from ??11.5 to ??0.7‰) and precipitation amount (r = ??0.59, n?=?34, p?<?0.01) and deuterium excess (r?=?0.39, n?=?31, p?<?0.01) imply a combined effect of changes in precipitation amount and atmospheric circulation. At five drip sites, the δ18Od values have a much smaller variability (from ??9.1 to ??7.5‰), without seasonal signals, probably a consequence of the mixing in the karst reservoir with a deep aquifer. The mean δ18Od value (??8.4‰) for all drip waters is significantly more negative than the mean δ18Op value (??6.9‰) weighted by precipitation amount, but close to the wet season (May to September) mean value (??8.3‰), suggesting that a threshold of precipitation amount must be exceeded to provide recharge. Calculation based on the equilibrium fractionation factor indicates that the δ18Oc values are not in isotopic equilibrium with their corresponding drip waters, with a range of disequilibrium effects from 0.4 to 1.4‰. The δ18Oc and δ13Cc values generally increase progressively away from the locus of precipitation on glass plates. The disequilibrium effects in the cave are likely caused by progressive calcite precipitation and CO2 degassing related to a high gradient of CO2 concentration between drip waters and cave air. Our study provides an important reference to interpret δ18Oc records from the monsoon region of China.  相似文献   

3.
Stable isotope composition of precipitation from Pamba River basin, Kerala, India, is evaluated to understand the role of spatial and temporal variations on rainwater isotope characteristics. Physiographically different locations in the basin showed strong spatial and temporal variations. δ 18O varied from ?7.63 to ?1.75 ‰ in the lowlands; from ?9.32 to ?1.94 ‰ in the midlands and from ?11.6 to ?4.00 ‰ in the highlands. Local Meteoric Water Lines (LMWL) for the three regions were determined separately and an overall LMWL for the whole of the basin was found to be δ 2H = 6.6 (±0.4) δ 18 O+10.4 (±2.0). Altitude effect was evident for the basin (0.1 ‰ for δ 18O and 0.8 ‰ for δ 2H per 100 m elevation), while the amount effect was weak. The precipitation formed from the marine moisture supplied at a steady rate, without much isotopic evolution in this period may have masked the possible depletion of heavier isotopes with increasing rainfall. Consistently high d-excess values showed the influence of recycled vapour, despite the prevailing high relative humidity. The oceanic and continental vapour source origins for the south-west and north-east monsoons were clearly noted in the precipitation in the basin. Rayleigh distillation model showed about 30% rainout of the monsoon vapour mass in the basin.  相似文献   

4.
Titanium- and water-rich metamorphic olivine (Fo 86–88) is reported from partially dehydrated serpentinites from the Voltri complex, Ligurian Alps. The rocks are composed of mostly antigorite and olivine in addition to magnetite, chlorite, clinopyroxene and Ti-clinohumite. In situ secondary ion mass spectrometry (SIMS) data show that metamorphic olivine has very high and strongly correlated H2O (up to 0.7 wt%) and TiO2 contents (up to 0.85 wt%). Ti-rich olivine shows colourless to yellow pleochroism. Olivine associated with Ti-clinohumite contains low Ti, suggesting that Ti-rich olivine is not the breakdown product of Ti-clinohumite. Fourier transform infrared spectroscopy (FTIR) absorption spectra show peaks of serpentine, Ti-clinohumite and OH-related Si vacancies. Combining FTIR and SIMS data, we suggest the presence of clustered planar defects or nanoscale exsolutions of Ti-clinohumite in olivine. These defects or exsolutions contain more H2O (x ~ 0.1 in the formula 4Mg2SiO4·(1?x)Mg(OH,F)2·xTiO2) than Ti-clinohumite in the sample matrix (x = 0.34–0.46). In addition to TiO2 and H2O, secondary olivine contains significant Li (2–60 ppm), B (10–20 ppm), F (10–130 ppm) and Zr (0.9–2.1 ppm). It is enriched in 11B (δ11B = +17 to +23 ‰). Our data indicate that secondary olivine may play a significant role in transporting water, high-field strength and fluid-mobile elements into the deeper mantle as well as introduce significant B isotope anomalies. Release of hydrogen from H2O-rich olivine subducted into the deep mantle may result in strongly reduced mantle domains.  相似文献   

