首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Reflection full waveform inversion can update subsurface velocity structure of the deeper part, but tends to get stuck in the local minima associated with the waveform misfit function. These local minima cause cycle skipping if the initial background velocity model is far from the true model. Since conventional reflection full waveform inversion using two‐way wave equation in time domain is computationally expensive and consumes a large amount of memory, we implement a correlation‐based reflection waveform inversion using one‐way wave equations to retrieve the background velocity. In this method, one‐way wave equations are used for the seismic wave forward modelling, migration/de‐migration and the gradient computation of objective function in frequency domain. Compared with the method using two‐way wave equation, the proposed method benefits from the lower computational cost of one‐way wave equations without significant accuracy reduction in the cases without steep dips. It also largely reduces the memory requirement by an order of magnitude than implementation using two‐way wave equation both for two‐ and three‐dimensional situations. Through numerical analysis, we also find that one‐way wave equations can better construct the low wavenumber reflection wavepath without producing high‐amplitude short‐wavelength components near the image points in the reflection full waveform inversion gradient. Synthetic test and real data application show that the proposed method efficiently updates the background velocity model.  相似文献   

2.
Full‐waveform inversion is re‐emerging as a powerful data‐fitting procedure for quantitative seismic imaging of the subsurface from wide‐azimuth seismic data. This method is suitable to build high‐resolution velocity models provided that the targeted area is sampled by both diving waves and reflected waves. However, the conventional formulation of full‐waveform inversion prevents the reconstruction of the small wavenumber components of the velocity model when the subsurface is sampled by reflected waves only. This typically occurs as the depth becomes significant with respect to the length of the receiver array. This study first aims to highlight the limits of the conventional form of full‐waveform inversion when applied to seismic reflection data, through a simple canonical example of seismic imaging and to propose a new inversion workflow that overcomes these limitations. The governing idea is to decompose the subsurface model as a background part, which we seek to update and a singular part that corresponds to some prior knowledge of the reflectivity. Forcing this scale uncoupling in the full‐waveform inversion formalism brings out the transmitted wavepaths that connect the sources and receivers to the reflectors in the sensitivity kernel of the full‐waveform inversion, which is otherwise dominated by the migration impulse responses formed by the correlation of the downgoing direct wavefields coming from the shot and receiver positions. This transmission regime makes full‐waveform inversion amenable to the update of the long‐to‐intermediate wavelengths of the background model from the wide scattering‐angle information. However, we show that this prior knowledge of the reflectivity does not prevent the use of a suitable misfit measurement based on cross‐correlation, to avoid cycle‐skipping issues as well as a suitable inversion domain as the pseudo‐depth domain that allows us to preserve the invariant property of the zero‐offset time. This latter feature is useful to avoid updating the reflectivity information at each non‐linear iteration of the full‐waveform inversion, hence considerably reducing the computational cost of the entire workflow. Prior information of the reflectivity in the full‐waveform inversion formalism, a robust misfit function that prevents cycle‐skipping issues and a suitable inversion domain that preserves the seismic invariant are the three key ingredients that should ensure well‐posedness and computational efficiency of full‐waveform inversion algorithms for seismic reflection data.  相似文献   

3.
In this paper we propose a 3D acoustic full waveform inversion algorithm in the Laplace domain. The partial differential equation for the 3D acoustic wave equation in the Laplace domain is reformulated as a linear system of algebraic equations using the finite element method and the resulting linear system is solved by a preconditioned conjugate gradient method. The numerical solutions obtained by our modelling algorithm are verified through a comparison with the corresponding analytical solutions and the appropriate dispersion analysis. In the Laplace‐domain waveform inversion, the logarithm of the Laplace transformed wavefields mainly contains long‐wavelength information about the underlying velocity model. As a result, the algorithm smoothes a small‐scale structure but roughly identifies large‐scale features within a certain depth determined by the range of offsets and Laplace damping constants employed. Our algorithm thus provides a useful complementary process to time‐ or frequency‐domain waveform inversion, which cannot recover a large‐scale structure when low‐frequency signals are weak or absent. The algorithm is demonstrated on a synthetic example: the SEG/EAGE 3D salt‐dome model. The numerical test is limited to a Laplace‐domain synthetic data set for the inversion. In order to verify the usefulness of the inverted velocity model, we perform the 3D reverse time migration. The migration results show that our inversion results can be used as an initial model for the subsequent high‐resolution waveform inversion. Further studies are needed to perform the inversion using time‐domain synthetic data with noise or real data, thereby investigating robustness to noise.  相似文献   

