首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ozonation is a treatment step which was first applied in the 1960s in pool water treatment for disinfection as well as for oxidation of pool water contaminants. Contact time between ozone and pool water was identified to be of significance with an increased elimination efficiency regarding chloramines, trihalogenmethane formation potential and the permanganate index for longer reaction times. Oxidation via OH radicals might be the dominating pathway. In this study ozonation was compared with the ozone based advanced oxidation processes ozone/UV and ozone/hydrogen peroxide regarding the elimination efficiency of both disinfection by‐products (DBPs) and DBP precursors. It was observed that AOPs in comparison to ozonation showed an increased elimination efficiency regarding total organic carbon (TOC), the organically bound halogens adsorbable on activated carbon (AOX) and AOX formation potential. A contact time of 3 minutes between pool water and oxidant turned out to be practically sufficient. Just for the trihalomethane (THM) formation potential ozonation showed a slight advantage compared to the AOPs because ozonation is a highly selective oxidant and OH radical reactions are known to produce small reactive molecules which are easier transformed to THMs. Combination of membrane filtration and AOPs resulted in an elimination of 10 to 90 % of the DBPs and their precursors. The ozone/hydrogen peroxide process is suggested for pool water treatment because of the higher elimination rates compared to ozonation and of economic reasons compared to the ozone/UV process.  相似文献   

2.
This paper deals with the removal of textile dyes from aqueous solutions by poly(propylene imine) dendrimer (PPI). Direct red 80 (DR80), Acid Green 25 (AG25), Acid Blue 7 (AB7), and Direct Red 23 (DR23) were used as model dyes. The effects of operational parameters on dye removal such as dendrimer concentration, dye concentration, salt (inorganic anions), and pH have been studied at 25°C. The Langmuir and Freundlich isotherm models were investigated. In addition, dye desorption of dendrimer was studied. The results indicated that acidic pH supported the adsorption of dyes by dendrimer. Furthermore studies of dye concentration and salt effects exhibited that dye removal percentage by dendrimer was decreased. It was found that the isotherm data of DR80, AG25, and DR23 followed Langmuir isotherm and isotherm data of AB7 followed Freundlich isotherm models. Desorption tests showed that maximum dye releasing of 76.5% for DR80, 84.5% for AG25, 87% for AB7, and 93% for DR23 were achieved in aqueous solution at pH 12. Based on the data of present study, one could conclude that the dendrimer being an environmentally friendly adsorbent with relatively large adsorption capacity might be a suitable alternative for elimination of dyes from colored textile wastewater.  相似文献   

3.
The removal of three basic dyes by adsorption onto bentonite was investigated for single, binary, and ternary solutions in a batch system. Before and after dye adsorption, bentonite samples were analyzed by using X‐ray fluorescence spectrometer, SEM, and Fourier transform IR spectrometry. The D‐optimal design and response surface methodology were applied in designing the experiments for evaluating the interactive effects of each initial concentrations variable of the dyes in binary systems. Predicted values were found to be in good agreement with experimental values, which defined propriety of the model and the achievement of D‐optimal in optimization of adsorption of binary dye systems. The competitive adsorption results showed that the adsorption amount of a dye was suppressed in the presence and increasing concentrations of second or third dye. For mono‐component isotherm modeling, Langmuir and Freundlich models were applied to equilibrium data of single, binary, and ternary dye solutions, while modified Langmuir, Sheindrof–Rebhun–Sheintuch and modified extended Freundlich models were also applied to equilibrium data of binary dye solutions for multi‐component isotherm modeling. The results showed that the Langmuir was the more suitable model for single dye systems while extended Freundlich model fitted best to the experimental data with the lowest error values for multi‐dye systems.  相似文献   

