首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrothermally-altered mesozonal synmetamorphic granitic rocks from Maine have whole-rock 18O (SMOW) values 10.7 to 13.8. Constituent quartz, feldspar, and muscovite have 18O in the range 12.4 to 15.2, 10.0 to 13.2, and 11.1 to 12.0, respectively. Mean values of Q–F ( 18Oquartz 18Ofeldspar)=2.4 and Q–M ( 18Oquartz 18Omuscovite)=3.3 are remarkably uniform (standard deviations of both are 0.2). Measured Q–F and Q–M values demonstrate that the isotopic compositions of the minerals are altered from primary magmatic 18O values but that the minerals closely approached oxygen isotope exchange equilibrium at subsolidus temperatures. Analyzed muscovites have D (SMOW) values in the range –65 to –82.Feldspars in the granitic rocks are mineralogically altered to either (a) muscovite+calcite, (b) muscovite+calcite+epidote, (c) muscovite+epidote, or (d) muscovite only. A consistent relation exists between the assemblage of secondary minerals and the oxygen isotope composition of whole rocks, quartz, and feldspar. Rocks with assemblage (a) have whole-rock 18O>12.1 and contain quartz and feldspar with 18O>13.8 and >11.4, respectively. Rocks with assemblages (b), (c), and (d) have whole-rock 18O<11.4 and contain quartz and feldspar with 18O< 13.1 and <11.0, respectively. The correlation suggests that the mineralogical alteration of the rocks was closely coupled to their isotopic alteration.Three mineral thermometers in altered granite suggest that the hydrothermal event occurred in the temperature range 400°–150° C, 100°–150° C below the peak metamorphic temperature inferred for country rocks immediately adjacent to the plutons. Calculations of mineral-fluid equilibria indicate that samples with assemblage (a) coexisted during the event with CO2-H2O fluids of and 18O=10.8 to 12.2 while samples with assemblages (b), (c), or (d) coexisted with fluids of and 18O=9.4 to 10.1. Compositional variations of the hydrothermal fluids were highly correlated: fluids enriched in CO2 were also enriched in 18O. Because CO2 was added to the granites during hydrothermal alteration and because fluids enriched in CO2 were enriched in 18O, some or all of the variation in 18O of altered granites may have been caused by addition of 18O to the rocks during the hydrothermal event. The source of both the CO2 and 18O could have been high-18O metasedimentary country rocks. The inferred change in isotopic composition of the granites is consistent with depletion of the metacarbonate rocks in 18O close to the plutons and with large volumes of fluid that were inferred from petrologic data to have infiltrated the metacarbonate rocks during metamorphism.A close approach of minerals to oxygen isotope exchange equilibrium in altered mesozonal rocks from Maine is in marked contrast to hydrothermally-altered epizonal granites whose mineral commonly show large departures from oxygen isotope exchange equilibrium. The difference in oxygen isotope systematics between altered epizonal granites and altered mesozonal granites closely parallels a differences between their mineralogical systematics. Both differences demonstrate the important control that depth exerts on the products of hydrothermal alteration. Deeper hydrothermal events occur at higher temperature and are longer-lived. Minerals and fluid have sufficient time to closely approach both isotope exchange and heterogeneous chemical equilibrium. Shallower hydrothermal events occur at lower temperatures and are shorter-lived. Generally there is insufficient time for fluid to closely approach equilibrium with all minerals.  相似文献   

2.
Olivines which cool under oxidizing conditions exsolve iron oxides at high temperature, and at low temperatures break down to essentially chloritic materials. Olivines which cool under non-oxidizing conditions alter at intermediate temperatures to complex assemblages of chlorite and interstratified phyllosilicates containing a smectite. Alteration under oxidizing conditions at low temperature, probably below 140° C, produces iddingsite, an orientated assemblage of goethite and interstratified phyllosilicates also containing a smectite.Post-deuteric alteration extends or initiates the breakdown of olivine to phyllosilicate mixtures often resulting in widespread movement of materials through the flow. Post-deuteric alteration of iddingsite produces strongly pleochroic, highly ordered varieties which eventually break down to green phyllosilicate assemblages.Weathering of olivine may produce orientated assemblages similar to deuteric forms of iddingsite. Weathering of green alteration products results in oxidation and the liberation of discrete iron hydroxides.Alteration in all cases requires exchange of material between interstitial components and olivine. During deuteric alteration, plagioclase and pyroxene are usually unaffected.  相似文献   

