首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
Characterization of spatial and temporal variability of stable isotopes (δ18O and δ2H) of surface waters is essential to interpret hydrological processes and establish modern isotope–elevation gradients across mountainous terrains. Here, we present stable isotope data for river waters across Kyrgyzstan. River water isotopes exhibit substantial spatial heterogeneity among different watersheds in Kyrgyzstan. Higher river water isotope values were found mainly in the Issyk‐Kul Lake watershed, whereas waters in the Son‐Kul Lake watershed display lower values. Results show a close δ18O–δ2H relation between river water and the local meteoric water line, implying that river water experiences little evaporative enrichment. River water from the high‐elevation regions (e.g., Naryn and Son‐Kul Lake watershed) had the most negative isotope values, implying that river water is dominated by snowmelt. Higher deuterium excess (average d = 13.9‰) in river water probably represents the isotopic signature of combined contributions from direct precipitation and glacier melt in stream discharge across Kyrgyzstan. A significant relationship between river water δ18O and elevation was observed with a vertical lapse rate of 0.13‰/100 m. These findings provide crucial information about hydrological processes across Kyrgyzstan and contribute to a better understanding of the paleoclimate/elevation reconstruction of this region.  相似文献   

2.
Accurately quantifying the evaporation loss of surface water is essential for regional water resources management, especially in arid and semi-arid areas where water resources are already scarce. The long-term monitoring of stable isotopes (δ18O and δ2H) in water can provide a sensitive indicator of water loss by evaporation. In this study, we obtained surface water samples of Shiyang River Basin from April to October between 2017 and 2019. The spatial and temporal characteristics of stable isotopes in surface water show the trend of enrichment in summer, depletion in spring, enrichment in deserts and depletion in mountains. The Local Evaporation Line (LEL) obtained by the regression of δ2H and δ18O in surface water has been defined by the lines: δ2H = 7.61δ18O + 14.58 for mountainous area, δ2H = 4.19δ18O − 17.85 for oasis area, δ2H = 4.08δ18O − 18.92 for desert area. The slope of LEL shows a gradual decrease from mountain to desert, indicating that the evaporation of surface water is gradually increasing. The evaporation loss of stable isotopes in surface water is 24.82% for mountainous area, 32.19% for oasis area, and 70.98% for desert area, respectively. Temperature and air humidity are the main meteorological factors affecting the evaporation loss, and the construction of reservoirs and farmland irrigation are the main man-made factors affecting the evaporation loss.  相似文献   

3.
Few studies have investigated large reaches of rivers in which multiple sources of groundwater are responsible for maintaining baseflow. This paper builds upon previous work undertaken along the Fitzroy River, one of the largest perennial river systems in north‐western Australia. Synoptic regional‐scale sampling of both river water and groundwater for a suite of environmental tracers (4He, 87Sr/86Sr, 222Rn and major ions), and subsequent modeling of tracer behavior in the river, has enabled definition and quantification of groundwater input from at least three different sources. We show unambiguous evidence of both shallow “local” groundwater, possibly recharged to alluvial aquifers beneath the adjacent floodplain during recent high‐flow events, and old “regional” groundwater introduced via artesian flow from deep confined aquifers. We also invoke hyporheic exchange and either bank return flow or parafluvial flow to account for background 222Rn activities and anomalous chloride trends along river reaches where there is no evidence of the local or regional groundwater inputs. Vertical conductivity sections acquired through an airborne electromagnetic (AEM) survey provide insights to the architecture of the aquifers associated with these sources and general groundwater quality characteristics. These data indicate fresh groundwater from about 300 m below ground preferentially discharging to the river, at locations consistent with those inferred from tracer data. The results demonstrate how sampling rivers for multiple environmental tracers of different types—including stable and radioactive isotopes, dissolved gases and major ions—can significantly improve conceptualization of groundwater—surface water interaction processes, particularly when coupled with geophysical techniques in complex hydrogeological settings.  相似文献   