4.
This study investigates structural and adsorption properties of the powdered waste shells of Rapana gastropod and their use as a new cheap adsorbent to remove reactive dye Brilliant Red HE‐3B from aqueous solutions under batch conditions. For the powder shells characterization, solubility tests in acidic solutions and X‐ray diffraction (XRD), scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy (EDX), Fourier transform IR spectroscopy (FT‐IR) and thermogravimetric analyses were performed. The results revealed that the adsorbent surface is heterogeneous consisting mainly from calcium carbonate layers (either calcite or aragonite) and a small amount of organic macromolecules (proteins and polysaccharides). The dye adsorptive potential of gastropod shells powder was evaluated as function of initial solution pH (1–5), adsorbent dose (6–40 g L?1), dye concentration (50–300 mg L?1), temperature (5–60°C), and contact time (0–24 h). It was observed that the maximum values of dye percentage removal were obtained at the initial pH of solution 1.2, shells dose of 40 g L?1, dye initial concentration of 50–50 mg L?1 and higher temperatures; the equilibrium time decreases with increasing of dye concentration. It is proved that the waste seashell powder can be used as low cost bioinorganic adsorbent for dyes removal from textile wastewaters.  相似文献   

5.
Purification of Wastewaters Containing Azo Dyes This study describes the degradability of the azo dye C.I. Reactive Violet 5 by a continuous flow biological treatment system consisting of three rotating disc reactors. The azo dye was first decolorized in an anaerobic reactor. Decolorization was improved by adding an auxiliary substrate (yeast extract and acetic acid). Although severe operating conditions were experienced due to failures in the temperature and pH-controllers, the reactor recovered quickly and continued to decolorize reliably. The removal of the auxiliary substrate in the anaerobic reactor was not satisfactory, probably due to the copper in the azo dye. Batch experiments showed that copper was removed from the dye molecule and precipitated during the decolorization. In the continuous flow reactor, the copper precipitate on the disc can redissolve due to a pH-gradient in the fixed biomass becoming toxic again for the bacteria. In the following two aerobic reactors, the auxiliary substrate was degraded, but mineralization of the dye metabolites was insufficient. The aromatic amines produced by the anaerobic decolorization are more toxic in the bacterial luminescence test than the azo dye. Therefore, decolorization alone cannot be used to treat colored wastewater. Since the amines can also be produced in anaerobic parts of rivers, the dyes have to be removed in a more efficient way. That is the reason why in further experiments ozonation is being tested to increase the biological degradability of the azo dye for a following aerobic stage. Either ozonation can be used after the two stage treatment of the dye in anaerobic/aerobic reactors or the dye can be oxidized directly, making the addition of auxiliary substrate unnecessary. These configurations are being tested with the goal to degrade the dye with the least ozone consumption.  相似文献   

6.
Textile wastewater contains huge quantities of nitrogen (N)‐containing azo‐dyes. Irrigation of crops with such wastewater adds toxic dyes into our healthy soils. One of the ways to prevent their entry to soils could be these waters after the dyes' biodegradation. Therefore, the present study was conducted to evaluate the impact of textile dyes on wheat growth, dye degradation efficiency of bacteria‐fungi consortium, and alleviation of dye toxicity in wheat by treatment with microbial consortium. Among dyes, Red‐S3B (3.19% N) was found to be the most toxic to germination and growth of seven‐day‐old wheat seedlings. Shewanella sp. NIAB‐BM15 and Aspergillus terreus NIAB‐FM10 were found to be efficient degraders of Red‐S3B. Their consortium completely decolorized 500 mg L?1 Red‐S3B within 4 h. Irrigation with Red‐S3B‐contaminated water after treatment with developed consortium increased root length, shoot length, root biomass, and shoot biomass of 30‐day‐old wheat seedlings by 47, 18, 6, and 25%, respectively, than untreated water. Moreover, irrigation after microbial treatment of dye‐contaminated water resulted in 20 and 51% increase in shoot N content and N uptake, respectively, than untreated water. Thus, co‐inoculation of bacteria and fungi could be a useful bioremediation strategy for the treatment of azo‐dye‐polluted water.  相似文献   