4.
The estimation of a velocity model from seismic data is a crucial step for obtaining a high‐quality image of the subsurface. Velocity estimation is usually formulated as an optimization problem where an objective function measures the mismatch between synthetic and recorded wavefields and its gradient is used to update the model. The objective function can be defined in the data‐space (as in full‐waveform inversion) or in the image space (as in migration velocity analysis). In general, the latter leads to smooth objective functions, which are monomodal in a wider basin about the global minimum compared to the objective functions defined in the data‐space. Nonetheless, migration velocity analysis requires construction of common‐image gathers at fixed spatial locations and subsampling of the image in order to assess the consistency between the trial velocity model and the observed data. We present an objective function that extracts the velocity error information directly in the image domain without analysing the information in common‐image gathers. In order to include the full complexity of the wavefield in the velocity estimation algorithm, we consider a two‐way (as opposed to one‐way) wave operator, we do not linearize the imaging operator with respect to the model parameters (as in linearized wave‐equation migration velocity analysis) and compute the gradient of the objective function using the adjoint‐state method. We illustrate our methodology with a few synthetic examples and test it on a real 2D marine streamer data set.  相似文献   

5.
We develop a two‐dimensional full waveform inversion approach for the simultaneous determination of S‐wave velocity and density models from SH ‐ and Love‐wave data. We illustrate the advantages of the SH/Love full waveform inversion with a simple synthetic example and demonstrate the method's applicability to a near‐surface dataset, recorded in the village ?achtice in Northwestern Slovakia. Goal of the survey was to map remains of historical building foundations in a highly heterogeneous subsurface. The seismic survey comprises two parallel SH‐profiles with maximum offsets of 24 m and covers a frequency range from 5 Hz to 80 Hz with high signal‐to‐noise ratio well suited for full waveform inversion. Using the Wiechert–Herglotz method, we determined a one‐dimensional gradient velocity model as a starting model for full waveform inversion. The two‐dimensional waveform inversion approach uses the global correlation norm as objective function in combination with a sequential inversion of low‐pass filtered field data. This mitigates the non‐linearity of the multi‐parameter inverse problem. Test computations show that the influence of visco‐elastic effects on the waveform inversion result is rather small. Further tests using a mono‐parameter shear modulus inversion reveal that the inversion of the density model has no significant impact on the final data fit. The final full waveform inversion S‐wave velocity and density models show a prominent low‐velocity weathering layer. Below this layer, the subsurface is highly heterogeneous. Minimum anomaly sizes correspond to approximately half of the dominant Love‐wavelength. The results demonstrate the ability of two‐dimensional SH waveform inversion to image shallow small‐scale soil structure. However, they do not show any evidence of foundation walls.  相似文献   

6.
Migration velocity analysis and waveform inversion   总被引:3,自引:0,他引:3  
Least‐squares inversion of seismic reflection waveform data can reconstruct remarkably detailed models of subsurface structure and take into account essentially any physics of seismic wave propagation that can be modelled. However, the waveform inversion objective has many spurious local minima, hence convergence of descent methods (mandatory because of problem size) to useful Earth models requires accurate initial estimates of long‐scale velocity structure. Migration velocity analysis, on the other hand, is capable of correcting substantially erroneous initial estimates of velocity at long scales. Migration velocity analysis is based on prestack depth migration, which is in turn based on linearized acoustic modelling (Born or single‐scattering approximation). Two major variants of prestack depth migration, using binning of surface data and Claerbout's survey‐sinking concept respectively, are in widespread use. Each type of prestack migration produces an image volume depending on redundant parameters and supplies a condition on the image volume, which expresses consistency between data and velocity model and is hence a basis for velocity analysis. The survey‐sinking (depth‐oriented) approach to prestack migration is less subject to kinematic artefacts than is the binning‐based (surface‐oriented) approach. Because kinematic artefacts strongly violate the consistency or semblance conditions, this observation suggests that velocity analysis based on depth‐oriented prestack migration may be more appropriate in kinematically complex areas. Appropriate choice of objective (differential semblance) turns either form of migration velocity analysis into an optimization problem, for which Newton‐like methods exhibit little tendency to stagnate at nonglobal minima. The extended modelling concept links migration velocity analysis to the apparently unrelated waveform inversion approach to estimation of Earth structure: from this point of view, migration velocity analysis is a solution method for the linearized waveform inversion problem. Extended modelling also provides a basis for a nonlinear generalization of migration velocity analysis. Preliminary numerical evidence suggests a new approach to nonlinear waveform inversion, which may combine the global convergence of velocity analysis with the physical fidelity of model‐based data fitting.  相似文献   

