首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Field‐ and laboratory‐scale rainfall simulation experiments were carried out in an investigation of the temporal variability of erosion processes on interrill areas, and the effects of such variation upon sediment size characteristics. Poorly aggregated sandy soils from the semi‐arid environment of Senegal, West Africa, were used on both a 40 m2 field plot and a 0·25 m2 laboratory plot; rainfall intensity for all experiments was 70 mm h?1 with a duration of 1 to 2 hours. Time‐series measurements were made of the quantity and the size distribution of eroded material: these permitted an estimate of the changing temporal balance between the main erosion processes (splash and wash). Results from both spatial scales showed a similar temporal pattern of runoff generation and sediment concentration. For both spatial scales, the dominant erosional process was detachment by raindrops; this resulted in a dynamic evolution of the soil surface under raindrop impact, with the rapid formation of a sieving crust followed by an erosion crust. However, a clear difference was observed between the two scales regarding the size of particles detached by both splash and wash. While all measured values were lower than the mean weight diameter (MWD) value of the original soil (mean 0·32 mm), demonstrating the size‐selective nature of wash and splash processes, the MWD values of washed and splashed particles at the field scale ranged from 0·08 to 0·16 mm and from 0·12 to 0·30 mm respectively, whereas the MWD values of washed and splashed particles at the laboratory scale ranged from 0·13 to 0·29 mm and from 0·21 to 0·32 mm respectively. Thus only at the field scale were the soil particles detached by splash notably coarser than those transported by wash. This suggests a transport‐limited erosion process at the field scale. Differences were also observed between the dynamics of the soil loss by wash at the two scales, since results showed wider scatter in the field compared to the laboratory experiments. This scatter is probably related to the change in soil surface characteristics due to the size‐selectivity of the erosion processes at this spatial scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
The relatively high cost of commercially available raindrop spectrometers and disdrometers has inhibited detailed and intensive research on drop size distribution, kinetic energy and momentum of rainfall which are important for understanding and modelling soil erosion caused by raindrop detachment. In this study, an approach to find the drop size distribution, momentum and kinetic energy of rainfall using a relatively inexpensive device that uses a piezoelectric force transducer for sensing raindrop impact response is introduced. The instrument continuously and automatically records, on a time‐scale, the amplitude of electrical pulses produced by the impact of raindrops on the surface of the transducer. The size distribution of the raindrops and their respective kinetic energy are calculated by analysing the number and amplitude of pulses recorded, and from the measured volume of total rainfall using a calibration curve. Simultaneous measurements of the instrument, a rain gauge and a dye‐stain method were used to assess the performance of the instrument. Test results from natural and simulated rainfalls are presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
Wind movement and velocity can have a profound effect on some aspects of the soil erosion process. In the case of wind‐driven rain, differences in raindrop trajectory are expected: wind‐driven raindrops achieve some degree of horizontal velocity, which increases their resultant impact velocity and they strike the soil surface at an angle deviated from the vertical under the effects of both gravitational and drag forces. However, not much is known about the physical impact of raindrops on a soil in situations where this impact is at an angle, and it is also not precise known if oblique raindrops have stronger erosive effects than vertical ones. A series of tests was conducted to assess the effect of wind velocities on sand detachment from splash cups in a wind tunnel facility equipped with a rainfall simulator. Splash cups packed with standard sand were exposed to windless rains and to rains driven by horizontal wind velocities of 6, 10 and 14 m s?1 to evaluate the sand detachment by wind‐driven raindrops. The average angle of rain inclination from vertical was calculated from the direct intensity measurements implemented with windward and leeward‐facing raingauges placed at different slopes. A kinetic energy sensor measured energy of windless and wind‐driven rains. Results showed that the kinetic energy flux calculated by the resultant impact velocity of drops adequately described the sand detachment from the splash cups by wind‐driven raindrops. However, an additional analysis of Pearson correlation coefficients using the velocity components rather than the resultant velocity of wind‐driven raindrops indicated that the energy flux related to the horizontal component of wind‐driven raindrops had a greater correlation with sand detachment than that related to the normal component. This finding contradicted the general assumption that the component of velocity normal to the surface is related to the detachment. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