7.
Ecological Significance of Endocrine Disruption in Marine Invertebrates   总被引:12,自引:0,他引:12  
Anthropogenic chemicals which can disrupt the hormonal (endocrine) systems of wildlife species are currently a major cause for concern. Reproductive hormone-receptor systems appear to be especially vulnerable. In the past few years, numerous effects of endocrine disrupting chemicals on wildlife have emerged including changes in the sex of riverine fish, reproductive failure in birds and abnormalities in the reproductive organs of alligators and polar bears. Much less is known regarding endocrine disruption in marine invertebrates, the key structural and functional components of marine ecosystems.

In this paper, potential effects of different classes of endocrine disrupting chemicals are reviewed. The endocrinology of several major invertebrate groups is briefly examined to identify which phyla are most likely to be at risk. Gaps in our knowledge concerning the availability and uptake of endocrine disruptors are identified. For example, the relative importance of different routes of chemical uptake (from seawater vs food) is considered. Feeding strategies (herbivores, carnivores, deposit feeders, suspension feeders) in relation to uptake of endocrine disruptors are also discussed.

Examples of endocrine disruption in marine invertebrates in situ are provided, including imposex in gastropod molluscs exposed to organotin compounds and intersex in crustaceans exposed to sewage discharges. Laboratory data are presented concerning the effects of endocrine disruptors on the growth and reproductive output of the deposit feeding amphipod Corophium volutator and the polychaete worm Dinophilus gyrociliatus. Recent findings are reported which demonstrate reductions in settlement following exposure of barnacle larvae to the xeno-estrogen, 4 nonyl phenol. The potential use of cyprid major protein as a biomarker of oestrogenicity is explored. The ecological significance of endocrine disruption in marine invertebrates is discussed. With regard to environmental management action, an evidence-based approach is advocated. A protocol for collecting evidence of ecologically significant endocrine disruption is outlined.  相似文献   


8.
The mixtures of dried sewage sludge (DSS) and sewage sludge ash were studied for removal of acid red 119 (AR119) dye as a new, more environmental friendly, and low cost adsorbent. For this purpose, response surface methodology was applied to optimize the dye removal efficiency and turbidity of treated dye solutions as two individual responses. Results revealed that an optimum condition under specified constraints (dye removal efficiency >95% and turbidity <50 NTU) was obtained at a contact time of 60 min, 40 wt% DSS in the mixture, an initial pH of 6, and an initial dye concentration of 200 mg dye/L in distilled water. Under the optimal condition, dye removal efficiency of 94.98% and effluent turbidity of 24.9 NTU was observed. In further studies, at optimum condition, the effect of some additives on adsorption process and desorption/reusability of adsorbent was investigated. It was observed that removal efficiency was significantly decreased to 83.76% when a simulated dye wastewater (containing the selected dye, acetic acid, and Glauber's salt dissolved in tap water) was used. Desorption studies revealed that AR119 dye could be well removed from dye‐loaded adsorbent by 0.3 M NaOH solution.  相似文献   

9.
The sorption of reactive (textile) dyes onto cucurbituril, a cyclic polymer with hydrophobic cavity, was studied. Dye sorption is strongly enhanced by Ca2+ or Sr2+ concentrations up to 100 mmol/L for all studied dyes. Mg2+ and alkaline ions had similar effects for only one dye (Reactive Red 120), and only at higher concentrations. Concentrations above 100 mmol/L – depending on cation and dye – dissolve cucurbituril and prevent dye removal. As shown in previous studies by our group loadings obtained under suitable conditions (calcium concentration between 2 and 100 mmol/L, total salt concentration not exceeding 100 mmol/L) are 1 to 1.7 mol/mol or 0.9 to 1.8 g/g. The chemical mechanism responsible for the ionic influences is still under investigation. Generally, cucurbituril is a potent sorbent for reactive dyes. However, the technical application is still limited by the lack of a support material that would allow use in fixed bed filters.  相似文献   