7.
The least‐squares error measures the difference between observed and modelled seismic data. Because it suffers from local minima, a good initial velocity model is required to avoid convergence to the wrong model when using a gradient‐based minimization method. If a data set mainly contains reflection events, it is difficult to update the velocity model with the least‐squares error because the minimization method easily ends up in the nearest local minimum without ever reaching the global minimum. Several authors observed that the model could be updated by diving waves, requiring a wide‐angle or large‐offset data set. This full waveform tomography is limited to a maximum depth. Here, we use a linear velocity model to obtain estimates for the maximum depth. In addition, we investigate how frequencies should be selected if the seismic data are modelled in the frequency domain. In the presence of noise, the condition to avoid local minima requires more frequencies than needed for sufficient spectral coverage. We also considered acoustic inversion of a synthetic marine data set created by an elastic time‐domain finite‐difference code. This allowed us to validate the estimates made for the linear velocity model. The acoustic approximation leads to a number of problems when using long‐offset data. Nevertheless, we obtained reasonable results. The use of a variable density in the acoustic inversion helped to match the data at the expense of accuracy in the inversion result for the density.  相似文献   

8.
Time‐lapse refraction can provide complementary seismic solutions for monitoring subtle subsurface changes that are challenging for conventional P‐wave reflection methods. The utilization of refraction time lapse has lagged behind in the past partly due to the lack of robust techniques that allow extracting easy‐to‐interpret reservoir information. However, with the recent emergence of the full‐waveform inversion technique as a more standard tool, we find it to be a promising platform for incorporating head waves and diving waves into the time‐lapse framework. Here we investigate the sensitivity of 2D acoustic, time‐domain, full‐waveform inversion for monitoring a shallow, weak velocity change (?30 m/s, or ?1.6%). The sensitivity tests are designed to address questions related to the feasibility and accuracy of full‐waveform inversion results for monitoring the field case of an underground gas blowout that occurred in the North Sea. The blowout caused the gas to migrate both vertically and horizontally into several shallow sand layers. Some of the shallow gas anomalies were not clearly detected by conventional 4D reflection methods (i.e., time shifts and amplitude difference) due to low 4D signal‐to‐noise ratio and weak velocity change. On the other hand, full‐waveform inversion sensitivity analysis showed that it is possible to detect the weak velocity change with the non‐optimal seismic input. Detectability was qualitative with variable degrees of accuracy depending on different inversion parameters. We inverted, the real 2D seismic data from the North Sea with a greater emphasis on refracted and diving waves’ energy (i.e., most of the reflected energy was removed for the shallow zone of interest after removing traces with offset less than 300 m). The full‐waveform inversion results provided more superior detectability compared with the conventional 4D stacked reflection difference method for a weak shallow gas anomaly (320 m deep).  相似文献   

9.
Elastic full waveform inversion of seismic reflection data represents a data‐driven form of analysis leading to quantification of sub‐surface parameters in depth. In previous studies attention has been given to P‐wave data recorded in the marine environment, using either acoustic or elastic inversion schemes. In this paper we exploit both P‐waves and mode‐converted S‐waves in the marine environment in the inversion for both P‐ and S‐wave velocities by using wide‐angle, multi‐component, ocean‐bottom cable seismic data. An elastic waveform inversion scheme operating in the time domain was used, allowing accurate modelling of the full wavefield, including the elastic amplitude variation with offset response of reflected arrivals and mode‐converted events. A series of one‐ and two‐dimensional synthetic examples are presented, demonstrating the ability to invert for and thereby to quantify both P‐ and S‐wave velocities for different velocity models. In particular, for more realistic low velocity models, including a typically soft seabed, an effective strategy for inversion is proposed to exploit both P‐ and mode‐converted PS‐waves. Whilst P‐wave events are exploited for inversion for P‐wave velocity, examples show the contribution of both P‐ and PS‐waves to the successful recovery of S‐wave velocity.  相似文献   