5.
6.
The amount of bicarbonate utilised by plants is usually ignored because of limited measurement methods. Accordingly, this study quantified the photosynthetic assimilation of inorganic carbon (CO2 and HCO3 ?) by plants. The net photosynthetic CO2 assimilation (P N), the photosynthetic assimilation of CO2 and bicarbonate (P N’), the proportion of increased leaf area (f LA) and the stable carbon isotope composition (δ13C) of Orychophragmus violaceus (Ov) and Brassica juncea (Bj) under three bicarbonate levels (5, 10 and 15 mm NaHCO3) were examined to determine the relationship among P N, P N’ and f LA. P N’, not P N, changed synchronously with f LA. Moreover, the proportions of exogenous bicarbonate and total bicarbonate (including exogenous bicarbonate and dissolved CO2-generated bicarbonate) utilised by Ov were 2.27 % and 5.28 % at 5 mm bicarbonate, 7.06 % and 13.28 % at 10 mm bicarbonate, and 8.55 % and 17.31 % at 15 mm bicarbonate, respectively. Meanwhile, the proportions of exogenous bicarbonate and total bicarbonate utilised by Bj were 1.77 % and 3.28 % at 5 mm bicarbonate, 2.11 % and 3.10 % at 10 mm bicarbonate, and 2.36 % and 3.09 % at 15 mm bicarbonate, respectively. Therefore, the dissolved CO2-generated bicarbonate and exogenous bicarbonate are important sources of inorganic carbon for plants.  相似文献   

7.
The improvement in the capabilities of Landsat-8 imagery to retrieve bathymetric information in shallow coastal waters was examined. Landsat-8 images have an additional band named coastal/aerosol, Band 1: 435–451 nm in comparison with former generation of Landsat imagery. The selected Landsat-8 operational land image (OLI) was of Chabahar Bay, located in the southern part of Iran (acquired on February 22, 2014 in calm weather and relatively low turbidity). Accurate and high resolution bathymetric data from the study area, produced by field surveys using a single beam echo-sounder, were selected for calibrating the models and validating the results. Three methods, including traditional linear and ratio transform techniques, as well as a novel proposed integrated method, were used to determine depth values. All possible combinations of the three bands [coastal/aerosol (CB), blue (B), and green (G)] have been considered (11 options) using the traditional linear and ratio transform techniques, together with five model options for the integrated method. The accuracy of each model was assessed by comparing the determined bathymetric information with field measured values. The standard error of the estimates, correlation coefficients (R 2 ) for both calibration and validation points, and root mean square errors (RMSE) were calculated for all cases. When compared with the ratio transform method, the method employing linear transformation with a combination of CB, B, and G bands yielded more accurate results (standard error = 1.712 m, R 2 calibration = 0.594, R 2 validation = 0.551, and RMSE =1.80 m). Adding the CB band to the ratio transform methodology also dramatically increased the accuracy of the estimated depths, whereas this increment was not statistically significant when using the linear transform methodology. The integrated transform method in form of Depth = b 0  + b 1 X CB  + b 2 X B  + b 5 ln(R CB )/ln(R G ) + b 6 ln(R B )/ln(R G ) yielded the highest accuracy (standard error = 1.634 m, R 2 calibration = 0.634, R 2 validation = 0.595, and RMSE = 1.71 m), where R i (i = CB, B, or G) refers to atmospherically corrected reflectance values in the i th band [X i  = ln(R i -R deep water)].  相似文献   