4.
In river bank filtration, impurities present in the river water travel with the bank filtrate towards the pumping well. During this passage, certain types of impurities, such as turbidity, total coliform, and so forth, may get attenuated; however, it is interesting to note that some of the instant raw river water quality parameters, such as alkalinity and electrical conductivity, increase after the passage of water through the porous medium. This occurs because water, when passing through the soil pores, absorbs many of the solutes that cause an increase in alkalinity and electrical conductivity. Measurements at a river bank filtration site for a year showed that alkalinity of 116–32 mg l?1 in river water increased to 222.4–159.9 mg l?1 in the river bank filtered water. Likewise, the electrical conductivity increased from 280–131 μS cm?1 to 462–409.6 μS cm?1. This study uses a probabilistic approach for investigating the variation of alkalinity and electrical conductivity of source water that varies with the natural logarithm of the concentration of influent water. The probabilistic approach has the potential of being used in simulating the variation of alkalinity and electrical conductivity in river bank filtrate. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Environmental isotopes (2H or D, 18O, 3H), along with geology, hydrochemistry and in situ physicochemical parameters (EC, T, DO, pH) were employed to study surface water (reservoir, lake)–groundwater (spring) relationships at (1) Nagewadi, a minor irrigation project in the State of Maharashtra, Western India; (2) Kanhirapuzha reservoir in the State of Kerala, Southern India and (3) Ghatghar Pumped Storage Hydroelectric Project in the State of Maharashtra, Western India for the purpose of understanding the seepage/leakage and its associated problems. The studies concluded that the springs found downstream of the Nagewadi project originate from the reservoir and not from the abutments or shallow aquifers. The Kanhirapuzha reservoir receives a substantial base‐flow component compared to riverine inputs. The reason for the water‐logging problem at a nearby downstream village during the non‐summer periods is due to the change in the upstream groundwater flow direction under reservoir filling conditions and is not due to reservoir leakage. Most of the springs in the approach tunnel to the underground power house of the Ghatghar Project originate from the lower reservoir and not from the upper reservoir or the overburden rock matrix. The above case studies illustrate the diversity of environmental isotope applications in surface water (reservoir, lake)–groundwater (spring) relationships related to sustainability of hydro‐projects. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
Ground water from springs and public supply wells was investigated for hydrochemistry and environmental isotopes of 3H, 18O and D in Jeju volcanic island, Korea. The wells are completed in a basaltic aquifer and the upper part of hydrovolcanic sedimentary formation. Nitrate contamination is conspicuous in the coastal area where most of the samples have nitrate concentrations well above 1 mg NO3 N/l. Agricultural land use seems to have a strong influence on the distribution of nitrate in ground water. Comparison of stable isotopic compositions of precipitation and ground water show that ground water mostly originates from rainy season precipitation without significant secondary modification and that local recharge is dominant. 3H concentration of ground water ranged from nearly zero to 5 TU and is poorly correlated with vertical location of well screens. The occurrence of the 3H‐free, old ground water is due to the presence of low permeability layers near the boundary of the basaltic aquifer and the hydrovolcanic sedimentary formation, which significantly limits ground water flow from the upper basaltic aquifer. The old ground water exhibited background‐level nitrate concentrations despite high nitrate loadings, whereas young ground water had considerably higher nitrate concentrations. This correlation of 3H and nitrate concentration may be ascribed to the history of fertilizer use that has increased dramatically since the early 1960s in the island. This suggests that 3H can be used as a qualitative indicator for aquifer vulnerability to nitrate contamination. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
The Guarani Aquifer System (GAS) has been studied since the 1970s, a time frame that coincides with the advent of isotopic techniques in Brazil. The GAS isotope data from many studies are organized in different phases: (a) the advent of isotope techniques, (b) consolidation and new applications, (c) isotope assessments and hydrochemistry evolution, and (d) a roadmap to a new conceptual model. The reasons behind the phases, their methodological approaches, and impacts on the regional flow conceptual models are examined. Starting with local δ2H and δ18O assessments of values for water fingerprinting and estimates of recharge palaeoclimate scenarios, studies evolved to more integrated approaches based on multiple tracers. Stable isotope application techniques were consolidated during the 1980s, when new dating approaches dealing with radiogenic and heavy isotopes were introduced. Through the execution of an international transboundary project, the GAS was studied and extensively sampled for isotopes. These results have triggered wider application of isotope techniques, reflecting also world research trends. Presently, hydrochemical evolution models along flow lines from recharge to discharge areas, across large‐scale tectonic features within the entire sedimentary basin, are being combined with residence time estimates at GAS outcrop areas and deep confined units. In a complex system, it is normal that many, and even contradictory hypotheses are proposed, but isotope techniques provide a unique chance to test them. Stable isotope assessments are still needed near recharge areas, and they can be combined with groundwater classical dating procedures, complemented by newer techniques (3H‐3He, CFCs, and SF6). Recent noble gas sampling and world pioneer analytical efforts focused on the confined units in the GAS will certainly led to new findings on the overall GAS circulation. The objective of this article is to discuss how isotope information can contribute to the evolution of conceptual groundwater flow models for regional continental aquifers, such as the GAS.  相似文献   

