首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 116 毫秒
1.
Implementation of aquifer storage recovery (ASR) for water resource management in Florida is impeded by arsenic mobilization. Arsenic, released by pyrite oxidation during the recharge phase, sometimes results in groundwater concentrations that exceed the 10 µg/L criterion defined in the Safe Drinking Water Act. ASR was proposed as a major storage component for the Comprehensive Everglades Restoration Plan (CERP), in which excess surface water is stored during the wet season, and then distributed during the dry season for ecosystem restoration. To evaluate ASR system performance for CERP goals, three cycle tests were conducted, with extensive water‐quality monitoring in the Upper Floridan Aquifer (UFA) at the Kissimmee River ASR (KRASR) pilot system. During each cycle test, redox evolution from sub‐oxic to sulfate‐reducing conditions occurs in the UFA storage zone, as indicated by decreasing Fe2+/H2S mass ratios. Arsenic, released by pyrite oxidation during recharge, is sequestered during storage and recovery by co‐precipitation with iron sulfide. Mineral saturation indices indicate that amorphous iron oxide (a sorption surface for arsenic) is stable only during oxic and sub‐oxic conditions of the recharge phase, but iron sulfide (which co‐precipitates arsenic) is stable during the sulfate‐reducing conditions of the storage and recovery phases. Resultant arsenic concentrations in recovered water are below the 10 µg/L regulatory criterion during cycle tests 2 and 3. The arsenic sequestration process is appropriate for other ASR systems that recharge treated surface water into a sulfate‐reducing aquifer.  相似文献   

2.
Arsenic in glacial aquifers: sources and geochemical controls   总被引:1,自引:0,他引:1  
A total of 176 wells in sand-and-gravel glacial aquifers in central Illinois were sampled for arsenic (As) and other chemical parameters. The results were combined with archived and published data from several hundred well samples to determine potential sources of As and the potential geochemical controls on its solubility and mobility. There was considerable spatial variability in the As concentrations. High concentrations were confined to areas smaller than 1 km in diameter. Arsenic and well depth were uncorrelated. Arsenic solubility appeared to be controlled by oxidation-reduction (redox) conditions, especially the presence of organic matter. Geochemical conditions in the aquifers are typically reducing, but only in the most reducing water does As accumulate in solution. In wells in which total organic carbon (TOC) was below 2 mg/L and sulfate (SO4(2-)) was present, As concentrations were low or below the detection limit (0.5 microg/L). Arsenic concentrations >10 microg/L were almost always found in wells where TOC was >2 mg/L and SO4(2-) was absent or at low concentrations, indicating post-SO4 (2-)reducing conditions. Iron (Fe) is common in the aquifer sediments, and Fe oxide reduction appears to be occurring throughout the aquifers. Arsenic is likely released from the solid phase as Fe oxide is reduced.  相似文献   

3.
Assessment and Modification of Arsenic Mobility in Contaminated Soil Arsenic concentration in the seepage of contaminated soils of an old tannery site is assessed using batch and column experiments. The effect of reducing conditions, pH, and ionic strength is also investigated. The iron oxide rich subsoil (C‐horizon) is the main source of groundwater pollution with arsenic. In this horizon, mobilization can increase as a result of reducing conditions upon periodical water saturation. Therefore, the potentially mobile arsenic is determined by a reductive dissolution of the poorly crystalline iron oxide fraction using 0.1 M ascorbic acid. Arsenic concentration can be reduced from 100 μg/L to below 20 μg/L by an increase of ionic strength (e.g. by a 0.01 M CaCl2 solution). Arsenic contaminated soils should be limed regularly in order to maintain the highest possible calcium concentration in the soil solution.  相似文献   