10.
时间二阶积分波场的全波形反演   总被引:4,自引:4,他引:0       下载免费PDF全文
陈生昌  陈国新 《地球物理学报》2016,59(10):3765-3776
通过对波场的时间二阶积分运算以增强地震数据中的低频成分,提出了一种可有效减小对初始速度模型依赖性的地震数据全波形反演方法—时间二阶积分波场的全波形反演方法.根据散射理论中的散射波场传播方程,推导出时间二阶积分散射波场的传播方程,再利用一阶Born近似对时间二阶积分散射波场传播方程进行线性化.在时间二阶积分散射波场传播方程的基础上,利用散射波场反演地下散射源分布,再利用波场模拟的方法构建地下入射波场,然后根据时间二阶积分散射波场线性传播方程中散射波场与入射波场、速度扰动间的线性关系,应用类似偏移成像的公式得到速度扰动的估计,以此建立时间二阶积分波场的全波形迭代反演方法.最后把时间二阶积分波场的全波形反演结果作为常规全波形反演的初始模型可有效地减小地震波场全波形反演对初始模型的依赖性.应用于Marmousi模型的全频带合成数据和缺失4Hz以下频谱成分的缺低频合成数据验证所提出的全波形反演方法的正确性和有效性,数值试验显示缺失4Hz以下频谱成分数据的反演结果与全频带数据的反演结果没有明显差异.  相似文献   

11.
Simultaneous estimation of velocity gradients and anisotropic parameters from seismic reflection data is one of the main challenges in transversely isotropic media with a vertical symmetry axis migration velocity analysis. In migration velocity analysis, we usually construct the objective function using the l2 norm along with a linear conjugate gradient scheme to solve the inversion problem. Nevertheless, for seismic data this inversion scheme is not stable and may not converge in finite time. In order to ensure the uniform convergence of parameter inversion and improve the efficiency of migration velocity analysis, this paper develops a double parameterized regularization model and gives the corresponding algorithms. The model is based on the combination of the l2 norm and the non‐smooth l1 norm. For solving such an inversion problem, the quasi‐Newton method is utilized to make the iterative process stable, which can ensure the positive definiteness of the Hessian matrix. Numerical simulation indicates that this method allows fast convergence to the true model and simultaneously generates inversion results with a higher accuracy. Therefore, our proposed method is very promising for practical migration velocity analysis in anisotropic media.  相似文献   

12.
We have previously applied three‐dimensional acoustic, anisotropic, full‐waveform inversion to a shallow‐water, wide‐angle, ocean‐bottom‐cable dataset to obtain a high‐resolution velocity model. This velocity model produced an improved match between synthetic and field data, better flattening of common‐image gathers, a closer fit to well logs, and an improvement in the pre‐stack depth‐migrated image. Nevertheless, close examination reveals that there is a systematic mismatch between the observed and predicted data from this full‐waveform inversion model, with the predicted data being consistently delayed in time. We demonstrate that this mismatch cannot be produced by systematic errors in the starting model, by errors in the assumed source wavelet, by incomplete convergence, or by the use of an insufficiently fine finite‐difference mesh. Throughout these tests, the mismatch is remarkably robust with the significant exception that we do not see an analogous mismatch when inverting synthetic acoustic data. We suspect therefore that the mismatch arises because of inadequacies in the physics that are used during inversion. For ocean‐bottom‐cable data in shallow water at low frequency, apparent observed arrival times, in wide‐angle turning‐ray data, result from the characteristics of the detailed interference pattern between primary refractions, surface ghosts, and a large suite of wide‐angle multiple reflected and/or multiple refracted arrivals. In these circumstances, the dynamics of individual arrivals can strongly influence the apparent arrival times of the resultant compound waveforms. In acoustic full‐waveform inversion, we do not normally know the density of the seabed, and we do not properly account for finite shear velocity, finite attenuation, and fine‐scale anisotropy variation, all of which can influence the relative amplitudes of different interfering arrivals, which in their turn influence the apparent kinematics. Here, we demonstrate that the introduction of a non‐physical offset‐variable water density during acoustic full‐waveform inversion of this ocean‐bottom‐cable field dataset can compensate efficiently and heuristically for these inaccuracies. This approach improves the travel‐time match and consequently increases both the accuracy and resolution of the final velocity model that is obtained using purely acoustic full‐waveform inversion at minimal additional cost.  相似文献   