8.
We evaluated sources and pathways of groundwater recharge for a heterogeneous alluvial aquifer beneath an agricultural field, based on multi‐level monitoring of hydrochemistry and environmental isotopes of a riverside groundwater system at Buyeo, Korea. Two distinct groundwater zones were identified with depth: (1) a shallow oxic groundwater zone, characterized by elevated concentrations of NO3? and (2) a deeper (>10–14 m from the ground surface) sub‐oxic groundwater zone with high concentrations of dissolved Fe, silica, and HCO3?, but little nitrate. The change of redox zones occurred at a depth where the aquifer sediments change from an upper sandy stratum to a silty stratum with mud caps. The δ18O and δ2H values of groundwater were also different between the two zones. Hydrochemical and δ18O? δ2H data of oxic groundwater are similar to those of soil water. This illustrates that recharge of oxic groundwater mainly occurs through direct infiltration of rain and irrigation water in the sandy soil area where vegetable cropping with abundant fertilizer use is predominant. Oxic groundwater is therefore severely contaminated by agrochemical pollutants such as nitrate. In contrast, deeper sub‐oxic groundwater contains only small amounts of dissolved oxygen (DO) and NO3?. The 3H contents and elevated silica concentrations in sub‐oxic groundwater indicate a somewhat longer mean residence time of groundwater within this part of the aquifer. Sub‐oxic groundwater was also characterized by higher δ18O and δ2H values and lower d‐excess values, indicating significant evaporation during recharge. We suggest that recharge of sub‐oxic groundwater occurs in the areas of paddy rice fields where standing irrigation and rain water are affected by strong evaporation, and that reducing conditions develop during subsequent sub‐surface infiltration. This study illustrates the existence of two groundwater bodies with different recharge processes within an alluvial aquifer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Long-term atmospheric water vapour hydrogen (δ2H), oxygen (δ18O) and deuterium excess (d-excess) can provide unique insights into the land-atmosphere coupling processes. The in-situ measurements of atmospheric water vapour δ2H, δ18O and d-excess were conducted above a reed wetland of Liaodong Bay (2019–2020). We found significant inter-annual variations in atmospheric water vapour isotopes between the two growing (May–September) seasons. The δ2H, δ18O and d-excess of atmospheric water vapour exhibited different seasonal and diurnal cycles concerning the vertical measurement heights, especially in 2019. The isotopic differences of atmospheric water vapour among vertical measurement heights were more evident in the daytime. Rainfall events directly impacted the diurnal patterns of water vapour isotopes, and the influences depended on rainfall intensities. However, only weak correlations existed between water vapour isotopes and local meteorological factors (R2 = 0.01–0.16, p < 0.001), such as water vapour concentration (w), Relative Humidity (RH) and surface air temperature (Ta). Based on the back-air trajectory analyses, the spatial–temporal dynamics of atmospheric water vapour isotopes are highly synchronized with monsoon activities. Different water vapour sources influence the water vapour isotope in this region and the higher d-excess value is related to the intense convection brought by the monsoon. High-resolution measurements of atmospheric water vapour isotopes will improve our understanding of the hydrological cycles in coastal areas.  相似文献   

10.
Critical for the management of artificial recharge operations is detailed knowledge of ground water dynamics near spreading areas. Geochemical tracer techniques including stable isotopes of water, tritium/helium-3 (T/3He) dating, and deliberate gas tracer experiments are ideally suited for these investigations. These tracers were used to evaluate flow near an artificial recharge site in northern Orange County, California, where approximately 2.5 x 10(8) m3 (200,000 acre-feet) of water are recharged annually. T/3He ages show that most of the relatively shallow ground water within 3 km of the recharge facilities have apparent ages < 2 years; further downgradient apparent ages increase, reaching > 20 years at approximately 6 km. Gas tracer experiments using sulfur hexafluoride and xenon isotopes were conducted from the Santa Ana River and two spreading basins. These tracers were followed in the ground water for more than two years, allowing subsurface flow patterns and flow times to be quantified. Results demonstrate that mean horizontal ground water velocities range from < 1 to > 4 km/year. The leading edges of the tracer patch moved at velocities about twice as fast as the center of mass. Leading edge velocities are important when considering the potential transport of microbes and other "time sensitive" contaminants and cannot be determined easily with other methods. T/3He apparent ages and tracer travel times agreed within the analytical uncertainty at 16 of 19 narrow screened monitoring wells. By combining these techniques, ground water flow was imaged with time scales on the order of weeks to decades.  相似文献   