P. I. A. Kinnell 《水文研究》2005,19(14):2815-2844
Raindrop‐impact‐induced erosion is initiated when detachment of soil particles from the surface of the soil results from an expenditure of raindrop energy. Once detachment by raindrop impact has taken place, particles are transported away from the site of the impact by one or more of the following transport processes: drop splash, raindrop‐induced flow transport, or transport by flow without stimulation by drop impact. These transport processes exhibit varying efficiencies. Particles that fall back to the surface as a result of gravity produce a layer of pre‐detached particles that provides a degree of protection against the detachment of particles from the underlying soil. This, in turn, influences the erodibility of the eroding surface. Good understanding of rainfall erosion processes is necessary if the results of erosion experiments are to be properly interpreted. Current process‐based erosion prediction models do not deal with the issue of temporal variations in erodibility during a rainfall event or variabilities in erodibility associated with spatial changes in dominance of the transport processes that follow detachment by drop impact. Although more complex erosion models may deal with issues like this, their complexity and high data requirement may make them unsuitable for use as general prediction tools. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The persistence of soil compaction, caused by farmers' vehicles (tractors wheelings) during the dry season, can affect splash distribution and soil erosion so that surface flow starts at an earlier stage than between the wheelings. To investigate the effects of soil compaction on splash distribution, a dry clayey agricultural soil was compacted in steel cups with a hydraulic piston, and the shear strength was measured with a fall‐cone penetrometer. Two cups were compacted in the same manner, using one to measure the shear strength and the second for splash erosion measurements. A laboratory splash board of 1 m radius, divided into 13 concentric compartments, was used to collect the splashed particles. The water drop diameter used was 4·9 mm falling onto a soil splash cup of 50·2 cm2 area from 8 m height with a terminal velocity of 8·8 m s?1. The spatial distribution of the splashed particles, for different soil compactions, fitted the fundamental splash distribution function (FSDF) model better than the exponential function. The shapes of the curves of this function demonstrated the importance of the source area size; the smaller the cup diameter the better the spatial distribution is expressed by an exponential function. In addition, variability in soil surface conditions contributes to variation in splash characteristics. Detachment rates and average radial distance followed second degree relationships in terms of shear strength. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
To elucidate splash erosion processes under natural rainfall conditions, temporal variations in splash detachment were observed using a piezoelectric saltation sensor (H11B; Sensit Co., Portland, ND, USA). Preliminary laboratory tests of Sensit suggested that they were suitable for field observations. Field observations were conducted between July and September 2006 in 21‐ and 36‐year‐old Japanese cypress (Chamaecyparis obtusa) plantations with mean stand heights of 9·2 m and 17·4 m, respectively. Splash detachment (in g m?2) was measured seven times using splash cups, and raindrop kinetic energy (in J m?2 mm?1) in both stands was measured using laser drop‐sizing (LD) gauges. Sensit was installed to record saltation counts, which were converted to temporal data of splash detachment (splash rate; in g m?2 10 min?1) using the relationship between splash detachment and saltation counts. Surface runoff was monitored using runoff plots of 0·5 m width and 2·0 m length to obtain temporal data of flow depth (in millimeters). Both total splash detachment and raindrop kinetic energy were larger in the older stand. Increased splash rates per unit throughfall were found in both stands after rainless durations longer than approximately one day in both stands. However, a lower splash rate was found in the 21‐year stand after rainfall events. During extreme rainstorms, the 21‐year stand showed a low runoff rate and a decline in the splash rate, while the 36‐year stand showed a higher splash rate and increased flow depth. The piezoelectric sensor proved to be a useful means to elucidate splash erosion processes in field conditions. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Rain and throughfall drops were sampled during rain events in a New Zealand beech forest and the frequency distributions of drop mass and kinetic energy calculated. The kinetic energy of throughfall under the canopy was always greater than that of rainfall in the open, notwithstanding interception losses. During a typical rain event in which 51 mm fell in 36 h, the total kinetic energy of throughfail was 1.5 times greater than that of rainfall, and the mean amount of sand splashed from sample cups was 3.1 times greater under the canopy than in the open. It appears that where mineral soil is exposed at the surface, by animal trampling or burrowing for example, rates of soil detachment by splash under a forest canopy will probably exceed those in the open.  相似文献   

8.