8.
Synchrotron-based in situ angle-dispersive X-ray diffraction experiments were conducted on a natural uvite-dominated tourmaline sample by using an external-heating diamond anvil cell at simultaneously high pressures and temperatures up to 18 GPa and 723 K, respectively. The angle-dispersive X-ray diffraction data reveal no indication of a structural phase transition over the P–T range of the current experiment in this study. The pressure–volume–temperature data were fitted by the high-temperature Birch–Murnaghan equation of state. Isothermal bulk modulus of K 0 = 96.6 (9) GPa, pressure derivative of the bulk modulus of \(K_{0}^{\prime } = 12.5 \;(4)\), thermal expansion coefficient of α 0 = 4.39 (27) × 10?5 K?1 and temperature derivative of the bulk modulus (?K/?T) P  = ?0.009 (6) GPa K?1 were obtained. The axial thermoelastic properties were also obtained with K a0 = 139 (2) GPa, \(K_{a0}^{\prime }\) = 11.5 (7) and α a0 = 1.00 (11) × 10?5 K?1 for the a-axis, and K c0 = 59 (1) GPa, \(K_{c0}^{\prime }\) = 11.4 (5) and α c0 = 2.41 (24) × 10?5 K?1 for the c-axis. Both of axial compression and thermal expansion exhibit large anisotropic behavior. Thermoelastic parameters of tourmaline in this study were also compared with that of the other two ring silicates of beryl and cordierite.  相似文献   

9.
A high-pressure single-crystal X-ray diffraction study has been carried out on a P21/c natural Mg-rich pigeonite sample with composition ca. Wo6En76Fs18 using a diamond anvil-cell. The unit-cell parameters were determined at 14 different pressures to 7.14 GPa. The sudden disappearance of the b-type reflections (h + k = odd) and a strong discontinuity (about 2.8%) in the unit-cell volume indicated a first-order P21/cC2/c phase transition between 4.66 and 4.88 GPa. The P(V) data of the P21/c phase were fitted to 4.66 GPa by a third-order Birch–Murnaghan equation of state (BM3 EoS), whereas the limited number of experimental data collected within the C2/c phase between 4.88 and 7.14 GPa were fitted using the same equation of state but with K′ constrained to the value obtained for the P21/c fitting. The equation of state coefficients are V 0 = 424.66(6) Å3, K T0 = 104(2) GPa and K′ = 8(1) for the P21/c phase, and V 0 = 423.6(1) Å3, K T0 = 112.4(8) GPa, and K′ fixed to 8(1) for the C2/c phase. The axial moduli for a, b, and c for the P21/c phase were obtained using also a BM3-EoS, while for the C2/c phase only a linear calculation could be performed, and therefore the same approach was applied for comparison also to the P21/c phase. In general the C2/c phase exhibits axial compressibilities (β c > β a >> β b) lower than those of the P21/c phase (β b > β c ≈ β a; similar to those found in previous studies in clinopyroxenes and orthopyroxenes). The lower compressibility of the C2/c phase compared with that of the P21/c could be ascribed to the greater stiffness along the b direction. A previously published relationship between P c and M2 average cation radius (i.r.) has been updated using all the literature data on P21/c clinopyroxene containing large cations at M2 site and our new data. The following weighted regression was obtained: P c (GPa) = 26(4) ? 28(5) ×  i.r (Å), R 2 = 0.97. This improved equation can be used to predict the critical pressure of natural P21/c clinopyroxene samples just knowing the composition at M2 site.  相似文献   