11.
This paper presents a methodology for hydrograph separation in mountain watersheds, which aims at identifying flow sources among ungauged headwater sub‐catchments through a combination of observed streamflow and data on natural tracers including isotope and dissolved solids. Daily summer and bi‐daily spring season water samples obtained at the outlet of the Juncal River Basin in the Andes of Central Chile were analysed for all major ions as well as stable water isotopes, δ18O and δD. Additionally, various samples from rain, snow, surface streams and exfiltrating subsurface water (springs) were sampled throughout the catchment. A principal component analysis was performed in order to address cross‐correlation in the tracer dataset, reduce the dimensionality of the problem and uncover patterns of variability. Potential sources were identified in a two‐component U‐space that explains 94% of the observed tracer variability at the catchment outlet. Hydrograph separation was performed through an Informative‐Bayesian model. Our results indicate that the Juncal Norte Glacier headwater sub‐catchment contributed at least 50% of summer flows at the Juncal River Basin outlet during the 2011–2012 water year (a hydrologically dry period in the Region), even though it accounts for only 27% of the basin area. Our study confirms the value of combining solute and isotope information for estimating source contributions in complex hydrologic systems, and provides insights regarding experimental design in high‐elevation semi‐arid catchments. The findings of this study can be useful for evaluating modelling studies of the hydrological consequences of the rapid decrease in glacier cover observed in this region, by providing insights into the origin of river water in basins with little hydrometeorological information. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
High‐frequency sampling of stable water isotopes in precipitation and stream water during winter and summer storm events was carried out in a 2·3 km2 lowland agricultural catchment. During peak flows of monitored events, the responses of δ2H and δ18O were comparable and inferred the dominance (ca 70%) of ‘old’ pre‐event water. Transit Time Distribution (TTD) inferred by a gamma function were fitted (Nash–Sutcliffe = 0·8) and were also similar for δ2H and δ18O. However, the shape (α) and scaling (β) parameters were markedly different for summer and winter events. Consequently, when antecedent wetness was high, mean transit times were in the order of days; when drier, they increased to months. Moreover, while the responses of δ2H and δ18O exhibited similar gradual recovery to pre‐event conditions during winter hydrograph recessions, they differed dramatically on summer recessions. Time series analysis showed that δ2H isotope content was correlated with the diurnal cycle of air temperature, suggesting an evaporative fractionation pattern which could be reproduced by a temperature‐based first‐order autoregressive model. The heavier δ18O isotope showed no evidence for such diurnal variability. The study highlights the utility of high‐frequency stable isotope sampling to explore the time‐variant nature of TTDs. Furthermore, it shows that the time of sampling in a diurnal cycle may have crucial significance for interpreting stream isotope signatures, particularly δ2H. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Rapidly transforming headwater catchments in the humid tropics provide important resources for drinking water, irrigation, hydropower, and ecosystem connectivity. However, such resources for downstream use remain unstudied. To improve understanding of the behaviour and influence of pristine rainforests on water and tracer fluxes, we adapted the relatively parsimonious, spatially distributed tracer‐aided rainfall–runoff (STARR) model using event‐based stable isotope data for the 3.2‐km2 San Lorencito catchment in Costa Rica. STARR was used to simulate rainforest interception of water and stable isotopes, which showed a significant isotopic enrichment in throughfall compared with gross rainfall. Acceptable concurrent simulations of discharge (Kling–Gupta efficiency [KGE] ~0.8) and stable isotopes in stream water (KGE ~0.6) at high spatial (10 m) and temporal (hourly) resolution indicated a rapidly responding system. Around 90% of average annual streamflow (2,099 mm) was composed of quick, near‐surface runoff components, whereas only ~10% originated from groundwater in deeper layers. Simulated actual evapotranspiration (ET) from interception and soil storage were low (~420 mm/year) due to high relative humidity (average 96%) and cloud cover limiting radiation inputs. Modelling suggested a highly variable groundwater storage (~10 to 500 mm) in this steep, fractured volcanic catchment that sustains dry season baseflows. This groundwater is concentrated in riparian areas as an alluvial–colluvial aquifer connected to the stream. This was supported by rainfall–runoff isotope simulations, showing a “flashy” stream response to rainfall with only a moderate damping effect and a constant isotope signature from deeper groundwater (~400‐mm additional mixing volume) during baseflow. The work serves as a first attempt to apply a spatially distributed tracer‐aided model to a tropical rainforest environment exploring the hydrological functioning of a steep, fractured‐volcanic catchment. We also highlight limitations and propose a roadmap for future data collection and spatially distributed tracer‐aided model development in tropical headwater catchments.  相似文献   

