首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is generally accepted that densities of quiet-Sun and active region plasma are sufficiently low to justify the optically thin approximation, and this is commonly used in the analysis of line emissions from plasma in the solar corona. However, the densities of solar flare loops are substantially higher, compromising the optically thin approximation. This study begins with a radiative transfer model that uses typical solar flare densities and geometries to show that hot coronal emission lines are not generally optically thin. Furthermore, the model demonstrates that the observed line intensity should exhibit center-to-limb variability (CTLV), with flares observed near the limb being dimmer than those occurring near disk center. The model predictions are validated with an analysis of over 200 flares observed by the EUV Variability Experiment (EVE) on the Solar Dynamics Observatory (SDO), which uses six lines, with peak formation temperatures between 8.9 and 15.8 MK, to show that limb flares are systematically dimmer than disk-center flares. The data are then used to show that the electron column density along the line of sight typically increases by \(1.76 \times 10^{19}~\mbox{cm}^{-2}\) for limb flares over the disk-center flare value. It is shown that the CTLV of hot coronal emissions reduces the amount of ionizing radiation propagating into the solar system, and it changes the relative intensities of lines and bands commonly used for spectral analysis.  相似文献   

2.
The highly variable solar extreme ultraviolet (EUV) radiation is the major energy input to the Earth’s upper atmosphere, strongly impacting the geospace environment, affecting satellite operations, communications, and navigation. The Extreme ultraviolet Variability Experiment (EVE) onboard the NASA Solar Dynamics Observatory (SDO) will measure the solar EUV irradiance from 0.1 to 105?nm with unprecedented spectral resolution (0.1?nm), temporal cadence (ten seconds), and accuracy (20%). EVE includes several irradiance instruments: The Multiple EUV Grating Spectrographs (MEGS)-A is a grazing-incidence spectrograph that measures the solar EUV irradiance in the 5 to 37?nm range with 0.1-nm resolution, and the MEGS-B is a normal-incidence, dual-pass spectrograph that measures the solar EUV irradiance in the 35 to 105?nm range with 0.1-nm resolution. To provide MEGS in-flight calibration, the EUV SpectroPhotometer (ESP) measures the solar EUV irradiance in broadbands between 0.1 and 39?nm, and a MEGS-Photometer measures the Sun’s bright hydrogen emission at 121.6?nm. The EVE data products include a near real-time space-weather product (Level?0C), which provides the solar EUV irradiance in specific bands and also spectra in 0.1-nm intervals with a cadence of one minute and with a time delay of less than 15?minutes. The EVE higher-level products are Level?2 with the solar EUV irradiance at higher time cadence (0.25?seconds for photometers and ten seconds for spectrographs) and Level?3 with averages of the solar irradiance over a day and over each one-hour period. The EVE team also plans to advance existing models of solar EUV irradiance and to operationally use the EVE measurements in models of Earth’s ionosphere and thermosphere. Improved understanding of the evolution of solar flares and extending the various models to incorporate solar flare events are high priorities for the EVE team.  相似文献   

3.
The Solar EUV Monitor (SEM) onboard SOHO has measured absolute extreme ultraviolet (EUV) and soft X-ray solar irradiance nearly continuously since January 1996. The EUV Variability Experiment (EVE) on SDO, in operation since April of 2010, measures solar irradiance in a wide spectral range that encompasses the band passes (26?–?34 nm and 0.1?–?50 nm) measured by SOHO/SEM. However, throughout the mission overlap, irradiance values from these two instruments have differed by more than the combined stated uncertainties of the measurements. In an effort to identify the sources of these differences and eliminate them, we investigate in this work the effect of reprocessing the SEM data using a more accurate SEM response function (obtained from synchrotron measurements with a SEM sounding-rocket clone instrument taken after SOHO was already in orbit) and time-dependent, measured solar spectral distributions – i.e., solar reference spectra that were unavailable prior to the launch of the SDO. We find that recalculating the SEM data with these improved parameters reduces mean differences with the EVE measurements from about 20 % to less than 5 % in the 26?–?34 nm band, and from about 35 % to about 15 % for irradiances in the 0.1?–?7 nm band extracted from the SEM 0.1?–?50 nm channel.  相似文献   