10.
In this work, the treatment of photographic processing wastewaters (PPW) by electro‐Fenton process has been investigated. The Influence of operating conditions on kinetics and efficiency of electro‐Fenton process has been evaluated using carbon felt cathode and platinium (Pt) or boron‐doped diamond (BDD) anode. The results of electro‐Fenton treatment of PPW have shown that nearly complete removal of total phenols was obtained for all combinations with pseudo‐first rate constants of 0.07, 0.012, and 0.018/min for carbon felt/Pt, carbon felt/BDD and Pt/BDD cathode/anode combinations, respectively. The combination of carbon felt cathode with BDD anode achieved the highest total organic carbon (TOC) removal of 90%, while it did not exeed 40% for carbon felt/Pt combination. Increasing current intensity and Fe2+ dose enhances the efficiency of electro‐Fenton process. However, increasing pH decreases TOC removal during the treatment of PPW by electro‐Fenton process. The highest efficiency of electro‐Fenton process using BDD anode can be explained by the contribution of direct and indirect oxidation routes in the degradation mechanism of organics including (i) oxidation via hydroxyl radicals generated from the catalytic decomposition of H2O2 and from water discharge on BDD anode, (ii) direct oxidation of certain organic compounds on BDD anode, and (iii) mediated oxidation with inorganic oxidants electrogenerated from anodic oxidation of supporting salts.  相似文献   

11.
In Germany, the gasoline additive methyl tert‐butyl ether (MTBE) is almost constantly detected in measurable concentrations in surface waters and is not significantly removed during riverbank filtration. The removal of MTBE from water has been the focus of many studies that mostly were performed at high concentration levels and centred in understanding the mechanisms of elimination. In order to assess the performance of conventional and advanced water treatment technologies for MTBE removal in the low concentration range further studies were undertaken. Laboratory experiments included aeration, granulated activated carbon (GAC) adsorption, ozonation and advanced oxidation processes (AOP). The results show that the removal of MTBE by conventional technologies is not easily achieved. MTBE is only removed by aeration at high expense. Ozonation at neutral pH values did not prove to be effective in eliminating MTBE at all. The use of ozone/H2O2 (AOP) may lead to a partly elimination of MTBE. However, the ozone/H2O2 concentrations required for a complete removal of MTBE from natural waters is much higher than the ozone levels applied nowadays in waterworks. MTBE is only poorly adsorbed on activated carbon, thus GAC filtration is not efficient in eliminating MTBE. A comparison with real‐life data from German waterworks reveals that if MTBE is detected in the raw water it is most often found in the corresponding drinking water as well due to the poor removal efficiency of conventional treatment steps.  相似文献   

12.
13.
A novel, simple, fast, and efficient ionic liquid‐based dispersive liquid–liquid extraction (IL‐DLLE) has been applied to extract and remove Congo Red (CR; a carcinogenic textile dye) from aqueous solutions. In this methodology a binary solution, containing the extraction solvent (1‐hexyl‐3‐methylimmidazolium bis(trifluormethylsulfonyl) imid) and a suitable disperser solvent, was rapidly injected into the water sample containing CR dye. Therewith, a cloudy solution was formed, and most of the dye molecules were extracted into fine IL droplets and removed from aqueous phase. The effects of pH, type, and amount of IL, initial concentration of the dye, type and volume of the dispersant, and concentrations of salt on the extraction of the dye were studied. Experimental surveys were also accomplished for recovery of the IL by applying a reverse dispersive liquid–liquid extraction using acidic stripping solutions.  相似文献   