10.
Terrestrial and marine ecosystems in Southeast Alaska are linked by the flow of freshwater from precipitation and glacial runoff, which transports nutrients and organic matter (OM) downstream to estuaries. We examined the contribution of terrestrial-riverine and marine OM to diets of fishes (N = 257, four species) and invertebrates (N = 90, six species) collected from glacially influenced estuaries in Southeast Alaska using multiple stable isotopes (δ13C, δ15N, and δ34S). Multivariate analysis of similarity (ANOSIM) was used to quantify variation in stable isotope composition of consumers across 6 months and three sites with watersheds that differed in their glacier and forest composition. Fishes showed weak differences (ANOSIM R = 0.141) in stable isotope composition among sampling months, moderate differences (ANOSIM R = 0.375) among sites, and strong differences (ANOSIM R = 0.583) among species. Invertebrates showed moderate differences (ANOSIM R = 0.352) in stable isotope composition among sampling months and strong differences among sites (ANOSIM R = 0.710) and species (ANOSIM R = 0.858). We found the greatest differences in stable isotope composition between the two estuary sites with watersheds containing the highest and lowest glacial coverage, indicating that the contribution of allochthonous OM to consumer diets varies across watershed types. Invertebrates collected from the site with the lowest glacial coverage in the watershed were more depleted in δ13C and δ34S, indicating higher use of terrestrial-riverine OM, than those at sites with higher watershed glacial coverage. High variation in stable isotope composition among species, months, and sites underscores the complexity of estuary food web responses to future glacier loss.  相似文献   

11.
The study reported here is a part of an attempt to establish a comprehensive hydrochemical and isotopic baseline for a tropical wetland system as background data for a range of applications. Surface water samples of Vembanad Lake were collected from 20 stations in three seasons during the period 2007–2009. The analytical results were subjected to different chemical classification techniques to understand processes affecting the chemical concentration of waters. The Piper diagram classified the water samples as 100% alkali group in pre-monsoon followed by 15% in monsoon and 85% in post-monsoon, and for anions 100% samples were of strong acids followed by 90% in monsoon and 100% in post-monsoon season. The plot to decipher the mechanism controlling water chemistry placed the Vembanad Lake in the region of precipitation and rock dominance in the monsoon season and in the field of saline water dominance in pre-monsoon and post-monsoon season. The positive values for the chloro-alkaline indices in pre and post-monsoon season promoted cation exchange in the system. The stable isotopes of water samples ranged from ?20.21 to +17.0‰ and ?5.6 to +3.34‰ for δ 2H and δ 18O, respectively. The most depleted δ values observed in the monsoon are due to the amount effect. The high enrichment observed in pre-monsoon is primarily due to evaporation and salinity mixing. The variation of isotopes in the whole system point toward the fact that salinity mixing can be indicated by the δ 18O variation and δ 2H indicates the evaporation effect. The plot of δ 18O with chloride concentration showed precipitation dominance in the monsoon season, mixing of saline water and evaporation in pre-monsoon season, whereas the post-monsoon samples plot in both fresh and saline region.  相似文献   

12.
The elastic and structural behaviour of the synthetic zeolite CsAlSi5O12 (= 16.753(4), = 13.797(3) and = 5.0235(17) Å, space group Ama2, Z = 2) were investigated up to 8.5 GPa by in situ single-crystal X-ray diffraction with a diamond anvil cell under hydrostatic conditions. No phase-transition occurs within the P-range investigated. Fitting the volume data with a third-order Birch–Murnaghan equation-of-state gives: V 0 = 1,155(4) Å3, K T0 = 20(1) GPa and K′ = 6.5(7). The “axial moduli” were calculated with a third-order “linearized” BM-EoS, substituting the cube of the individual lattice parameter (a 3, b 3, c 3) for the volume. The refined axial-EoS parameters are: a 0 = 16.701(44) Å, K T0a = 14(2) GPa (βa = 0.024(3) GPa?1), K′ a = 6.2(8) for the a-axis; b 0 = 13.778(20) Å, K T0b = 21(3) GPa (βb = 0.016(2) GPa?1), K′ b = 10(2) for the b-axis; c 0 = 5.018(7) Å, K T0c = 33(3) GPa (βc = 0.010(1) GPa?1), K′ c = 3.2(8) for the c-axis (K T0a:K T0b:K T0c = 1:1.50:2.36). The HP-crystal structure evolution was studied on the basis of several structural refinements at different pressures: 0.0001 GPa (with crystal in DAC without any pressure medium), 1.58(3), 1.75(4), 1.94(6), 3.25(4), 4.69(5), 7.36(6), 8.45(5) and 0.0001 GPa (after decompression). The main deformation mechanisms at high-pressure are basically driven by tetrahedral tilting, the tetrahedra behaving as rigid-units. A change in the compressional mechanisms was observed at ≤ 2 GPa. The P-induced structural rearrangement up to 8.5 GPa is completely reversible. The high thermo-elastic stability of CsAlSi5O12, the immobility of Cs at HT/HP-conditions, the preservation of crystallinity at least up to 8.5 GPa and 1,000°C in elastic regime and the extremely low leaching rate of Cs from CsAlSi5O12 allow to consider this open-framework silicate as functional material potentially usable for fixation and deposition of Cs radioisotopes.  相似文献   