4.
The Extreme-ultraviolet Variability Experiment (EVE; see Woods et al., 2009) obtains continuous EUV spectra of the Sun viewed as a star. Its primary objective is the characterization of solar spectral irradiance, but its sensitivity and stability make it extremely interesting for observations of variability on time scales down to the limit imposed by its basic 10 s sample interval. In this paper we characterize the Doppler sensitivity of the EVE data. We find that the 30.4 nm line of He ii has a random Doppler error below 0.001 nm (1 pm, better than 10 km s−1 as a redshift), with ample stability to detect the orbital motion of its satellite, the Solar Dynamics Observatory (SDO). Solar flares also displace the spectrum, both because of Doppler shifts and because of EVE’s optical layout, which (as with a slitless spectrograph) confuses position and wavelength. As a flare develops, the centroid of the line displays variations that reflect Doppler shifts and therefore flare dynamics. For the impulsive phase of the flare SOL2010-06-12, we find the line centroid to have a redshift of 16.8 ± 5.9 km s−1 relative to that of the flare gradual phase (statistical errors only). We find also that high-temperature lines, such as Fe xxiv 19.2 nm, have well-determined Doppler components for major flares, with decreasing apparent blueshifts as expected from chromospheric evaporation flows.  相似文献   

5.
Solar X-ray Spectrometer (SOXS), the first space-borne solar astronomy experiment of India was designed to improve our current understanding of X-ray emission from the Sun in general and solar flares in particular. SOXS mission is composed of two solid state detectors, viz., Si and CZT semiconductors capable of observing the full disk Sun in X-ray energy range of 4–56 keV. The X-ray spectra of solar flares obtained by the Si detector in the 4–25 keV range show evidence of Fe and Fe/Ni line emission and multi-thermal plasma. The evolution of the break energy point that separates the thermal and non-thermal processes reveals increase with increasing flare plasma temperature. Small scale flare activities observed by both the detectors are found to be suitable to heat the active region corona; however their location appears to be in the transition region.  相似文献   

6.
We investigate the connections between the occurrence of major solar flares and subsurface dynamic properties of active regions. For this analysis, we select five active regions that produced a total of 11 flares with peak X-ray flux intensity higher than M5.0. The subsurface velocity fields are obtained from time–distance helioseismology analysis using SDO/HMI (Solar Dynamics Observatory/Helioseismic and Magnetic Imager) Doppler observations, and the X-ray flux intensity is taken from GOES (Geostationary Operational Environmental Satellites). It is found that among the eight amplitude bumps in the evolutionary curves of subsurface kinetic helicity, five (62.5%) of them had a flare stronger than M5.0 occurring within 8 hours, either before or after the bumps. Another subsurface parameter is the Normalized Helicity Gradient Variance (NHGV), reflecting kinetic helicity spread in different depth layers; it also shows bumps near the occurrence of these solar flares. Although there is no one-to-one correspondence between the flare and the subsurface properties, these observational phenomena are worth further studies to better understand the flares’ subsurface roots, and to investigate whether the subsurface properties can be used for major flare forecasts.  相似文献   

7.
Thomas N. Woods 《Solar physics》2014,289(9):3391-3401
The solar extreme-ultraviolet (EUV) observations from the Solar Dynamics Observatory (SDO) have revealed interesting characteristics of warm coronal emissions, such as Fe xvi 335 Å emission, which peak soon after the hot coronal X-ray emissions peak during a flare and then sometimes peak for a second time hours after the X-ray flare peak. This flare type, with two warm coronal emission peaks but only one X-ray peak, has been named the EUV late phase (Woods et al., Astrophys. J. 739, 59, 2011). These flares have the distinct properties of i) having a complex magnetic-field structure with two initial sets of coronal loops, with one upper set overlaying a lower set, ii) having an eruptive flare initiated in the lower set and disturbing both loop sets, iii) having the hot coronal emissions emitted only from the lower set in conjunction with the X-ray peak, and iv) having the first peak of the warm coronal emissions associated with the lower set and its second peak emitted from the upper set many minutes to hours after the first peak and without a second X-ray enhancement. The disturbance of the coronal loops by the eruption is at about the same time, but the relaxation and cooling down of the heated coronal loops during the post-flare reconnections have different time scales with the longer, upper loops being significantly delayed from the lower loops. The difference in these cooling time scales is related to the difference between the two peak times of the warm coronal emission and is also apparent in the decay profile of the X-ray emissions having two distinct decays, with the first decay slope being steeper (faster) and the delayed decay slope being smaller (slower) during the time of the warm-coronal-emission second peak. The frequency and relationship of the EUV late-phase decay times between the Fe xvi 335 Å two flare peaks and X-ray decay slopes are examined using three years of SDO/EUV Variability Experiment (EVE) data, and the X-ray dual-decay character is then exploited to estimate the frequency of EUV late-phase flares during the past four solar cycles. This study indicates that the frequency of EUV late-phase flares peaks before and after each solar-cycle minimum.  相似文献   