14.
The oxidation of organophosphorus pesticides (OPPs), such as malathion and parathion, in aqueous solution was studied using conventional ozonation (O3), photolytic ozonation (O3/UV, O3/UV/H2O2), and heterogeneous catalytic ozonation (O3/TiO2/UV) processes. Experiments were performed in batch mode at laboratory scale and processes were compared in terms of disappearance kinetics. The best results of pesticide mineralization were obtained when TiO2 particles in combination with ozone (O3) and UV photolysis (λ = 254 nm) were applied. Decomposition of 99% of parent compounds were achieved in 10 min and oxon derivatives were completely removed in 30 min. The initial reaction rate increases linearly with increasing catalyst amount. Toxicity measurements of the treated solutions were carried out in order to evaluate the efficiency of the treatment methods. No detoxification was achieved for O3 and O3/UV applications. Heterogeneous photocatalytic ozonation was shown to be feasible for achieving complete decomposition of OPPs and their oxon intermediates.  相似文献   

15.
In this study, various amounts of oxygen were added to the anaerobic phase of an anaerobic‐aerobic sequencing batch reactor (SBR) receiving azo dye remazol brilliant violet 5R to mimic the input of oxygen into the anaerobic zones of biological textile wastewater treatment plants. The effect of oxygen on the anaerobic biodegradative capability of the mixed microbial culture for remazol brilliant violet 5R was investigated. To investigate the effect of oxygen on anaerobic azo dye biodegradation, the anaerobic phase of the SBR cultures were exposed to a very low limited amount of oxygen for various air flow rates. Initially, an air flow rate of 20 mL/min was applied, further on the air flow rate in the anaerobic phase was increased up to 40 mL/min. System performance was determined by monitoring chemical oxygen demand, color removal rate, activities of anaerobic (azo reductase) and aerobic enzymes (catechol 2,3‐dioxygenase, catechol 1,2‐dioxygenase). The results of percentage COD reduction at each stage were similar for all runs, giving an overall reduction of 96%. Anaerobic color removal efficiency and azo reductase activity of anaerobic microorganisms were adversely affected by the addition of oxygen. Color removal efficiencies of the anaerobic phases decreased from 80% down to 42 and 38% for the limited oxygen conditions of 20 mL/min and 40 mL/min, respectively. It was observed that the activity of catechol 2,3‐dioxygenase and catechol 1,2‐dioxygenase, involved in breakage of aromatic rings, increased after they are exposed to oxygen limited conditions compared to fully anaerobic conditions. It was also observed that catechol 1,2‐dioxygenase enzyme activity increased by increasing the oxygen level on oxygen limited conditions in the anaerobic zone.  相似文献   

16.
This study focused on the electrochemical degradation of hydrolyzed Remazol Black B (CI Reactive Black 5), a common diazo reactive dye, in aqueous solution. In the presence of various auxiliary dye chemicals, a typical Remazol Black simulated exhausted dyebath liquor was treated electrochemically in various basic electrochemical reactor configurations such as batch, batch recirculation and single pass systems. The effect of current density, supporting electrolyte concentration, electrolysis duration, specific electrode surface and fluid flow rate on pollutant removal and energy consumption performance of the systems was critically evaluated. Batch studies show the following operating parameters, current density: 2.5 A/dm2, electrolysis duration: 6 h, and supporting electrolyte concentration: 3 g/L, were optimal for good overall performance of the system. Color removal was complete by 3 h of treatment for all combinations of parameters studied. The pollutant removal performance of the batch recirculation system was found to have improved considerably by increasing the flow rate. Performance of the batch recirculation system was comparatively better than the other rector configurations studied, with respect to capacity utilization and energy consumption.  相似文献   

17.
Treatment of aromatic ring compounds, 2,4-dichlorophenoxy acetic acid (2,4-D), 2,4,5-trichloro-phenoxy acetic acid (2,4,5-T), and bisphenol A, in the artificial seawater, i.e. Allen seawater, was carried out by ozonation and titanium dioxide (TiO2) photocatalyst treatment. Each compound was degraded and varnished within 30 min by only ozonolysis at pH 9.0 and at 20 degrees C, while the TOC value of each compound decreased gradually but reached almost constant value, i.e. about 70-80% of the initial value, at even 30 min of ozonation time. Ozonolysis (30 min of ozonation time) followed by TiO2 photocatalyst treatment (50h of reaction time) was a very effective method for decreasing the TOC values of aromatic ring compounds in the artificial seawater. In consequence, TOC values of 2,4-D, 2,4,5-T, and bisphenol A could be reduced to about 28, 21, and 34% of their initial values, respectively.  相似文献   