13.
Because of economic and technical limitations, measuring solar energy received at ground level (R s ) isn’t possible in all parts of the country, and in only 12% of synoptic stations is this parameter measured and recorded. Thus, it should be estimated and modeled spatially based on other climatic variables using mathematical methods. In this research, many attempts have been made to introduce an air temperature-based model for Rs estimation, and then, based on the output of the mentioned models, several geostatistical methods have been tested, and finally an elegant spatial model is proposed for (Rs) zoning in Iran. In this regard, the relationships between the measured amounts of monthly solar radiation and other climatic parameters, such as a monthly average, maximum and minimum temperature, precipitation, relative humidity, and the number of sunny hours during the period 1970–2010, are examined and modeled. It was revealed that based on the linear relationship between the monthly average air temperatures and solar radiation values recorded in each of the stations, that the best-fit linear model, with R 2  = 0.822, MAE = 1.81, RMSE = 2.51%, and MAPE = 10.08, can be introduced for Rs estimation. Then, using the outputs of the proposed model, the amounts of (R s ) are estimated in another 171 meteorological stations (a total of 192 stations), and eight geostatistical methods (IDW, GPI, RBF, LPI, OK, SK, UK, and EBK) were investigated for zoning. Comparing the resulting variograms showed that in addition to proof of spatial correlation between solar radiation data, they can be applied for modeling changes in various directions. Analyzing the ratio of the nugget effect on the roof of the variograms showed that the Gaussian model with the lowest ratio (Co/Co + C = 0.883) and (R 2  = 0.972), could model the highest correlation between the data and, therefore, it was used for data interpolation. To select the best geostatistical model, R2, MAE, and RMSE were used. On this basis, it was found that the RBF method with R 2  = 0.904, MAE = 3.02, RMSE = 0.39% is the most effective. Also, the IDW method with R 2  = 0.90, MAE = 3.08, RMSE = 0.391%, compared to other methods is the most effective. In addition, for data validation, correlations between observed and estimated values of solar radiation were studied and found R 2  = 0.86.  相似文献   

14.
To evaluate the impact of invading seagrass on biogeochemical processes associated with sulfur cycles, we investigated the geochemical properties and sulfate reduction rates (SRRs) in sediments inhabited by invasive warm affinity Halophila nipponica and indigenous cold affinity Zostera marina. A more positive relationship between SRR and below-ground biomass (BGB) was observed at the H. nipponica bed (SRR = 0.6809 × BGB ? 4.3162, r 2 = 0.9878, p = 0.0006) than at the Z. marina bed (SRR = 0.3470 × BGB ? 4.0341, r 2 = 0.7082, p = 0.0357). These results suggested that SR was more stimulated by the dissolved organic carbon (DOC) exuded from the roots of H. nipponica than by the DOC released from the roots of Z. marina. Despite the enhanced SR in spring-summer, the relatively lower proportion (average, 20%) of acid-volatile sulfur (AVS) in total reduced sulfur and the strong correlation between total oxalate-extractable Fe (Fe(oxal)) and chromium-reducible sulfur (CRS = 0.2321 × total Fe(oxal) + 1.8180, r 2 = 0.3344, p = 0.0076) in the sediments suggested the rapid re-oxidation of sulfide and precipitation of sulfide with Fe. The turnover rate of the AVS at the H. nipponica bed (0.13 day?1) was 2.5 times lower than that at the Z. marina bed (0.33 day?1). Together with lower AVS turnover, the stronger correlation of SRR to BGB in the H. nipponica bed suggests that the extension of H. nipponica resulting from the warming of seawater might provoke more sulfide accumulation in coastal sediments.  相似文献   