8.
Six solar flares were detected by the AVS-F apparatus onboard the CORONAS-F satellite in January 2005. We discuss the temporal profiles and energy spectra of the solar flares of January 20, 17, and 15, 2005 (class X7.1, X3.8, and X2.6, respectively) on the AVS-F data. The active region NOAA 10720 was the source of these flares. The spectra of the flares of January 17 and 20, 2005 contain nuclear lines, a positron line, and a line due to neutron capture line, while only the positron and neutron capture lines can be identified in the spectrum of the flare of January 15, 2005. The spectral features corresponding to these lines were observed during the whole duration of the flares. Analysis of the temporal profile of the flare of January 20, 2005 with a 1-ms temporal resolution in the energy range 0.1–20 MeV reveals the presence of a thin structure (at the 99% confidence level) with typical timescales of 7 to 35 ms.  相似文献   

9.
Spectrally resolved measurements of individual solar active regions (ARs) in the soft X-ray (SXR) range are important for studying dynamic processes in the solar corona and their associated effects on the Earth’s upper atmosphere. They are also a means of evaluating atomic data and elemental abundances used in physics-based solar spectral models. However, very few such measurements are available. We present spectral measurements of two individual ARs in the 0.5 to 2.5 nm range obtained on the NASA 36.290 sounding rocket flight of 21 October 2013 (at about 18:30 UT) using the Solar Aspect Monitor (SAM), a channel of the Extreme Ultaviolet Variability Experiment (EVE) payload designed for underflight calibrations of the orbital EVE on the Solar Dynamics Observatory (SDO). The EVE rocket instrument is a duplicate of the EVE on SDO, except the SAM channel on the rocket version was modified in 2012 to include a freestanding transmission grating to provide spectrally resolved images of the solar disk with the best signal to noise ratio for the brightest features, such as ARs. Calibrations of the EVE sounding rocket instrument at the National Institute of Standards and Technology Synchrotron Ultraviolet Radiation Facility (NIST/SURF) have provided a measurement of the SAM absolute spectral response function and a mapping of wavelength separation in the grating diffraction pattern. We discuss techniques (incorporating the NIST/SURF data) for determining SXR spectra from the dispersed AR images as well as the resulting spectra for NOAA ARs 11877 and 11875 observed on the 2013 rocket flight. In comparisons with physics-based spectral models using the CHIANTI v8 atomic database we find that both AR spectra are in good agreement with isothermal spectra (4 MK), as well as spectra based on an AR differential emission measure (DEM) included with the CHIANTI distribution, with the exception of the relative intensities of strong Fe?xvii lines associated with \(2p^{6}\)\(2p^{5}3{s}\) and \(2p^{6}\)\(2p^{5}3{d}\) transitions at about 1.7 nm and 1.5 nm, respectively. The ratio of the Fe?xvii lines suggests that the AR 11877 is hotter than the AR 11875. This result is confirmed with analysis of the active regions imaged by X-ray Telescope (XRT) onboard Hinode.  相似文献   

10.
The current fleet of space-based solar observatories offers us a wealth of opportunities to study solar flares over a range of wavelengths. Significant advances in our understanding of flare physics often come from coordinated observations between multiple instruments. Consequently, considerable efforts have been, and continue to be, made to coordinate observations among instruments (e.g. through the Max Millennium Program of Solar Flare Research). However, there has been no study to date that quantifies how many flares have been observed by combinations of various instruments. Here we describe a technique that retrospectively searches archival databases for flares jointly observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), Solar Dynamics Observatory (SDO)/EUV Variability Experiment (EVE – Multiple EUV Grating Spectrograph (MEGS)-A and -B, Hinode/(EUV Imaging Spectrometer, Solar Optical Telescope, and X-Ray Telescope), and Interface Region Imaging Spectrograph (IRIS). Out of the 6953 flares of GOES magnitude C1 or greater that we consider over the 6.5 years after the launch of SDO, 40 have been observed by 6 or more instruments simultaneously. Using each instrument’s individual rate of success in observing flares, we show that the numbers of flares co-observed by 3 or more instruments are higher than the number expected under the assumption that the instruments operated independently of one another. In particular, the number of flares observed by larger numbers of instruments is much higher than expected. Our study illustrates that these missions often acted in cooperation, or at least had aligned goals. We also provide details on an interactive widget (Solar Flare Finder), now available in SSWIDL, which allows a user to search for flaring events that have been observed by a chosen set of instruments. This provides access to a broader range of events in order to answer specific science questions. The difficulty in scheduling coordinated observations for solar-flare research is discussed with respect to instruments projected to begin operations during Solar Cycle 25, such as the Daniel K. Inouye Solar Telescope, Solar Orbiter, and Parker Solar Probe.  相似文献   