4.
Arsenic in groundwater is a serious problem in New England, particularly for domestic well owners drawing water from bedrock aquifers. The overlying glacial aquifer generally has waters with low arsenic concentrations but is less used because of frequent loss of well water during dry periods and the vulnerability to surface‐sourced bacterial contamination. An alternative, novel design for shallow wells in glacial aquifers is intended to draw water primarily from unconsolidated glacial deposits, while being resistant to drought conditions and surface contamination. Its use could greatly reduce exposure to arsenic through drinking water for domestic use. Hypothetical numerical models were used to investigate the potential hydraulic performance of the new well design in reducing arsenic exposure. The aquifer system was divided into two parts, an upper section representing the glacial sediments and a lower section representing the bedrock. The location of the well, recharge conditions, and hydraulic properties were systematically varied in a series of simulations and the potential for arsenic contamination was quantified by analyzing groundwater flow paths to the well. The greatest risk of arsenic contamination occurred when the hydraulic conductivity of the bedrock aquifer was high, or where there was upward flow from the bedrock aquifer because of the position of the well in the flow system.  相似文献   

5.
Arsenic concentrations exceeding the U.S. EPA's 10 μg/L standard are common in glacial aquifers in the midwestern United States. Previous studies have indicated that arsenic occurs naturally in these aquifers in association with metal-(hydr)oxides and is released to groundwater under reducing conditions generated by microbial oxidation of organic matter. Despite this delineation of the arsenic source and mechanism of arsenic mobilization, identification of arsenic-impacted aquifers is hindered by the heterogeneous and discontinuous nature of glacial sediments. In much of the Midwest, the hydrostratigraphy of glacial deposits is not sufficiently characterized to predict where elevated arsenic concentrations are likely to occur. This case study from southeast Wisconsin presents a detailed characterization of local stratigraphy, hydrostratigraphy, and geochemistry of the Pleistocene glacial deposits and underlying Silurian dolomite. Analyses of a single core, water chemistry data, and well construction reports enabled identification of two aquifers separated by an organic-rich aquitard. The upper, unconfined aquifer provides potable water, whereas arsenic generally exceeds 10 μg/L in the deeper aquifer. Although coring and detailed hydrostratigraphic characterization are often considered impractical, our results demonstrate that a single core improved interpretation of the complex lithology and hydrostratigraphy. This detailed characterization of hydrostratigraphy facilitated development of well construction guidelines and lays the ground work for further studies of the complex interactions among aquifer sediments, hydrogeology, water chemistry, and microbiology that lead to elevated arsenic in groundwater.  相似文献   

6.
Monitored natural attenuation is widely applied as a remediation strategy at hydrocarbon spill sites. Natural attenuation relies on biodegradation of hydrocarbons coupled with reduction of electron acceptors, including solid phase ferric iron (Fe(III)). Because arsenic (As) adsorbs to Fe‐hydroxides, a potential secondary effect of natural attenuation of hydrocarbons coupled with Fe(III) reduction is a release of naturally occurring As to groundwater. At a crude‐oil‐contaminated aquifer near Bemidji, Minnesota, anaerobic biodegradation of hydrocarbons coupled to Fe(III) reduction has been well documented. We collected groundwater samples at the site annually from 2009 to 2013 to examine if As is released to groundwater and, if so, to document relationships between As and Fe inside and outside of the dissolved hydrocarbon plume. Arsenic concentrations in groundwater in the plume reached 230 µg/L, whereas groundwater outside the plume contained less than 5 µg/L As. Combined with previous data from the Bemidji site, our results suggest that (1) naturally occurring As is associated with Fe‐hydroxides present in the glacially derived aquifer sediments; (2) introduction of hydrocarbons results in reduction of Fe‐hydroxides, releasing As and Fe to groundwater; (3) at the leading edge of the plume, As and Fe are removed from groundwater and retained on sediments; and (4) downgradient from the plume, patterns of As and Fe in groundwater are similar to background. We develop a conceptual model of secondary As release due to natural attenuation of hydrocarbons that can be applied to other sites where an influx of biodegradable organic carbon promotes Fe(III) reduction.  相似文献   