15.
Peralkaline syenite and granite dykes cut the Straumsvola nepheline syenite pluton in Western Dronning Maud Land, Antarctica. The average peralkalinity index (PI?=?molecular Al/[Na?+?K]) of the dykes is 1.20 (n?=?29) and manifests itself in the presence of the Zr silicates eudialyte, dalyite and vlasovite, and the Na–Ti silicate, narsarsukite. The dykes appear to have intruded during slow cooling of the nepheline syenite pluton, and the petrogenetic relationship of the dykes and the pluton cannot be related to closed-system processes at low pressure, given the thermal divide that exists between silica-undersaturated and oversaturated magmas. Major and trace element variations in the dykes are consistent with a combination of fractional crystallization of parental peralkaline magma of quartz trachyte composition, and internal mineral segregation prior to final solidification. The distribution of accessory minerals is consistent with late-stage crystallization of isolated melt pockets. The dykes give an Rb–Sr isochron age of 171?±?4.4 Ma, with variable initial 87Sr/86Sr ratio (0.7075?±?0.0032), and have an average ε Nd of ? 12.0. Quartz phenocrysts have δ18O values of 8.4–9.2‰, which are generally in O-isotope equilibrium with bulk rock. Differences in the δ18O values of quartz and aegirine (average Δquartz?aegirine = 3.5‰) suggest aegirine formation temperatures around 500 °C, lower than expected for a felsic magma, but consistent with poikilitic aegirine that indicates subsolidus growth. The negative ε Nd (< ? 10) and magma δ18O values averaging 8.6‰ (assuming Δquartz?magma = 0.6‰) are inconsistent with a magma produced by closed-system fractional crystallization of a mantle-derived magma. By contrast, the nepheline syenite magma had mantle-like δ18O values and much less negative ε Nd (average ??3.1, n?=?3). The country rock has similar δ18O values to the granite dykes (average 8.0‰, n?=?108); this means that models for the petrogenesis of the granites by assimilation are unfeasible, unless an unexposed high-δ18O contaminant is invoked. Instead, it is proposed that the peralkaline syenite and granite dykes formed by partial melting of alkali-metasomatised gneiss that surrounds the nepheline syenite, followed by fractional crystallization.  相似文献   