11.
H.A. Dal  S. Evren 《New Astronomy》2012,17(4):399-410
In this study, we present the unpublished flare data collected from 222 flares detected in the B band observations of five stars and the results derived by statistical analysis and modeling of these data. Six basic properties have been found with a statistical analysis method applied to all models and analyses for the flares detected in the B band observation of UV Ceti type stars. We have also compared the U and B bands with the analysis results. This comparison allowed us to evaluate the methods used in the analyses. The analyses provided the following results. (1) The flares were separated into two types, fast and slow flares. (2) The mean values of the equivalent durations of the slow and the fast flares differ by a factor of 16.2 ± 3.7. (3) Regardless of the total flare duration, the maximum flare energy can reach a different Plateau level for each star. (4) The Plateau values of EV Lac and EQ Peg are higher than the others. (5) The minimum values of the total flare duration increase toward the later spectral types. This value is called the Half-Life value in models. (6) Both the maximum flare rise times and the total flare duration obtained from the observed flares decrease toward the later spectral types.  相似文献   

12.
With SDO observations and a data-constrained magnetohydrodynamics(MHD)model,we identify a confined multi-ribbon flare that occurred on 2010 October 25 in solar active region 11117 as a magnetic bald patch(BP)flare with strong evidence.From the photospheric magnetic field observed by SDO/HMI,we find there are indeed magnetic BPs on the polarity inversion lines(PILs)which match parts of the flare ribbons.From the 3D coronal magnetic field derived from an MHD relaxation model constrained by the vector magnetograms,we find strikingly good agreement of the BP separatrix surface(BPSS)footpoints with the flare ribbons,and the BPSS itself with the hot flaring loop system.Moreover,the triggering of the BP flare can be attributed to a small flux emergence under the lobe of the BPSS,and the relevant change of coronal magnetic field through the flare is reproduced well by the pre-flare and post-flare MHD solutions,which match the corresponding pre-and post-flare AIA observations,respectively.Our work contributes to the study of non-typical flares that constitute the majority of solar flares but which cannot be explained by the standard flare model.  相似文献   

13.
D. J. Mullan 《Solar physics》1977,54(1):183-206
Short-lived increases in the brightness of many red dwarfs have been observed for the last 30 yr, and a variety of more or less exotic models have been proposed to account for such flares. Information about flares in the Sun has progressed greatly in recent years as a result of spacecraft experiments, and properties of coronal flare plasma are becoming increasingly better known. In this paper, after briefly reviewing optical, radio and X-ray observations of stellar flares, we show how a simplified model which describes conductive plus radiative cooling of the coronal flare plasma in solar flares has been modified to apply to optical and X-ray stellar flare phenomena. This model reproduces many characteristic features of stellar flares, including the mean UBV colors of flare light, the direction of flare decay in the two-color diagram, precursors, Stillstands, secondary maxima, lack of sensitivity of flare color to flare amplitude, low flux of flare X-rays, distinction between so-called spike flares and slow flares, Balmer jumps of as much as 6–8, and emission line redshifts up to 3000 km s–1. In all probability, therefore, stellar flares involve physical processes which are no more exotic (and no less!) than those in solar flares. Advantages of observing stellar flares include the possibilities of (i) applying optical diagnostics to coronal flare plasma, whereas this is almost impossible in the Sun, and (ii) testing solar flare models in environments which are not generally accessible in the solar atmosphere.  相似文献   