3.
Monomineralic domains of chlorite, corundum and Cr muscovite coexist over a kilometer scale within ultramafic schists of the Harare greenstone belt (2.73 Ga). This exotic lithological association includes the conjunction of some of the most aluminous (Al2O388 wt%) and potassic (K2O10 wt%) rocks known. The paragenetic sequence developed from chloritecorundumcorundum+ diaspore: Cr muscovite variably overprinted both the corundum and chloritite domains. Terminal stages were marked by sporadic production of andalusite+quartz, and finally margarite.Chlorite (Cr2O3=0.31–2.65 wt%), corundum (0.79–2.66 wt%), and diaspore are all Cr-rich varieties. The chromian (Cr2O33.86 wt%) paragonitic muscovite incorporates up to 17% of the paragonite molecule, and significant Mg and Fe substitutions.The suite of rocks are characterized by chondritic Ti/Zr ratios (–x=107), systematically enhanced Cr (up to 14000 ppm) and Ni (up to 1200 ppm) abundances, low levels of the alteration-insensitive incompatible elements Th, Ta, Nb. Chlorite, corundum and Cr muscovite represent progressive stages in the incremental metasomatic alteration of a komatiite precursor. Mass balance calculations, constrained by the isochemical behaviour of Ti, Zr and Hf reveal that the komatiite chloritite transformation involved volumetric contractions of 60% by hydrothermal leaching of Si, Fe, Mn, Ca and Na. Reaction of chloritite to corundum involved further volumetric reductions of 50% due to essentially quantitative loss of Si, Fe, Mn, Mg, K and Ca. Conversion of corundum to muscovite required additions of Si, K, Fe, Mn, Mg, Rb and Ba at 50–200% dilation. K, Rb, Ba, Li and Cs are enriched by up to 2×103 over background abundances in ultramafic rocks, and the suite is also enriched in B, Se, Te, Bi, As, Sb and Au. REE were extensively leached during chloritite-corundum stages, whereas LREE additions accompany development of muscovite. Ti, Zr, Hf and Al were all concentrated by selective leaching of mobile components, but absolute additions of Al accompanied development of the corundum domains due to Al precipitation in response to depressurization.Corundum ( 18O=3.5–4.8), muscovite ( 18O=6.7–7.5) and chlorite (4.5–5.6) are isotopically uniform and formed at 380–520° C from a fluid where 18O=5.6–6.9. The corundum is 18O depleted relative to either igneous or anatectic counterparts (Ocor=7.6–8.2), or to gibbsitic laterites ( 18O=12–17).Previous genetic schemes involving metamorphism of exhalites or bauxite, or Si-undersaturation of magmas, can all be ruled out from the data. The chloritite, corundum, Cr-muscovite association represents sequential alteration products of ultramafic rocks by high temperature, low pH hydrothermal solutions carrying LIL-elements, and in which excursions of pH and/or degree of quartz undersaturation account for the mineralogical transitions. A deep level acid epithermal system, or fluid advection across steep inverted thermal gradients in a thrust regime could account for required hydrothermal conditions.  相似文献   

4.
A general model has been developed to calculate changes of 18O of minerals in addition to their composition and modal abundance in metamorphic systems. A complete set of differential equations can be written to describe any chemical system in terms of the variables dP, dT, dX, dM, and d18O (X, M, and 18O refer to the chemical composition, number of moles, and oxygen isotope composition of each phase respectively). This set is composed of the differentials of five subsets of equations: (1) conditions of heterogeneous equilibrium; (2) compositional stoichiometry for each mineral; (3) mass balance for each oxide component; (4) oxygen isotope partitioning between phases; (5) conservation of the oxygen isotope ratio of the system. The variance of the complete set of equations is 2, and changes of 18O, composition, and modal abundance for each mineral can be calculated for arbitrary changes of P and T. Applications to a typical pelitic bulk composition at amphibolite and lower granulite facies conditions suggest that for systems dominated by continuous reactions such as: (a) chlorite + quartz = garnet+H2O; (b) staurolite + biotite = garnet + muscovite + H2O; or (c) garnet + muscovite = sillimanite + biotite, isopleths of mineral 18O are nearly independent of pressure, and have a spacing of about 0.1 per 10–20°C. For nearly discontinuous reactions such as: (d) garnet + chlorite + muscovite = biotite + staurolite+H2O; (e) staurolite + muscovite = biotite + aluminosilicate + garnet+H2O; or (f) muscovite + quartz = sillimanite + K-feldspar+H2O, isopleths of mineral 18O have slopes more nearly parallel to endmember reaction boundaries and 18O of phases can have a greater temperature dependence (e.g., 0.1 per 2°C for reaction d). This behavior results from relatively large amounts of reaction progress for small changes of P or T. However, the calculated exhaustion of a reactant within 0.1–5°C ensures that the predicted effects of such reactions on mineral 18O will not exceed 0.25 for typical bulk compositions. Models that allow for fractional crystallization of garnet suggest that prograde garnet zoning in pelitic assemblages will be relatively smooth until staurolite becomes unstable. At higher temperatures, garnet may develop a step of as much as 0.6 in its core-rim zoning as a result of combined garnet resorption during the continuous reaction garnet + muscovite = sillimanite + biotite and repartitioning of the garnet rim composition to relatively heavy 18O. The models are insensitive to the degree to which garnet fractionally crystallizes and to the isotope fractionation factors used; only extreme changes in modal abundance or bulk composition for a given mineral assemblage can produce significant changes in the predicted trends. In the absence of infiltration, isotopic shifts resulting from net transfer reactions for minerals in typical amphibolite, eclogite, and lower granulite facies metapelites and metabasites are inferred from the models to be 1 or less for 150°C of heating.  相似文献   