A simple model of raindrop erosion—the combined effects of the detachment of sediment by raindrops and its transport by splash or by overland flow—is developed to examine the role of this process in the formation of desert pavements. Application of the model to soils in areas of existing pavement initially simulates the formation of pavements, but the changing sediment size distributions lead to the subsequent destruction of these modelled surfaces. An improved model that accounts for the feedback effects of the changing size distributions on infiltration and microtopography is then developed. Incorporating these effects allows simulated pavements to be maintained over longer periods. The model yields desert pavements whose particle size compositions differ in response to differences in initial soil characteristics, slope and rainfall intensity. This model is tested against empirical data from a site where there is intershrub pavement and associated mounds of fines beneath desert shrubs. The results successfully predict the accumulation of fines under shrubs but underestimate the development of the pavement between shrubs. These findings suggest that the raindrop erosion mechanism on its own cannot account for the development of the pavement and that some other mechanism leading to the surface concentration of coarse particles must also be operating.  相似文献   

9.
Physically based soil erosion simulation models require input parameters of soil detachment and sediment transport owing to the action and interactions of both raindrops and overland flow. A simple interrill soil water transport model is applied to a laboratory catchment to investigate the application of raindrop detachment and transport in interrill areas explicitly. A controlled laboratory rainfall simulation study with slope length simulation by flow addition was used to assess the raindrop detachment and transport of detached soil by overland flow in interrill areas. Artificial rainfall of moderate to high intensity was used to simulate intense rain storms. However, experiments were restricted to conditions where rilling and channelling did not occur and where overland flow covered most of the surface. A simple equation with a rainfall intensity term for raindrop detachment, and a simple sediment transport equation with unit discharge and a slope term were found to be applicable to the situation where clear water is added at the upper end of a small plot to simulate increased slope length. The proposed generic relationships can be used to predict raindrop detachment and the sediment transport capacity of interrill flow and can therefore contribute to the development of physically‐based erosion models. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
The raindrop impact and overland flow are two major factors causing soil detachment and particle transportation. In this study, the turbulent characteristics of the shallow rain‐impacted water flow were investigated using a 2‐D fibre‐optic laser Doppler velocimetry (FLDV) and an artificial rainfall simulator. The fluctuating turbulent shear stress was computed using digital data processing techniques. The experimental data showed that the Reynolds shear stress follows a probability distribution with heavy tails. The tail probability increases with an increase of rainfall intensity or raindrop diameter, and it decreases with an increase of Reynolds number. A modified empirical equation was derived using both the raindrop diameter and rainfall intensity as independent variables to provide a better prediction of the Darcy‐Weisbach friction coefficient f under rainfall conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
Sediment, nutrients and pollutants discharged from sheet and interrill erosion areas by rain‐impacted flows may influence water quality in streams and rivers. The depth of water on the soil surface influences the capacity of raindrop impacts to detach soil material underlying rain‐impacted flows, and a number of so‐called process‐based and mechanistic models erroneously use equations on the basis of the effect of water depth on splash erosion to account for this effect. Also, a number of these models require complex mathematical solutions to make them operate and can only predict sediment composition and discharges well if many of their parameters are calibrated specifically to the situations where they are being applied. Experiments with rain‐impacted flows, where flow depth and velocity over eroding surfaces have been controlled, have been reported in the literature and provide more appropriate equations to account for the drop size – flow depth interactions that affect detachment and transport of particles in rain‐impacted flows. There is a need to develop modeling approaches that rely on relevant data obtained under well‐controlled flow conditions where flow depths and velocities are known. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Rainfall erosivity represents the primary driver for particle detachment in splash soil erosion. Several raindrop erosivity indices have been developed in order to quantify the potential of rainfall to cause soil erosion. Different types of rainfall simulators have been used to relate rainfall characteristics to soil detachment. However, rainfall produced by different rainfall simulators has different characteristics, specifically different relationships between rainfall intensity and rainfall erosivity. For this reason, the effect of rainfall characteristics produced by a dripper‐type rainfall simulator on splash soil erosion (Ds) has been investigated. The simulated rainfall kinetic energy (KE) and drop size distribution (DSD) were measured using piezoelectric transducers, modified from the Vaisala RAINCAP® rain sensor. The soil splash was evaluated under various simulated rainfall intensities ranging from 10 to 100 mm h?1 