16.
The crystal chemistry and the elastic behavior under isothermal conditions up to 9 GPa of a natural, and extremely rare, 3T-phlogopite from Traversella (Valchiusella, Turin, Western Alps) [(K0.99Na0.05Ba0.01)(Mg2.60Al0.20Fe 0.21 2+ )[Si2.71Al1.29O10](OH)2, space group P3112, with a = 5.3167(4), c = 30.440(2) Å, and V = 745.16(9) ų] have been investigated by electron microprobe analysis in wavelength dispersion mode, single-crystal X-ray diffraction at 100 K, and in situ high-pressure synchrotron radiation powder diffraction (at room temperature) with a diamond anvil cell. The single-crystal refinement confirms the general structure features expected for trioctahedral micas, with the inter-layer site partially occupied by potassium and sodium, iron almost homogeneously distributed over the three independent octahedral sites, and the average bond distances of the two unique tetrahedra suggesting a disordered Si/Al-distribution (i.e., 〈T1-O〉 ~ 1.658 and 〈T2-O〉 ~ 1.656 Å). The location of the H-site confirms the orientation of the O–H vector nearly perpendicular to (0001). The refinement converged with R 1(F) = 0.0382, 846 unique reflections with F O > 4σ(F O) and 61 refined parameters, and not significant residuals in the final difference-Fourier map of the electron density (+0.77/?0.37 e ?3). The high-pressure experiments showed no phase transition within the pressure range investigated. The PV data were fitted with a Murnaghan (M-EoS) and a third-order Birch-Murnaghan equation of state (BM-EoS), yielding: (1) M-EoS, V 0 = 747.0(3) Å3, K T0 = 44.5(24) GPa, and K′ = 8.0(9); (2) BM-EoS, V 0 = 747.0(3) Å3, K T0 = 42.8(29) GPa, and K′ = 9.9(17). A comparison between the elastic behavior in response to pressure observed in 1M- and 3T-phlogopite is made.  相似文献   

17.
The thermal evolution of 10-Å phase Mg3Si4O10(OH)2·H2O, a phyllosilicate which may have an important role in the storage/release of water in subducting slabs, was studied by X-ray single-crystal diffraction in the temperature range 116–293 K. The lattice parameters were measured at several intervals both on cooling and heating. The structural model was refined with intensity data collected at 116 K and compared to the model refined at room temperature. As expected for a layer silicate on cooling in this temperature range, the a and b lattice parameters undergo a small linear decrease, α a  = 1.7(4) 10?6 K?1 and α b  = 1.9(4) 10?6 K?1, where α is the linear thermal expansion coefficient. The greater variation is along the c axis and can be modeled with the second order polynomial c T  = c 293(1 + 6.7(4)10?5 K?1ΔT + 9.5(2.5)10?8 K?2T)2) where ΔT = T ? 293 K; the monoclinic angle β slightly increased. The cell volume thermal expansion can be modeled with the polynomial V T  V 293 (1 + 8.0 10?5 K?1 ΔT + 1.4 10?7 K?2T)2) where ΔT = T ? 293 is in K and V in Å3. These variations were similar to those expected for a pressure increase, indicating that T and P effects are approximately inverse. The least-squares refinement with intensity data measured at 116 K shows that the volume of the SiO4 tetrahedra does not change significantly, whereas the volume of the Mg octahedra slightly decreases. To adjust for the increased misfit between the tetrahedral and octahedral sheets, the tetrahedral rotation angle α changes from 0.58° to 1.38°, increasing the ditrigonalization of the silicate sheet. This deformation has implications on the H-bonds between the water molecule and the basal oxygen atoms. Furthermore, the highly anisotropic thermal ellipsoid of the H2O oxygen indicates positional disorder, similar to the disorder observed at room temperature. The low-temperature results support the hypothesis that the disorder is static. It can be modeled with a splitting of the interlayer oxygen site with a statistical distribution of the H2O molecules into two positions, 0.6 Å apart. The resulting shortest Obas–OW distances are 2.97 Å, with a significant shortening with respect to the value at room temperature. The low-temperature behavior of the H-bond system is consistent with that hypothesized at high pressure on the basis of the Raman spectra evolution with P.  相似文献   