5.
Summary The crystalline basement rocks of the Sopron Mountains are the easternmost and most isolated outcrops of the Austroalpine basement of the Eastern Alps. Ar/Ar and K/Ar dating of phengitic mica indicates that the Eoalpine high-pressure metamorphism of the area occurred between 76 and 71Ma. Short-lived metamorphism is characterised by fluid-poor conditions. Fluid circulation was mostly restricted to shear zones, thus the degree of Alpine overprint has an extreme spatial variation. In several metamorphic slices Variscan mineral assemblages have been preserved and biotite yielded Variscan and Permo-Triassic Ar ages. Different mineral and isotope thermometers (literature data) yielded temperatures of 500–600°C for the peak of Alpine metamorphism in the Sopron Mountains, but muscovite and biotite do not show complete argon resetting. Thus, we consider this crystalline area as a well constrained natural test site, which either indicates considerably high closure temperatures (around 550°C) for Ar in muscovite and biotite in a dry metamorphic environment, or which is suitable for testing the widely applied methods of temperature estimations under disequilibrium conditions.Apatite fission track results and their thermal modeling, together with structural, mineralogical and sedimentological observations, allows the identification of a post-metamorphic, Eocene hydrothermal event and Late Miocene-Pliocene sediment burial of the crystalline rocks of the Sopron Mountains.  相似文献   

6.
The Mount Lofty Ranges comprises interlayered marbles, metapsammites, and metapelites that underwent regional metamorphism during the Delamarian Orogeny at 470–515 Ma. Peak metamorphic conditions increased from lowermost biotite grade (350–400°C) to migmatite grade (700°C) over 50–55 km parallel to the lithological strike of the rocks. With increasing metamorphic grade, 18O values of normal metapelites decrease from 14–16 to as low as 9.0, while 18O values of calcite in normal marbles decrease from 22–24 to as low as 13.2 These isotopic changes are far greater than can be accounted for by devolatilisation, implying widespread fluid-rock interaction. Contact metamorphism appears not to have affected the terrain, suggesting that fluid flow occurred during regional metamorphism. Down-temperature fluid flow from synmetamorphic granite plutons (18O=8.4–8.6) that occur at the highest metamorphic grades is unlikely to explain the resetting of oxygen isotopes because: (a) there is a paucity of skarns at granite-metasediment contacts; (b) the marbles generally do not contain low-XCO2 mineral assemblages; (c) there is insufficient granite to provide the required volumes of water; (d) the marbles and metapelites retain a several permil difference in 18O values, even at high metamorphic grades. The oxygen isotope resetting may be accounted for by along-strike up-temperature fluid flow during regional metamorphism with time-integrated fluid fluxes of up to 5x109 moles/m2 (105 m3/m2). If fluid flow occurred over 105–106 years, estimated intrinsic permeabilities are 10-20 to 10-16m2. Variations in 18O at individual outcrops suggest that time-integrated fluid fluxes and intrinsic permeabilities may locally have varied by at least an order of magnitude. A general increase in XCO2 values of marble assemblages with metamorphic grade is also consistent with the up-temperature fluid-flow model. Fluids in the metapelites may have been derived from these rocks by devolatilisation at low metamorphic grades; however, fluids in the marbles were probably derived in part from the surrounding siliceous rocks. The marble-metapelite boundaries preserve steep gradients in both 18O and XCO2 values, suggesting that across-strike fluid fluxes were much lower than those parallel to strike. Up-temperature fluid flow may also have formed orthoamphibole rocks and caused melting of the metapelites at high grades.This paper is a contribution to IGCP Project 304 Lower Crustal Processes  相似文献   

7.
Textural evidence for the partial breakdown of staurolite-biotite and andalusite-biotite assemblages to cordierite-orthoamphibole implies high temperature metasomatic depletion of K2O in semi-pelitic rocks from Springton, South Australia. The origin of the reaction textures is discussed with reference to K2O-T diagrams derived from the topologically equivalent K2O–(-H2O) diagram showing both discontinuous and Fe–Mg continuous reactions. The involvement of fluids in the metasomatic process is implied by the scale of K2O removal and suggests that the outcrop pattern of cordierite-gedrite rocks reflects, at least in part, a heterogeneous distribution of advecting fluids in the metamorphic pile at high temperatures.Mineral abbreviations used in text and figures ab albite - alm almandine - als aluminosilicate - and andalusite - anth anthophyllite - bt biotite - cd cordierite - fe-bt Fe-rich biotite - fe-cd Fe-rich cordierite - fe-oa Fe-rich orthoamphibole - fe-st Fe-staurolite - gt garnet - ksp potassium feldspar - ky kyanite - mg-cd Mg-rich cordierite - mg-oa Mg-rich orthoamphibole - mg-st Mg-rich staurolite - mu muscovite - oa orthoamphibole - phl phlogopite - plag plagioclase - py pyrope - sill sillimanite - st staurolite - v vapour  相似文献   