14.
Summary: In Hungary a large proportion of the drinking-water demand is met by bank filtration. Especially the middle section of the Danube stretch is used for drinking-water supply, also for the capital Budapest (310 · 106 m3/a). The considerable pollutant load imported, anyhow, is increased by several Hungarian sources of contamination. The Danube has such a high self purifying capacity that, among other things, the annual COD-Mn load by the city of Budapest amounting to 140,000 t is degraded to such a level that the export of organic pollutants in the Danube from Hungary is not greater than the import. Heavy metals get into the bank filtrate through organic complexing agents. Also organochlorine compounds and their precursors were quantitatively determined. In Budapest water is treated with ozone, activated carbon and open high-rate filtration.  相似文献   

15.
The impact of landfill contaminated groundwater along a reach of a small stream adjacent to a municipal landfill was investigated using stable carbon isotopes as a tracer. Groundwater below the stream channel, groundwater seeping into the stream, groundwater from the stream banks and stream water were sampled and analysed for dissolved inorganic carbon (DIC) and the isotope ratio of DIC (δ13CDIC). Representative samples of groundwater seeping into the stream were collected using a device (a ‘seepage well’) specifically designed for collecting samples of groundwater seeping into shallow streams with soft sediments. The DIC and δ13CDIC of water samples ranged from 52 to 205 mg C/L and ?16·9 to +5·7‰ relative to VPDB standard, respectively. Groundwater from the stream bank adjacent to the landfill and some samples of groundwater below the stream channel and seepage into the stream showed evidence of δ13C enriched DIC (δ13CDIC = ?2·3 to +5·7‰), which we attribute to landfill impact. Stream water and groundwater from the stream bank opposite the landfill did not show evidence of landfill carbon (δ13CDIC = ?10·0 to ?16·9‰). A simple mixing model using DIC and δ13CDIC showed that groundwater below the stream and groundwater seeping into the stream could be described as a mixture of groundwater with a landfill carbon signature and uncontaminated groundwater. This study suggests that the hyporheic zone at the stream–groundwater interface probably was impacted by landfill contaminated groundwater and may have significant ecological implications for this ecotone. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
Littlefield Springs discharge about 1.6 m3/s along a 10‐km reach of the Virgin River in northwestern Arizona. Understanding their source is important for salinity control in the Colorado River Basin. Environmental tracers suggest that Littlefield Springs are a mixture of older groundwater from the regional Great Basin carbonate aquifer and modern (post‐1950s) seepage from the Virgin River. While corrected 14C apparent ages range from 1 to 9 ka, large amounts of nucleogenic 4He and low 3He/4He ratios suggest that the carbonate aquifer component is likely even older Pleistocene recharge. Modeled infiltration of precipitation, hydrogeologic cross sections, and hydraulic gradients all indicate recharge to the carbonate aquifer likely occurs in the Clover and Bull Valley Mountains along the northern part of the watershed, rather than in the nearby Virgin Mountains. This high‐altitude recharge is supported by relatively cool noble‐gas recharge temperatures and isotopically depleted δ2H and δ18O. Excess (crustal) SF6 and 4He precluded dating of the modern component of water from Littlefield Springs using SF6 and 3H/3He methods. Assuming a lumped‐parameter model with a binary mixture of two piston‐flow components, Cl?/Br?, Cl?/F?, δ2H, and CFCs indicate the mixture is about 60% Virgin River water and 40% groundwater from the carbonate aquifer, with an approximately 30‐year groundwater travel time for Virgin River seepage to re‐emerge at Littlefield Springs. This suggests that removal of high‐salinity sources upstream of the Virgin River Gorge would reduce the salinity of water discharging from Littlefield Springs into the Virgin River within a few decades.  相似文献   

17.
Abstract

Groundwater of the Tertiary-Quaternary Formations in the Jeloula basin (Central Tunisia), together with rain and surface waters, were analysed to investigate the mineralization processes, the origin of the water and its recharge sources. The water samples present a large spatial variability of chemical facies which is related to their interaction with the geological formations. The main sources of the water mineralization are the dissolution of evaporitic and carbonate minerals and cation exchange reactions. Stable isotopes indicate that most groundwater samples originate from infiltration of modern precipitation. Surface water samples from small dam reservoirs show a 18O/2H enrichment, which is typical of water exposed to open-surface evaporation in a semi-arid region. Considerable data of 3H and 14C allow the qualitative identification of the present-day recharge that is probably supplied by infiltration of recent flood waters in the Wadi El Hamra valley, and by direct infiltration of meteoric water through the local carbonate outcrops.