using the splash‐cup method. The simulated rainfall intensity (I) and kinetic energy relationship (IKE) was found to be different from natural rainfall. The simulated rainfall intensity and splash soil erosion relationship (IDs) also followed this same trend. The IKE relationship was found to follow the natural rainfall trend until the rainfall intensity reached 30 mm h?1 and above this limit the KE started to decrease. This emphasizes the importance of the IKE relationship in determining the IDs relationship, which can differ from one rainfall simulator to another. Ds was found to be highly correlated with KE (r = 0·85, P < 0·001), when data produced by the rainfall intensity ranged from 10 to 100 mm h?1. However, when the threshold rainfall intensity (30 mm h?1) was considered, the correlation coefficient further improved (r = 0·89, P = 0·001). Accordingly, to improve the soil splash estimation of simulated rainfall under various rainfall intensities the I–KE characterization relationship for rainfall simulators has to be taken into account. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
Rain‐impacted flows dominate sheet and interrill erosion and are important in eroding soil rich in nutrients and other chemicals which may have deleterious effects on water quality. Erosion in rain‐impacted flow is associated with raindrop detachment followed by transport either by the combination of flow velocity and raindrop impact (raindrop‐induced flow transport, RIFT) or the inherent capacity of the flow to transport detached material. Coarse particles tend to be transported by RIFT, while fine particles tend to be transported without any assistance from raindrop impact. Because the transport process associated with coarse particles is not 100 per cent efficient, it generates a layer of loose particles on the soil surface and this layer protects the underlying soil from detachment. Simulations were performed by modelling the uplift and downstream movement of both fine and coarse particles detached from the soil surface by individual raindrop impacts starting with a surface where no loose material was present. The simulations produced a flush of fine material followed by a decline in the discharge of fine material as the amount of loose material built up on the bed. The decline in the discharge of fine material was accompanied by an increase in the discharge of coarse material. The relative amounts of coarse and fine material discharged in the flow varied with flow velocity and cohesion in the surface of the soil matrix. The results indicate that the discharge of various sized sediments is highly dependent on local soil, rain and flow conditions and that extrapolating the results from one situation to another may not be appropriate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

14.
15.
A model of the dispersion of splash droplets from a single raindrop impact on a sloping soil surface is combined with a theory of the entrainment of mineral particles from a disaggregated mixture in splash droplets to obtain a model of the dispersion of such particles by a raindrop impact. Stochastic modelling techniques extend this further to a model of the spatial redistribution of soil on a plot after a period of rainfall. Since the model is probabilistic and physically based it enables the incorporation of further advances in the understanding of splash erosion at all stages and can simulate the effect of the stochastic nature of rainfall and soil properties on the process. Several different situations are simulated. These include the movement of marked soil particles from point sources and the spatial patterns of erosion on a sloping plot. The model can also simulate the differential erosion of different soil particle size fractions.  相似文献   

16.
Laboratory experiments have been conducted to study the effects of various rain properties on sand detachment resulting from raindrop impact. Splash cups were exposed to simulated rainfall intensities ranging between 10 and 140 mm h−1. The detached sand was collected and weighed whereas rain intensity, equivalent drop diameter and fall velocity of raindrops were measured with an optical spectro‐pluviometer (OSP). The properties of the simulated rain (i.e. median volume diameter and kinetic energy) were compared with those observed in natural conditions. Statistical analyses have been undertaken in order to evaluate which rain variable best predicts the mass of sand detached. Linear and non‐linear correlations between the mass of detached sediment and the product of drop size (d) by drop velocity (v), i.e. DαVβ, with values of α varying between 1 and 6 and β between 0 and 3, have been computed. The results indicate that the coefficient of determination (R2) for α ranging between 3 and 5 and β lower or equal to 2 are satisfying. Although kinetic energy (D3V2) described splash detachment relatively well, the product of momentum by drop diameter (D4V) was slightly superior in describing splash detachment. Therefore, the momentum multiplied by the drop diameter is recommended as the best rain variable to describe splash detachment. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