18.
Acid violet 19 (AV) belongs to the triphenylmethane (TPM) class of dyes which are potentially mutagenic or carcinogenic. However, very little studies on biodegradation of AV were reported as compared to other TPM dyes such as malachite green and crystal violet. In this study, AV was decolorized up to 98% within 30 min by Pseudomonas aeruginosa BCH. The decolorization depends on the initial dye concentration, pH, and temperature. However, the dye was decolorized under wide pH and temperature ranges with an optimum of pH 7 and 30°C. Up to 250 mg L?1 of dye was found to be tolerated and decolorized by this strain. It showed decolorization ability for seven repeated dye addition cycles. The effect of additional carbon sources on dye decolorization was studied in which mannitol containing medium showed decolorization in 15 min. Induction in the enzyme activities of laccase, NADH‐DCIP reductase, and veratryl alcohol oxidase (VAO) indicates their involvement in AV degradation. Various analytical studies viz. UV–VIS, HPTLC, HPLC, and FTIR confirmed the biodegradation of AV by the bacterium. Based on GC‐MS analysis, a possible degradation pathway for AV was proposed. The phytotoxicity studies using Phaseolus mungo and Sorghum vulgare revealed the less toxic nature of metabolites formed after AV degradation.  相似文献   

19.
Degradations of reactive brilliant red X‐3B solution by both conventional UV irradiation and microwave electrodeless UV irradiation were investigated. Degradation processes were studied by UV–VIS spectrophotometry, total organic carbon (TOC), high performance capillary electrophoresis (HPCE), conductivity, pH value, and ion chromatography. The results of color removal (%) and TOC removal (%) showed that the degradation by microwave electrodeless UV irradiation was more effective than by conventional UV irradiation. The results of UV–VIS absorption spectra and HPCE analyses indicated that the degradation of reactive brilliant red X‐3B was occurred at the conjugation system first, the benzene ring and the naphthalene ring later. The reactive brilliant red X‐3B was cleaved into some new small compounds and eventually most of the organic substances were mineralized to CO2 and H2O. The results of the conductivity analysis suggested that the degradation has mainly occurred in the first 40 min of reaction. The pH value of reactive brilliant red X‐3B solution was decreased first and then was increased. The results of inorganic anions analysis hinted that many of the N, Cl, and S elements from reactive brilliant red X‐3B were still attached in organic molecules.  相似文献   

20.
Given the issue of lipids in effluent treatment systems and their negative impact on the environment, this study aimed to examine lipid degradation by homogenous catalytic ozonation with the aid of iron and manganese ions. This technology presents the possibility of completely mineralizing pollutants using hydroxyl radicals. Milk is chosen as the lipid source because of the high concentration of triglycerides in its matrix, this kind of lipid being the one found most frequently in food and, consequently, in effluent treatment systems. The milk pH value is controlled, and acidic, neutral, and basic conditions are evaluated. The rates of pseudo‐first‐order reactions and the effective value are estimated. It is shown that under acidic conditions low catalyst dosages are enough to cause the complete degradation of lipids. Under neutral conditions, a similar behavior is observed. Under basic conditions, higher catalyst dosages give higher reaction rates. The order of effectiveness of the catalysts under acidic and basic conditions is Fe2+ > Mn2+, with Mn2+ > Fe2+ under neutral conditions. Homogeneous catalytic ozonation is therefore efficient at lipid degradation. This technique is viable economically, since the lipid removal occurred at low ozone levels. In addition, the ions used as catalysts are naturally abundant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号