14.
Solar hard X-ray bursts   总被引:3,自引:0,他引:3  
Brian R. Dennis 《Solar physics》1985,100(1-2):465-490
The major results from SMM are presented as they relate to our understanding of the energy release and particle transportation processes that lead to the high-energy X-ray aspects of solar flares. Evidence is reviewed for a 152–158 day periodicity in various aspects of solar activity including the rate of occurrence of hard X-ray and gamma-ray flares. The statistical properties of over 7000 hard X-ray flares detected with the Hard X-Ray Burst Spectrometer are presented including the spectrum of peak rates and the distribution of the photon number spectrum. A flare classification scheme introduced by Tanaka is used to divide flares into three different types. Type A flares have purely thermal, compact sources with very steep hard X-ray spectra. Type B flares are impulsive bursts which show double footpoints in hard X-rays, and soft-hard-soft spectral evolution. Type C flares have gradually varying hard X-ray and microwave fluxes from high altitudes and show hardening of the X-ray spectrum through the peak and on the decay. SMM data are presented for examples of type B and type C events. New results are presented showing coincident hard X-rays, O v, and UV continuum observations in type B events with a time resolution of 128 ms. The subsecond variations in the hard X-ray flux during 10% of the stronger events are discussed and the fastest observed variation in a time of 20 ms is presented. The properties of type C flares are presented as determined primarily from the non-imaged hard X-ray and microwave spectral data. A model based on the association of type C flares and coronal mass ejections is presented to explain many of the characteristics of these gradual flares.  相似文献   

15.
Based on the solar X-ray data in the band of 0.1??C?0.8?nm observed by Geostationary Operational Environmental Satellites (GOES), the XUV and EUV data in the bands of 26??C?34?nm and 0.1??C?50?nm observed by the Solar EUV Monitor (SEM) onboard the Solar and Heliospheric Observatory (SOHO), a statistical analysis on the excess peak flux (the pre-flare flux is subtracted) in two SEM bands during M- and X-class flares from 1998 to 2007 is given. The average ratio of the excess peak flux to the pre-flare flux for the M-class flares is 5.5?%±3.7?% and that for the X-class flares is 16?%±11?%. The excess peak fluxes in two SEM bands are positively correlated with the X-ray flare class; with the increase in the X-ray flare class, the excess peak flux in two SEM bands increases. However, a large dispersion in the excess peak flux in the SEM bands and their ratio is found for the same X-ray flare class. The relationship between the excess peak fluxes of the two SEM bands also shows large dispersion. It is considered that the diversity we found in the flare spectral irradiance is caused by many variable factors related to the structure and evolution of solar flares.  相似文献   

16.
A new way to measure the departure from thermodynamic equilibrium is proposed based on the departure factor which evaluates the deviation from a Boltzmann level distribution, used by Short and Hauschildt (2005) and others. The way is based on an explicit relationship describing the departure factor as a function of line to continuum source, dynamic temperature and line photon frequency, under three assumptions that the scattering can be neglected, the background continuum can be treated as a Planck function, and finally the complete redistribution can be true. It has the advantage that the departure can be very conveniently evaluated from the spectral analysis with only the radiative transfer involved. Some physical insights are recovered for some extreme cases.Some example calculations of the departure are presented for the quiet Sun, faint solar flare and strong solar flare for the generally used solar chromospheric lines: Hα, Hβ,CaII H, K and triplet. It is revealed that in the case of solar flares, the departure is less than thermodynamic equilibrium along the larger depth range than in the quiet sun due to chromospheric condensation. It becomes hard to distinguish the departures for the different lines of the same atom or ion. It is expected that this investigation can be constructive for studying stellar atmospheres in cases where the three assumptions are close to reality.  相似文献   

17.
Quasi-separatrix layer, also called as QSL, is a region where magnetic connectivity changes drastically, and mostly well coincides with the location of flare ribbons in observations. The research on the relations of this topological structure with the 3-dimensional magnetic reconnection, and solar flares has attracted more and more attention. In this paper, using the theory of QSL we investigate a C5.7 classical two-ribbon solar flare (event 1) which occurred at AR11384 on 2011 December 26, and an M6.5 solar flare (event 2) which occurred at AR12371 on 2015 June 22, respectively. Combining the multi-wavelength data of AIA (Atmospheric Imaging Assembly) and vector magnetogrames of HMI (Helioseismic and Magnetic Imager) onboard SDO (Solar Dynamics Observatory), we extrapolate the coronal magnetic field using the PF (Potential Field) and NLFFF (Nonlinear Force Free Field) models, and calculate the evolution of the AR (Active Region) magnetic free energy. Then, we calculate the logarithmic distribution of Q-factors (magnetic squashing factor) at different heights above the solar photosphere with the results of the PF and NLFFF extrapolations, in order to determine the location of QSL. Afterward, we investigate the evolutionary relation between the QSLs at different heights above the solar photosphere and the flare ribbons observed at the corresponding heights. Finally, we study the multi-wavelength evolution features of the 2 flare events, and obtain by calculation the mean slip velocities of magnetic lines in the event 2 at 304 Å and 335 Å to be 4.6 km s-1 and 6.3 km s-1, respectively. We find that the calculated location of QSL in the chromosphere and corona is in good agreement with the location of flare ribbons at the same height, and the QSLs at different heights have almost the same evolutionary behavior in time as the flare ribbons of the corresponding heights, which highlights the role of QSL in the research of 3D magnetic reconnection and solar flare, and we suggest that the energy release in the flare of event 2 may be triggered by the magnetic reconnection at the place of QSL. We also suggest that the QSL is very important for us to study the essential relation between the 3D and 2D magnetic reconnections.  相似文献   