13.
天然气水合物似海底反射层的全波形反演   总被引:14,自引:4,他引:14       下载免费PDF全文
建立了天然气水合物似海底反射层(BSR)研究的全波形反演方法. 这是一种将 水平层状弹性介质的反射共中心点道集转换为截距时间-水平慢度域的反演方法. 反演过程 中采用了全局搜索方法与非线性局部搜索方法. 分两步进行. 第一步是根据走时数据应用非 常快速模拟算法求得速度结构的长波长分量. 第二步,利用波形资料用共轭梯度法求得速度 的短波长扰动分量. 这样,最后反演得到的速度结构模型包含了长波长与短波长分量. 反演 中利用了多网格参数化技术. 日本东南海海槽双BSR的速度结构的反演表明,全波形反演是 天然气水合物BSR研究的重要手段之一.  相似文献   

14.
Numerical implementation of the gradient of the cost function in a gradient‐based full‐ waveform inversion (FWI) is essentially a migration operator used in wave equation migration. In FWI, minimizing different data residual norms results in different weighting strategies of data residuals at receiver locations prior to back‐propagation into the medium. In this paper, we propose different scaling methods to the receiver wavefield and compare their performances. Using time‐domain reverse‐time migration (RTM), we show that compared to conventional algorithms, this type of scaling is able to significantly suppress non‐Gaussian noise, i.e., outliers. Our tests also show that scaling by its absolute norm produces better results than other approaches.  相似文献   

15.
Similar to the reverse-time migration, full waveform inversion in the time domain is a memory-intensive processing method. The computational storage size for waveform inversion mainly depends on the model size and time recording length. In general, 3D and 4D data volumes need to be saved for 2D and 3D waveform inversion gradient calculations, respectively. Even the boundary region wavefield-saving strategy creates a huge storage demand. Using the last two slices of the wavefield to reconstruct wavefields at other moments through the random boundary, avoids the need to store a large number of wavefields; however, traditional random boundary method is less effective at low frequencies. In this study, we follow a new random boundary designed to regenerate random velocity anomalies in the boundary region for each shot of each iteration. The results obtained using the random boundary condition in less illuminated areas are more seriously affected by random scattering than other areas due to the lack of coverage. In this paper, we have replaced direct correlation for computing the waveform inversion gradient by modified interferometric imaging, which enhances the continuity of the imaging path and reduces noise interference. The new imaging condition is a weighted average of extended imaging gathers can be directly used in the gradient computation. In this process, we have not changed the objective function, and the role of the imaging condition is similar to regularization. The window size for the modified interferometric imaging condition-based waveform inversion plays an important role in this process. The numerical examples show that the proposed method significantly enhances waveform inversion performance.  相似文献   

16.
全波形反演利用地震记录中的振幅、走时和相位等信息,通过拟合实际地震记录和计算波场来定量提取地下介质的弹性参数,进而为勘探地震成像、速度建模以及大尺度构造演化分析等提供可靠依据.但全波形反演计算量巨大,特别是应用于三维大区块叠前数据时,生产成本仍然很高.本文介绍并比较了时间域和频率域的全波形反演方法,综合两者的优点,最终采用混合域的反演算法,并且在此基础上做了进一步的简化以提高计算效率.针对全波形反演方法应用于大规模叠前数据时易陷入局部极小值的问题,我们提出对模型数据进行分割,同时在数个小模型内进行梯度搜索,然后对比各个局域的梯度,最终找出合适的全局下降方向,以克服局部极小的隐患.该方法能够充分利用GPU的硬件特性.在GPU环境下实现本文所提出的简化混合域全波形反演算法.数值计算实例体现出新方法具有良好的计算效率、反演精度和算法可扩展性.  相似文献   