8.
Microprobe analyses are performed on micas (biotite, muscovite and phlogopite) and chlorite from 1.9–1.8 Ga acid K- or Na-rich metavolcanics, cordierit-emica schists and manganiferous rocks from the Hästefält area in central Sweden. The results indicate that Fe-rich biotites and muscovites containing 10 to 25% celadonite and/or pyrophyllite are common in the K- and Na-rich metavolcanics. In the cordierite-mica schists the biotites are Mg-rich and the muscovites contain less than 10% celadonite and/or pyrophyllite. The predominant mica in the manganiferous rocks are phlogopite and less frequent rather pure muscovite. The chlorites show a wide range in composition, but principally those occurring in the K- and Na-rich metavolcanics are brunsvigite and diabantite and those in the cordierite-mica schists and the manganiferous rocks are mainly sheridanite and clinochlore. The chlorites of the manganiferous rocks show enrichment in Mn compared to those in other rock types. In general the compositional variations in the micas and less commonly chlorites are strongly controlled by rock type and fluid chemistry, particularly with respect to the ratio of FeO/(FeO+MgO). Estimates of maximum prograde metamorphic temperature, based on phyllosilicates and co-existing cordierite and garnets, indicate a value of up to 500° C.  相似文献   

9.
This study is an attempt to correlate the graphitization process of carbonaceous matter during metamorphism with metamorphic grade. Graphitization can be parameterized using crystal structure and chemical and isotopic compositions. The extent of graphitization could be characterized mainly by temperature, duration of metamorphism and rock composition. We compared the graphitization trends for two metamorphic terrains, a contact aureole of the Kasuga area and a regional metamorphic terrain of high-temperature/low pressure type of the Ryoke metamorphic terrain in Northern Kiso area, Central Japan, and for two different lithologies (carbonate and pelite), using X-ray diffractogram, DTA-TG analysis, and chemical and stable isotope analyses. During contact metamorphism, graphitization and carbon isotopic exchange reactions proceeded simultaneously in pelitic and carbonate rocks. The decreases in basal spacing d(002) of the carbonaceous matter in carbonate rocks is greatly accelerated at temperatures higher than about 400° C. Furthermore, carbon isotopic ratios of graphite in carbonate rocks also change to 13C-enriched values implying exchange with carbonates. The beginning of this enrichment of 13C in the carbonaceous matter coincides with an abrupt increase of the graphitization processes. Carbon isotopic shifting up to 5 in pelites could be observed as metamorphic temperature increased probably by about 400° C. Carbonaceous matter in pelitic rocks is sometimes a mixture of poorly crystallized organic matter and well-crystallized graphite detritus. DTA-TG analysis is an effective tool for the distinction of detrital graphitic material. Two sources for the original carbon isotopic composition of carbonaceous matter in pelites in the Kasuga contact aureole can be distinguished, about-28 and-24 regardless of the presence of detrital graphite, and were mainly controlled by depositional environment of the sediments. Graphitization in limestones and pelitic rocks in regional metamorphism proceeds further than in a contact aureole. In the low-temperature range, the differences in extent of graphitization between the two metamorphic regions is large. However, at temperatures higher than 600° C, the extent of graphitization in both regions is indistinguishable. The degree of graphitization is different in limestones and pelitic rocks from the Ryoke metamorphic terrain. We demonstrate that the graphitization involves a progressive re-construction process of the crystal structure. The sequence of the first appearance of crystal inter planar spacing correlates with the metamorphic grade and indicates the crystal growth of three-dimensional structured graphite.  相似文献   

10.
On the basis of the systematic variation and the appearance and disappearance of some metamorphic minerals in metapelitic assemblages, the metamorphic terrain of Leros can be divided into chlorite, biotite, garnet and staurolite-kyanite zones of progressive regional metamorphism. The matapelites are interbedded with blueschists containing magnesioriebeckite in Fe3+-rich mafic assemblages in the chlorite zone and more normal greenschist and amphibolite facies in higher grade zones. Combining the observed mineral assemblages in pelitic and mafic schists with the available experimental or calculated relevant phase equilibria, one can deduce temperature conditions of metamorphism ranging from about 350° C up to about 700° C and pressures ranging between a minimum value defined by the pressure of the triple point of the Al2SiO5 polymorphs and a possible minimum around 7 kb.The observed metamorphic sequence may be interpreted as the result of progressive transportation of the original sediments and the interbedded mafic rocks from a regime typified by low temperatures and relatively high pressures, to regimes characterized by higher temperature and medium pressures.  相似文献   