Raindrop impact can be a major contributor to particle mobilization for soils and other granular materials. In previous work, water repellent soils, comprised of hydrophobic particles, have been shown to exhibit greater splash erosion losses under multiple drop impact. However, the underlying principle differences in splash behavior between hydrophobic and hydrophilic granular surfaces have not been studied to date. In this study the effects of particle hydrophobicity on splash behaviour by a single water drop impact were examined using high‐speed videography. Water drops (4 mm in diameter) were dropped on beds of hydrophilic and hydrophobic glass beads (sieved range: 350–400 µm), serving as model soil particles. The drop velocity on impact was 2.67 m s‐1, which corresponds to ~30% of the terminal velocity of a raindrop of similar size. The resulting impact behaviour was measured in terms of the trajectories of particles ejected from the beds and their final resting positions. The response to the impacting water drop was significantly different between hydrophilic and hydrophobic particles in terms of the distance distribution, the median distance travelled by the particles and number of ejected particles. The greater ejection distances of hydrophobic particles were mainly the result of the higher initial velocities rather than differences in ejecting angles. The higher and longer ejection trajectories for hydrophobic particles, compared with hydrophilic particles, indicate that particle hydrophobicity affects splash erosion from the initial stage of rainfall erosion before a water layer may be formed by accumulating drops. The ~10% increase in average splash distance for hydrophobic particles compared with hydrophilic particles suggests that particle hydrophobicity can result in greater net erosion rate, which would be amplified on sloping surfaces, for example, by ridges in ploughed agricultural soils or hillslopes following vegetation loss by clearing or wildfire. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Data on drop size distribution and kinetic energy load of rainstorms are basic for rainfall erosivity indices. A simple and relatively inexpensive instrument was used to asses the instantaneous intensity and kinetic energy load of rainstorms in Hong Kong. Both the drop size and the instantaneous kinetic energy load of rainfall in Hong Kong are greater than in temperate and subtropical climates. The high kinetic energy results from the large size and greater number of raindrops falling per unit time. A high correlation between the kinetic energy of rainfall and the amount of rainfall allows for a convenient estimate of the energy load of storms from the amount of rainfall. Of more significance to the erosion process is the determination that about 74% of the total annual rainfall is erosive, containing about three‐quarters of the total annual energy load of the rains. The variability of rainfall parameters within a rainfall and from storm to storm is shown. The energy–intensity relationship, seasonal and annual distributions of rainfall erosivity are presented. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
Rainsplash is an important component of interrill erosion. To date, few studies have critically examined the linkages between aggregate entrainment by splash and associated nutrient flux. An Oxisol was used in laboratory rainfall experiments with two different antecedent moisture contents (AMC) and ten different rainfall energy flux densities (EFD). Splash and soil organic carbon (SOC) flux increased with increased EFD regardless of initial AMC. Aggregates were not transported in proportion to their content in the original soil matrix, those of 2000–4000 μm and <105 μm were found to be the most resistant to splash. Energy required to detach 1 gC varied from a median of 1870 J for the 2000–4000 μm fraction to 120 J for the 425–850 μm fraction. Temporal variation in cumulative splash flux and carbon flux for various combinations of AMC and EFD indicated distinct patterns. Under dry AMC, splash increased during 1 h duration storms and this was explained by increased aggregate breakdown by air-slaking, decreased soil strength and increased erodibility as soil moisture increased. Wet soil runs exhibited the opposite pattern of decreased flux with time, probably indicating a complex response to limited aggregate availability, increased seal development by raindrop compaction, and transient water layer effects in drop impact craters. The formulation of mass-based SOC enrichment ratios (ER) clearly indicated preferential detachment and transport of splashed aggregates between 250 and 2000 μm. A reliance of chemical transport models on concentration-based ER values can be misleading, because it is the balance between nutrient concentration and sediment quantity that is important for soil quality and non-point source modelling.  相似文献   

20.
Effects of rainfall patterns on runoff and rainfall-induced erosion   总被引:3,自引:0,他引:3  
Rainfall-induced erosion involves the detachment of soil particles by raindrop impact and their transport by the combined action of the shallow surface runoff and raindrop impact.Although temporal variation in rainfall intensity(pattern)during natural rainstorms is a common phenomenon,the available information is inadequate to understand its effects on runoff and rainfall-induced erosion processes.To address this issue,four simulated rainfall patterns(constant,increasing,decreasing,and increasing-decreasing)with the same total kinetic energy were designed.Two soil types(sandy and sandy loam)were subjected to simulated rainfall using 15 cm×30 cm long detachment trays under infiltration conditions.For each simulation,runoff and sediment concentration were sampled at regular intervals.No obvious difference was observed in runoff across the two soil types,but there were significant differences in soil losses among the different rainfall patterns and stages.For varying-intensity rainfall patterns,the dominant sediment transport mechanism was not only influenced by raindrop detachment but also was affected by raindrop-induced shallow flow transport.Moreover,the efficiency of equations that predict the interrill erosion rate increased when the integrated raindrop impact and surface runoff rate were applied.Although the processes of interrill erosion are complex,the findings in this study may provide useful insight for developing models that predict the effects of rainfall pattern on runoff and erosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号