18.
C. Lindsey  A.-C. Donea 《Solar physics》2008,251(1-2):627-639
Instances of seismic transients emitted into the solar interior in the impulsive phases of some solar flares offer a promising diagnostic tool, both for understanding the physics of solar flares and for the general development of local helioseismology. Among the prospective contributors to flare acoustic emission that have been considered are: i) chromospheric shocks propelled by pressure transients caused by impulsive thick-target heating of the upper and middle chromosphere by high-energy particles, ii) heating of the photosphere by continuum radiation from the chromosphere or possibly by high-energy protons, and iii) magnetic-force transients caused by magnetic reconnection. Hydrodynamic modeling of chromospheric shocks suggests that radiative losses deplete all but a small fraction of the energy initially deposited into them before they penetrate the photosphere. Comparisons between the spatial distribution of acoustic sources, derived from seismic holography of the surface signatures of flare acoustic emission, and the spatial distributions of sudden changes both in visible-light emission and in magnetic signatures offer a possible means of discriminating between contributions to flare acoustic emission from photospheric heating and magnetic-force transients. In this study we develop and test a means for estimating the seismic intensity and spatial distribution of flare acoustic emission from photospheric heating associated with visible-light emission and compare this with the helioseismic signatures of seismic emission. Similar techniques are applicable to transient magnetic signatures.  相似文献   

19.
We present temporal and spectral characteristics of X-ray flares observed from six late-type G–K active dwarfs (V368 Cep, XI Boo, IM Vir, V471 Tau, CC Eri and EP Eri) using data from observations with the XMM–Newton observatory. All the stars were found to be flaring frequently and altogether a total of 17 flares were detected above the 'quiescent' state X-ray emission which varied from 0.5 to  8.3 × 1029 erg s−1  . The largest flare was observed in a low-activity dwarf XI Boo with a decay time of 10 ks and ratio of peak flare luminosity to 'quiescent' state luminosity of 2. We have studied the spectral changes during the flares by using colour–colour diagram and by detailed spectral analysis during the temporal evolution of the flares. The exponential decay of the X-ray light curves, and time evolution of the plasma temperature and emission measure are similar to those observed in compact solar flares. We have derived the semiloop lengths of flares based on the hydrodynamic flare model. The size of the flaring loops is found to be less than the stellar radius. The hydrodynamic flare decay analysis indicates the presence of sustained heating during the decay of most flares.  相似文献   

20.
Solar eruptions are the most spectacular events in our solar system and are associated with many different signatures of energy release including solar flares, coronal mass ejections, global waves, radio emission and accelerated particles. Here, we apply the Coronal Pulse Identification and Tracking Algorithm (CorPITA) to the high-cadence synoptic data provided by the Solar Dynamics Observatory (SDO) to identify and track global waves observed by SDO. 164 of the 362 solar flare events studied (45%) were found to have associated global waves with no waves found for the remaining 198 (55%). A clear linear relationship was found between the median initial velocity and the acceleration of the waves, with faster waves exhibiting a stronger deceleration (consistent with previous results). No clear relationship was found between global waves and type II radio bursts, electrons or protons detected in situ near Earth. While no relationship was found between the wave properties and the associated flare size (with waves produced by flares from B to X-class), more than a quarter of the active regions studied were found to produce more than one wave event. These results suggest that the presence of a global wave in a solar eruption is most likely determined by the structure and connectivity of the erupting active region and the surrounding quiet solar corona rather than by the amount of free energy available within the active region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号