11.
At the Glarus thrust in the Swiss Helvetic Alps, Permian Verrucano siltstones are allochthonously superimposed over Tertiary Flysch with an intermediate, about 1 metre thin layer of intensively deformed calcmylonite of probable Mesozoic provenance. The H–O–C- and Sr-isotope compositions of minerals from the calc-mylonite and strongly mylonitized Verrucano siltstones were determined in order to assess: (1) equilibrium-disequilibrium relationships; (2) isotopic composition of the fluid phase, its provenance and water/rock ratios; (3) sources of Sr in the calc-mylonite; (4) deformation temperatures. The isotopic composition of cale-mylonite micro-samples from five sites along the thrust varies from 22 to 12 and 2 to-10 for 18O and 13C respectively. All samples are 18O depleted by up to 14 relative to the presumed marine Helvetic carbonate protoliths (18O=25.4±2). A pronounced geographic trend of 18O depletion from 22 in the north to 12 in the south is observed. In calc-mylonites, 87Sr/86Sr ratios range from typical Mesozoic marine carbonate protolith signatures (0.708±0.005) to more radiogenic values as high as 0.722. A variable contribution of radiogenic 87Sr to the calc-mylonite is though to reflect interaction with fluids that aquired their Sr from the Hercynian granitic basement. Chlorites and muscovites from the calc-mylonite and Verrucano have uniform 18O values but display D values from-40 to-147%: the D-enriched values correspond to the primary metamorphic or formational fluids expelled during thrusting, whereas the D-depleted samples reflect selective H-isotope exchange with meteoric fluids during uplift of the Alpine belt. The isotopic composition of the calc-mylonites requires exchange with 18O—depleted, 87Sr—enriched fluids at very high water/rock ratios. Possible sources for these are dewatering of the underlying Flysch and/or metamorphic fluids, or formation brines expelled along the thrust from greater depth. These could be derived from compaction and dewatering of the Flysch in the northern part of the thrust; in the south, however, where Verrucano is thrust over 18O-rich Mesozoic carbonates, the extreme 18O depletion of the calc-mylonite has to be explained either by fluid advection within the Verrucano hanging wall and thrust zone or alternatively by exchange with metamorphic fluids from greater depth, expelled along the thrust. Microstructural evidence (abundant veins, stylolites, breccias) suggests that fluids played an important role in deformation and strain localization. Excepting albite all major components (quartz, chlorite, muscovite, calcite) are both dynamically recrystallized and crystallized as secondary minerals in pressure shadows and syn-mylonitic veins, indicating that these minerals were potentially open to oxygen isotopic exchange during alpine metamorphism and thrust deformation. Within the mylonitized Verrucano silstones, isolated quartz-chlorite and quartz-calcite fractionations yield temperatures of around 320°C close to values obtained from calcite-dolomite thermometry (355°C±30) and in agreement with the regional lower greenschist facies metamorphism. Quartz-calcite and quartz-albite fractionations indicate slightly lower temperatures around 250°C, owing to selective lower temperature re-equilibration of the calcite and albite during post peak metamorphism.  相似文献   

12.
Several carbonate-hosted stratabound zinc-lead ores in the Ponferrada-Caurel area (NW Spain) are hosted by the Lower to Middle Cambrian Vegadeo Formation. Two clearly distinct groups of mineralizations occur in different stratigraphic positions. The stratiform disseminated ore is located in the Lower Member as irregular and millimetre-thick layers of sphalerite and galena replacing earlier pyrite. The lack of hydrothermal alteration and the heavy C., O and S isotopic signatures suggest that this ore is of premetamorphic origin, the sulphur and fluids being derived from the host carbonates. The more likely source of the sulphide is the abiogenic thermal reduction of sulphate derived from sulphate beds intercalated with the carbonates. The second group of mineralizations is located at the top of the Vegadeo Fm, always along its contact with the overlaying shales and sandstones of the Cabos Series. This group is economically more important and include three styles of strata-bound mineralizations. The more common one is the silica ore, a hydrothermal rock that traces the contact between the carbonate and the detrital rocks along more than 50 km. Locally, a carbonate-rich ore is found along the contact between the silica ore and the Vegadeo Fm. Laterally to these rocks, there are large bodies of the breccia ore, made up of sulphides and calcite in a matrix of chlorite. The ore assemblage is composed of sphalerite and galena with minor amounts of chalcopyrite and pyrite. Co-Ni-As sulphides, bismuthinite, tetrahedrite and Pb-Bi sulphosalts are also found as trace minerals. The geological relationships and the isotopic signatures suggest that the three ores are synchronous and of late Hercynian age. They are interpreted as linked with a tectonically driven fluid flow along the stratigraphic contact between the carbonate and the detrital rocks.The model of ore genesis involves the circulation of fluids in likely equilibrium with the detrital rocks that react with the Vegadeo Fm leading to the metasomatic replacement of limestones by quartz with synchronous precipitation of sulphides. The genesis of breccias is probably due to the formation of overpressured zones. The hydrothermal alteration results in a systematic depletion in both 18O and 13C of the carbonates due to the infiltration of fluids, of likely mixed metamorphic and surface origin. Fluid inclusions in the chloritic breccia suggest that the ore formation took place at temperatures higher than 200 °C in relationship with low salinity (up to 1.2% wt. NaCl eq.) water-rich (H2O>99%) fluids. Sulphur isotopes suggest that most of the sulphur has a common origin with the stratiform ores, but here there is a significant but variable input from the detrital rocks. Lead isotopes of the different ores are within the Cambrian signature of the southern Hercynian Belt, with a long crustal history. However, mixing with a minor juvenile component cannot be ruled out. The geographic and stratigraphic proximity and the similar lead signatures between the premetamorphic and the Hercynian mineralizations suggest that the latter was derived from the remobilization, in a lead frozen system, of the stratiform-disseminated ones. The premetamorphic mineralizations can be interpreted as similar to the widespread Mississippi Valley-type deposits found in the southern Hercynian Belt. The second group of deposits can be defined as synto postmetamorphic stratabound, carbonate-hosted Zn-Pb deposits, broadly similar to MVT but formed in an orogenic setting. Specific features such as the presence of chlorite, the fluid composition (low saline H2O-NaCl fluids) and the temperatures of formation (above at 200 °C) are interpreted as characteristic of this tectonic setting.  相似文献   