18.
High-pressure phase transitions of CaRhO3 perovskite were examined at pressures of 6–27 GPa and temperatures of 1,000–1,930°C, using a multi-anvil apparatus. The results indicate that CaRhO3 perovskite successively transforms to two new high-pressure phases with increasing pressure. Rietveld analysis of powder X-ray diffraction data indicated that, in the two new phases, the phase stable at higher pressure possesses the CaIrO3-type post-perovskite structure (space group Cmcm) with lattice parameters: a = 3.1013(1) Å, b = 9.8555(2) Å, c = 7.2643(1) Å, V m  = 33.43(1) cm3/mol. The Rietveld analysis also indicated that CaRhO3 perovskite has the GdFeO3-type structure (space group Pnma) with lattice parameters: a = 5.5631(1) Å, b = 7.6308(1) Å, c = 5.3267(1) Å, V m  = 34.04(1) cm3/mol. The third phase stable in the intermediate P, T conditions between perovskite and post-perovskite has monoclinic symmetry with the cell parameters: a = 12.490(3) Å, b = 3.1233(3) Å, c = 8.8630(7) Å, β = 103.96(1)°, V m  = 33.66(1) cm3/mol (Z = 6). Molar volume changes from perovskite to the intermediate phase and from the intermediate phase to post-perovskite are –1.1 and –0.7%, respectively. The equilibrium phase relations determined indicate that the boundary slopes are large positive values: 29 ± 2 MPa/K for the perovskite—intermediate phase transition and 62 ± 6 MPa/K for the intermediate phase—post-perovskite transition. The structural features of the CaRhO3 intermediate phase suggest that the phase has edge-sharing RhO6 octahedra and may have an intermediate structure between perovskite and post-perovskite.  相似文献   

19.
The composition, abundance, biomass, and life history of mysid species were investigated and described for the first time in the Maryland Coastal Bays (38° N, 75° W), Mid-Western Atlantic, using data collected from 2010 to 2013. Three species of mysids were collected, with Neomysis americana being the most abundant species (maximum mean abundance 6.7 ± 6.4 numbers (nos.) m?2 in July 2013 and biomass 2.78 ± 2.76-mg dry weight (DW) m?2 in July 2012). Americamysis bahia was the second most abundant species (maximum mean abundance: 0.7 ± 0.4 nos. m?2 and biomass: 0.23 ± 0.14 mg DW m?2 in March 2012). Metamysidopsis swifti made up 0.02 to 2 % of mysids and were found in samples collected mainly from southern Chincoteague Bay close to that Bay’s inlet in the fall of 2012. The two most abundant mysid species reproduced continuously from March to July (Neomysis) and May to October (Americamysis). N. americana had larger body and brood sizes than A. bahia. Mysids were relatively low in abundance in late summer, a period of relatively high biomass of fish predators, than during other seasons, suggesting that intense predation might be controlling their abundance. The increase in mysid abundance in the fall following their disappearance in late summer without evidence of reproductive activities suggests species migration from coastal waters into the Maryland Coastal Bays. This annual mysid subsidy perhaps helps to sustain their populations within the bays.  相似文献   

20.
There is a need for research that advances understanding of flow alterations in contemporary watersheds where natural and anthropogenic interactions can confound mitigation efforts. Event-based flow frequency, timing, magnitude, and rate of change were quantified at five-site nested gauging sites in a representative mixed-land-use watershed of the central USA. Statistically independent storms were paired by site (n = 111 × 5 sites) to test for significant differences in event-based rainfall and flow response variables (n = 17) between gauging sites. Increased frequency of small peak flow events (i.e., 64 more events less than 4.0 m3 s?1) was observed at the rural–urban interface of the watershed. Differences in flow response were apparent during drier periods when small rainfall events resulted in increased flow response at urban sites in the lower reaches. Relationships between rainfall and peak flow were stronger with decreased pasture/crop land use and increased urban land use by approximately 20%. Event-based total rainfall explained 40–68% of the variance in peak flow (p < 0.001). Coefficients of determination (r2) were negatively correlated with pasture/crop land use (r2 = 0.92; p = 0.007; n = 5) and positively correlated with urban land use (r2 = 0.90; p = 0.008; n = 5). Significant differences in flow metrics were observed between rural and urban sites (p < 0.05; n = 111) that were not explained by differences in rainfall variables and drainage area. An urban influence on flow timing was observed using median time lag to peak centroid and time of maximum precipitation to peak flow. Results highlight the need to establish manageable flow targets in rapidly urbanizing mixed-land-use watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号