Editor D. Koutsoyiannis; Associate editor S. Faye  相似文献   

18.
Recharge areas of the Guarani Aquifer System (GAS) are particularly sensitive and vulnerable to climate variability; therefore, the understanding of infiltration mechanisms for aquifer recharge and surface run‐off generation represent a relevant issue for water resources management in the southeastern portion of the Brazilian territory, particularly in the Jacaré‐Pepira River watershed. The main purpose of this study is to understand the interactions between precipitation, surface water, and groundwater using stable isotopes during the strong 2014–2016 El Niño Southern Oscillation event. The large variation in the isotopic composition of precipitation (from ?9.26‰ to +0.02‰ for δ18O and from ?63.3‰ to +17.6‰ for δ2H), mainly associated with regional climatic features, was not reflected in the isotopic composition of surface water (from ?7.84‰ to ?5.83‰ for δ18O and from ?49.7‰ to +33.6‰ for δ2H), mainly due to the monthly sampling frequency, and groundwater (from ?7.04‰ to ?7.76‰ for δ18O and from ?49.5‰ to ?44.7‰ for δ2H), which exhibited less variation throughout the year. However, variations in deuterium excess (d‐excess) in groundwater and surface water suggest the occurrence of strong secondary evaporation during the infiltration process, corresponding with groundwater level recovery. Similar isotopic composition in groundwater and surface water, as well as the same temporal variations in d‐excess and line‐conditioned excess denote the strong connectivity between these two reservoirs during baseflow recession periods. Isotopic mass balance modelling and hydrograph separation estimate that the groundwater contribution varied between 70% and 80%, however, during peak flows, the isotopic mass balance tends to overestimate the groundwater contribution when compared with the other hydrograph separation methods. Our findings indicate that the application of isotopic mass balance methods for ungauged rivers draining large groundwater reservoirs, such as the GAS outcrop, could provide a powerful tool for hydrological studies in the future, helping in the identification of flow contributions to river discharge draining these areas.  相似文献   

19.
Abstract

Water balance studies with stable water isotopes have rarely been conducted in remote and tropical wetland areas. As such, little is known regarding the water balance and groundwater–surface water interaction in the Pantanal, one of the largest and most pristine wetlands in the world. We applied MINA TrêS, a water balance model utilizing stable water isotopes (δ18O, δ2H) and chloride (Cl-) to assess the dry-season hydrological processes controlling groundwater–surface water interactions and the water balance of six floodplain lakes in the northern Pantanal, Brazil. Qualitatively, all lakes exhibited similarity in hydrological controls. Quantitatively, they differed significantly due to morphological differences in controlling groundwater inflow and lake volume. Our approach is readily transferable to other remote and tropical wetland systems with minimal data input requirements, which is useful in regions with sparse hydrometric monitoring.
Editor Z.W. Kundzewicz  相似文献   

20.
Monitoring of stable water isotopes (δ18O and δ2H) at the watershed scales can improve our understanding of complex hydrology and hydroclimatology of the watershed, especially in remote regions. Previous studies that used tracers for hydrograph separation are largely based on end‐member mixing approach (EMMA), but one drawback of this approach is that at least two independent tracers are required for multi‐component separation. Here we introduce a new approach—path analysis, in combination with isotopic measurements to investigate the runoff generation in a glacier‐covered alpine catchment (upper Hailuogou Valley) in southwest China. This newly developed method can not only provide a multi‐component hydrograph separation with the aid of only one tracer but also determine the direct and indirect influence of sources on streamflow. Path analysis show that the majority of streamflow is dominated by ice/snow meltwater that represents about 63–78% of the total discharge, whereas precipitation and groundwater contribute approximately 19–39% and 2–4% of the streamflow discharge, respectively. These results are in good agreement with those derived from EMMA (using 18O and Cl? as tracers), corroborating that our proposed approach is successful in hydrograph separation of the catchment. This approach may provide new opportunities for the hydrograph separation of catchment with sparse data and be of interest to catchment hydrologists who seek to understand the behaviour of hydrologic systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号