13.
Summary High-grade gneisses from the Pulur complex in NE Turkey bear evidence for biotite-dehydration melting at 820°C and 0.7–0.8GPa, melt segregation and near-isothermal decompression to 0.4–0.5GPa. During further exhumation, the rocks underwent secondary pervasive rehydration at temperatures between 400 and 230°C and fluid pressures between 0.3 and 0.1GPa. Metamorphic peak conditions are dated at 331–327Ma, while hydrothermal retrogression occurred significantly later at 315–310Ma under static conditions. During the rehydration event, primary high-grade mineral assemblages including garnet, cordierite, sillimanite, spinel, biotite, plagioclase and ilmenite were extensively replaced by muscovite, paragonite, margarite, corundum, diaspore, chlorite, kaolinite, pumpellyite, prehnite, epidote, titanite, anatase, pyrite and chalcopyrite. Secondary mineral assemblages indicate that the infiltrating fluids were characterized by low fO2, very low XCO2 (<0.002), variable activities of Ca2+, K+, Na+ and H+ and relatively high activities of H2S and CH4. Quartz veins that might have acted as pathways for the fluids are rare. Ubiquitous veinlets consisting of (i) albite, (ii) chlorite+calcite+quartz or (iii) K-feldspar+calcite+quartz were formed after the pervasive rehydraton event by precipitation from aqueous solutions that were somewhat richer in CO2.  相似文献   

14.
White mica bearing fractions ranging in grain size from 0.4 m to 6.3–20 m were separated from metapelites and intercalated metatuffs of the eastern Rheinisches Schiefergebirge (FRG). The stratigraphic age of these rocks is Middle Devonian (Eifelian), and they contain detrital material of northwestern provenance (Old Red Continent, probably mainly derived from the Caledonian Orogen). Folding in the Carboniferous was associated with cleavage formation and an apparently synkinematic anchizonal metamorphism. Apparent K-Ar ages of metapelite fractions display a marked positive correlation with grain size illustrating the detrital influence which is diminished with decreasing grain size and increasing metamorphism (determined by illite crystallinity). Contrasting grain morphologies observed by SEM enable the interpretation of apparent age/ grain size relationship for coarse fractions. The anticipated lack of detrital mica in metatuffs is confirmed by the fairly consistent apparent K-Ar ages determined for the coarser than 0.63 m size fractions which date the anchizonal metamorphism at ca. 330 Ma. Comparison of metatuff and metapelite apparent ages suggests that the extent of rejuvenation in the latter was largely dependent on grain size. Rejuvenation was also somewhat controlled by the degree of anchizonal metamorphism as suggested by differences in K-Ar results of metapelites which were metamorphosed at variable anchizonal conditions. Fractions <0.63 m from upper anchizonal metapelites record ca. 330 Ma ages similar to those of the 0.63–20 m sizes in metatuffs. Together those results confirm the limited applicability of conventional K-Ar dating on bulk clay fractions (<2 m) of very-low grade (anchizonal) metamorphic rocks in dating metamorphic events and concomitant cleavage formation.  相似文献   

15.
Iron- and vanadium-bearing kyanites have been synthesized at 900 and 1100° C/20 kb in a piston-cylinder apparatus using Mn2O3/Mn3O4- and MnO/Mn-mixtures, respectively, as oxygen buffers. Solid solubility on the pseudobinary section Al2SiO5-Fe2SiO5(-V2SiO5) of the system Al2O3-Fe2O3(V2O3)-SiO2 extends up to 6.5 mole% (14mole %) of the theoretical end member FeSiO5(V2SiO5) at 900°C/20 kb. For bulk compositions with higher Fe2SiO5 (V2SiO5) contents the corundum type phases M2O3(M = Fe3+, V3+) are found to coexist with the Fe3+(V3+)-saturated kyanite solid solution plus quartz. The extent of solid solubility on the join Al2SiO5-Fe2SiO5 at 1 100°C was not found to be significantly higher than at 900° C. Microprobe analyses of iron bearing kyanites gave no significant indication of ternary solid solubility in these mixed crystals. Lattice constants a 0, b 0, c 0, and V0 of the kyanite solid solutions increase with increasing Fe2SiO5- and V2SiO5-contents proportionally to the ionic radii of Fe3+ and V3+, respectively, the triclinic angles ,, remain constant. Iron kyanites are light yellowish-green, vanadium kyanites are light green. Iron kyanites, (Al1.87 Fe 0.13 3+ )SiO5, were obtained as crystals up to 700 m in length.  相似文献   