17.
Sufficient low‐frequency information is essential for full‐waveform inversion to get the global optimal solution. Multi‐scale envelope inversion was proposed using a new Fréchet derivative to invert the long‐wavelength component of the model by directly using the low‐frequency components contained in an envelope of seismic data. Although the new method can recover the main structure of the model, the inversion quality of the model bottom still needs to be improved. Reflection waveform inversion reduces the dependence of inversion on low‐frequency and long‐offset data by using travel‐time information in reflected waves. However, when the underground medium contains strong contrast or the initial model is far away from the true model, it is hard to get reliable reference reflectors for the generation of reflected waves. Here, we propose a combination inversion algorithm, i.e., reflection multi‐scale envelope inversion, to overcome the limitations of multi‐scale envelope inversion and reflection waveform inversion. First, wavefield decomposition was introduced into the multi‐scale envelope inversion to improve the inversion quality of the long‐wavelength components of the model. Then, after the initial model had been established to be accurate enough, migration and de‐migration were introduced to achieve multi‐scale reflection waveform inversion. The numerical results of the salt‐layer model and the SEG/EAGE salt model verified the validity of the proposed approach and its potential.  相似文献   

18.
Integrating migration velocity analysis and full waveform inversion can help reduce the high non‐linearity of the classic full waveform inversion objective function. The combination of inverting for the long and short wavelength components of the velocity model using a dual objective function that is sensitive to both components is still very expensive and have produced mixed results. We develop an approach that includes both components integrated to complement each other. We specifically utilize the image to generate reflections in our synthetic data only when the velocity model is not capable of producing such reflections. As a result, we get the migration velocity analysis working when we need it, and we mitigate its influence when the velocity model produces accurate reflections (possibly first for the low frequencies). This is achieved using a novel objective function that includes both objectives. Applications to a layered model and the Marmousi model demonstrate the main features of the approach.  相似文献   

19.
Elastic waves, such as Rayleigh and mode‐converted waves, together with amplitude versus offset variations, serve as noise in full waveform inversion using the acoustic approximation. Heavy preprocessing must be applied to remove elastic effects to invert land or marine data using the acoustic inversion method in the time or frequency domains. Full waveform inversion using the elastic wave equation should be one alternative; however, multi‐parameter inversion is expensive and sensitive to the starting velocity model. We implement full acoustic waveform inversion of synthetic land and marine data in the Laplace domain with minimum preprocessing (i.e., muting) to remove elastic effects. The damping in the Laplace transform can be thought of as an automatic time windowing. Numerical examples show that Laplace‐domain acoustic inversion can yield correct smooth velocity models even with the noise originating from elastic waves. This offers the opportunity to develop an accurate smooth starting model for subsequent inversion in the frequency domain.  相似文献   

20.
Wave‐equation migration velocity analysis is a technique designed to extract and update velocity information from migrated images. The velocity model is updated through the process of optimizing the coherence of images migrated with the known background velocity model. The capacity for handling multi‐pathing of the technique makes it appropriate in complex subsurface regions characterized by strong velocity variation. Wave‐equation migration velocity analysis operates by establishing a linear relation between a slowness perturbation and a corresponding image perturbation. The linear relationship and the corresponding linearized operator are derived from conventional extrapolation operators and the linearized operator inherits the main properties of frequency‐domain wavefield extrapolation. A key step in the implementation is to design an appropriate procedure for constructing an image perturbation relative to a reference image that represents the difference between the current image and a true, or more correct image of the subsurface geology. The target of the inversion is to minimize such an image perturbation by optimizing the velocity model. Using time‐shift common‐image gathers, one can characterize the imperfections of migrated images by defining the focusing error as the shift of the focus of reflections along the time‐shift axis. The focusing error is then transformed into an image perturbation by focusing analysis under the linear approximation. As the focusing error is caused by the incorrect velocity model, the resulting image perturbation can be considered as a mapping of the velocity model error in the image space. Such an approach for constructing the image perturbation is computationally efficient and simple to implement. The technique also provides a new alternative for using focusing information in wavefield‐based velocity model building. Synthetic examples demonstrate the successful application of our method to a layered model and a subsalt velocity update problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号