16.
Graphitic pelites of the western Moinian were metamorphosed at the time of emplacement of the Strontian Granodiorite intrusion, at a late stage of the Caledonian Orogeny, producing a metamorphic zonation. The Sillimanite Zone (in which K feldspar does not occur with sillimanite) is succeeded by the Muscovite-Sillimanite-K feldspar Zone, Sillimanite-K feldspar Zone (without primary muscovite) and Cordierite-K feldspar Zone. Secondary muscovite from retrograde hydration of sillimanite+K feldspar is distinguished texturally from primary muscovite, but is compositionally similar. Primary porphyroblastic muscovite, inherited from the regional metamorphic textural evolution of the rocks, disappears abruptly at the muscovite-out isograd. Migmatites of earlier regional origin, with recrystallized textures, are distinguished from those associated with the late Caledonian metamorphism, which are confined to the Sillimanite-K feldspar and Cordierite-K feldspar Zones. Muscovite compositions are inferred to be very low in Fe3+. There are no marked changes in muscovite composition at the entry of sillimanite+K feldspar. Higher Na contents than in some other muscovites coexisting with sillimanite+K feldspar are interpreted in terms of relatively low P in the Strontian area. Andalusite is found at two localities. From cordierite-garnet-sillimanite-biotite-K feldspar-quartz assemblages, a P estimate of 4.1±0.4 kbar is obtained, with the aqueous fluid having , and the T at the cordierite-K feldspar isograd is estimated as 690° C. T at the muscovite-out isograd is inferred to the maximum for muscovite-quartz-sillimanite-K feldspar equilibrium with graphite at P4.1 kbar: T 645° C, with . The well-defined lower boundary of the Muscovite-Sillimanite-K feldspar Zone is attributed to regionally rather homogeneous fluid composition at . The low P prevented melting in the Muscovite-Sillimanite-K feldspar Zone. Migmatites in the higher zones are attributed to partial melting, which accounts for the low necessary to produce the cordierite assemblages. Obscurity of these migmatites is attributed to deformation during and after the migmatization. A breccia structure in and near the Cordierite-K feldspar Zone, where pelites have flowed around disrupted pieces of psammite and amphibolite, can be explained by presence of grain-boundary melts in the pelites.  相似文献   

17.
Summary In this paper we present what is, to the best of our knowledge, the first comprehensive study of clinopyroxenes and plagioclases contained in the flows of the Grande Ronde Basalt member of the Columbia River Basalt Group (northwestern USA). The rocks have MgO(wt%)<6%, and trace amounts of Cr and Ni. About 56% of extracted solid containing normative clinopyroxene and plagioclase explains the liquid line of descent from the more mafic sample (MgO wt%=5.89) to the most evolved. The most ubiquitous phases in the basalts are plagioclase and augite. Ilmenite and magnetite are accessories in all rocks. Olivine is present in small amount only in one sample (RT 89-7). Based on principles of Ca–Na plagioclase–liquid exchange, estimates of pre-eruptive magmatic water are < 2.4wt%. From clinopyroxene–liquid equilibria, calculated pressures and temperatures of ascending magmas are between 1atm and 0.617GPa, and 1068°C and 1166°C, respectively. Compositions of magnetite–ilmenite pairs and olivine–clinopyroxene–oxide assemblages yield post-eruptive oxygen fugacities of NNO=–1.923, and one pre-eruptive value of NNO=– 2.455. A simple model of asthenospheric melting and magma ponding in the lower crust fits the physical parameters.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s00710-003-0017-1  相似文献   

18.
The O18/O16 and D/H ratios have been determined for rocks and coexisting minerals from several granitic plutons and their contact metamorphic aureoles in the Santa Rosa Range, Nevada, and the Eldora area, Colorado, with emphasis on pelitic rocks. A consistent order of O18/O16 and D/H enrichment in coexisting minerals, and a correlation between isotopic fractionations among coexisting mineral pairs are commonly observed, suggesting that mineral assemblages tend to approach isotopic equilibrium during contact metamorphism. In certain cases, a systematic decrease is observed in the oxygen isotopic fractionations of mineral pairs as one approaches the intrusive contacts. Isotopic temperatures generally show good agreement with heat flow considerations. Based on the experimentally determined quartz-muscovite O18/O16 fractionation calibration curve, temperatures are estimated to be 525 to 625° C at the contacts of the granitic stocks studied.Small-scale oxygen isotope exchange effects between intrusive and country rock are observed over distances of 0.5 to 3 feet on both sides of the contacts; the isotopic gradients are typically 2 to 3 per mil per foot. The degree of oxygen isotopic exchange is essentially identical for different coexisting minerals. This presumably occurred through a diffusion-controlled recrystallization process. The size of the oxygen isotope equilibrium system in the small-scale exchanged zones varies from about 1.5 to 30 cm. A xenolith and a re-entrant of country rock projecting into an intrusive have both undergone much more extensive isotopic exchange (to hundreds of feet); they also show higher isotopic temperatures than the rocks in the aureole. The marginal portions of most plutons have unusually high O18/O16 ratios compared to normal igneous rocks, presumably due to large-scale isotopic exchange with metasedimentary country rocks when the igneous rocks were essentially in a molten state. The isotopic data suggest that outward horizontal movement of H2O into the contact metamorphic aureoles is very minor, but upward movement of H2O is important. Also, direct influx and absorption of H2O from the country rock appears to have occurred in certain intrusive stocks. The D/H ratios of biotites in the contact metamorphic rocks and their associated intrusions show a geographic correlation that is similar to that shown by the D/H ratios of meteoric surface waters, perhaps indicating that meteoric waters were present in the rocks during crystallization of the biotites.Except in the exchanged zones, the O18/O16 ratios of pelitic rocks do not change appreciably during contact metamorphism, even in the cordierite and sillimanite grades; this is in contrast to regional metamorphic rocks which commonly decrease in O18 with increasing grade. Thus, contact metamorphic rocks generally do not exchange with large quantities of igneous H2O, but regional metamorphic rocks appear to have done so.Publications of the Division of Geological Sciences, California Institute of Technology, Contribution No. 1565.  相似文献   

19.
Oxygen-isotope compositions have been measured for whole-rock and mineral samples of host and hydrothermally altered rocks from three massive sulfide deposits, Centennial (CL), Spruce Point (SP), and Anderson Lake (AL), in the Flin Flon — Snow Lake belt, Manitoba. Wholerock 18O values of felsic metavolcanic, host rocks (+8.5 to +16.1) are higher than those of altered rocks from the three deposits. The 18O values of altered rocks are lower in the chlorite zone and muscovite zone-I (CL=+ 5.3; SP=+5.4 to +8.3; AL= +3.7 to +5.9) than in the gradational zone (CL= +9.9 to +11.7; SP= +8.4 to +9.8; AL= + 6.6 to +7.7). Muscovite schist (Muscovite Zone-II) enveloping the Anderson Lake ore body has 18O values of +7.2 to +8.3. Quartz, biotite, muscovite, and chlorite separated from the altered rocks have lower 18O values compared to the same minerals separated from the host rocks. However, isotopic fractionation between mineral-pairs is generally similar in both host and altered rocks.It is interpreted that differences in the oxygen-isotope compositions of the altered and host rocks were produced prior to metamorphism, during hydrothermal alteration related to ore-deposition. Isotopic homogenization during metamorphism occurred on a grain-to-grain scale, over no more than a few meters. The whole-rock 18O values did not change significantly during metamorphism. The generally lower 18O values of altered rocks, the Cu-rich nature of the ore and the occurrence of the muscovite zone-II at Anderson Lake are consistent with the presence of higher temperature hydrothermal fluids at Anderson Lake than at the Centennial and Spruce Point deposits.  相似文献   

20.
Recently published thermodynamic and experimental data in a variety of chemical systems have been evaluated to derive Gibbs free energies for hedenbergite and pyrope. These were used to calculate the geobarometric equilibriaHedenbergite+Anorthite=Grossular+Almandine +Quartz: HD barometer,Diopside+Anorthite=Grossular+Pyrope+Quartz: DI barometer.We have compared the pressures obtained from these equilibria for garnet-clinopyroxene-orthopyroxene-plagioclasequartz assemblages with the geobarometerFerrosilite+Anorthite=Almandine+Grossular+Quartz: FS barometer.Pressures calculated for 68 samples containing the above assemblage from a variety of high grade metamorphic terranes indicate that, in general, the HD and DI barometers yield values that are in good agreement with the FS barometer, and that the three barometers are generally consistent with constraints from aluminosilicate occurrences. However, in some samples the HD barometer yields pressures up to 2 kbar greater than constraints imposed by the presence of an aluminosilicate phase. Relative to the FS barometer, the HD barometer overestimates pressure by an average of 0.2±1.0 (1) kbar and the DI barometer underestimates pressure by an average of 0.6±1.6 (1) kbar. The pressure discrepancies for the HD and DI barometers are likely to be a result of imprecision in thermodynamic data and activity models for silicates, and not a result of resetting of the clinopyroxene equilibria. The relative imprecision of the DI barometer relative to the FS barometer results from overestimates of pressure by the DI and FS barometers in Fe-rich and Mg-rich systems, respectively. Application of the HD and DI barometers to high grade Cpx-Gt-Pg-Qz assemblages yields pressures that are generally consistent with other petrologic constraints and geobarometers. It is concluded that the HD and DI barometers can place reasonable constraints on pressure (±1 kbar relative to the FS barometer) if not extrapolated to mineral assemblages whose compositions are extremely far removed from the end member system for which the barometers were calibrated.Contribution No. 447 from the Mineralogical Laboratory of the University of Michigan  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号