7.
Groundwater in the Bengal Basin is badly polluted by arsenic (As) which adversely affects human health. To provide low‐As groundwater for As mitigation, it was sought across 235 km2 of central West Bengal, in the western part of the basin. By drilling 76 boreholes and chemical analysis of 535 water wells, groundwater with <10 µg/L As in shallow aquifers was found under one‐third of a study area. The groundwater is in late Pleistocene palaeo‐interfluvial aquifers of weathered brown sand that are capped by a palaeosol of red clay. The aquifers form two N‐S trending lineaments that are bounded on the east by an As‐polluted deep palaeo‐channel aquifer and separated by a shallower palaeo‐channel aquifer. The depth to the top of the palaeo‐interfluvial aquifers is mostly between 35 and 38 m below ground level (mbgl). The palaeo‐interfluvial aquifers are overlain by shallow palaeo‐channel aquifers of gray sand in which groundwater is usually As‐polluted. The palaeosol now protects the palaeo‐interfluvial aquifers from downward migration of As‐polluted groundwater in overlying shallow palaeo‐channel aquifers. The depth to the palaeo‐interfluvial aquifers of 35 to 38 mbgl makes the cost of their exploitation affordable to most of the rural poor of West Bengal, who can install a well cheaply to depths up to 60 mbgl. The protection against pollution afforded by the palaeosol means that the palaeo‐interfluvial aquifers will provide a long‐term source of low‐As groundwater to mitigate As pollution of groundwater in the shallower, heavily used, palaeo‐channel aquifers. This option for mitigation is cheap to employ and instantly available.  相似文献   

8.
The study area is located on the western part of the alluvium‐filled gap between the Rajmahal hills on the west and the Garo hills on the east. Groundwater occurs under unconfined condition in a thick zone of saturation within the Quaternary alluvial sediments. Three hydrochemical facies with distinct characteristics have been identified which are dominated in general by alkaline earths and weak acids. The major‐ion chemistry of the area is controlled by weathering of silicate minerals, rainfall recharge, ion‐exchange processes and anthropogenic activities such as irrigation return flow and the application of inorganic fertilizers and pesticides. A stoichiometric approach suggests that mineral dissolution and anthropogenic activities contribute 79% and 21% of the total cations dissolved in groundwater. Principal component analysis (PCA) of 42 groundwater samples using 13 chemical parameters indicates that the combined processes of recharge of groundwater from rainfall, sediment water interaction, groundwater flow, infiltration of irrigation return water (which is arsenic rich due to the use of arsenic‐bearing pesticides, wood preservatives, etc. and the pumping of arsenic‐rich groundwater for agriculture purpose), oxidation of natural or anthropogenic organic matter and the reductive dissolution of ferric iron and manganese oxides play a key role in the evolution of groundwater in the study area. Factor 2 scores, associated with the infiltration of irrigation return water and spatial distribution of arsenic concentration reveal that the groundwater of the municipal area will not be affected by arsenic in the future in spite of heavy groundwater abstraction. Another PCA with geologic, geomorphic, anthropogenic, geochemical and landuse factors indicates that arsenic concentration in groundwater increases with increasing area of mango orchards, sand lithofacies and nitrate and decreases with increasing distance of paleochannel from the monitored well and depth of bore wells. High loading on nitrate may be attributed to the use of fertilizer, pesticides, etc. in mango orchards and agricultural land. High loadings on log pCO2, mango orchards (with negative sign) and phosphate (with positive sign) indicate that mango orchards provide the organic waste material which is decomposed to form organic carbon. The organic carbon undergoes oxidative carbon degeneration by different oxidants and increases the concentration of CO2 in the aquifer. The reducing condition thus developed in the aquifer helps to dissolve the arsenic adsorbed on iron hydroxide or oxy‐hydroxide coated margins of sand, iron rich heavy mineral grain margins, clay minerals and Fe–Mn concretions present in the aquifer matrix. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Toxic and carcinogenic effects of arsenic in drinking water continue to impact people throughout the world and arsenic remains common in groundwater at cleanup sites and in areas with natural sources. Advances in groundwater remediation are needed to attain the low concentrations that are protective of human health and the environment. In this article, we present the successful use of a permeable reactive barrier (PRB) utilizing sulfate reduction coupled with zero‐valent iron (ZVI) to remediate the leading edge of a dissolved arsenic plume in a wetland area near Tacoma, Washington. A commercially available product (EHC‐M®, Adventus Americas Inc., Freeport, Illinois) that contains ZVI, organic carbon substrate, and sulfate was injected into a reducing, low‐seepage‐velocity aquifer elevated in dissolved arsenic and iron from a nearby, slag‐containing landfill. Removal effectiveness was strongly correlated with sulfate concentration, and was coincident with temporary redox potential (Eh) reductions, consistent with arsenic removal by iron sulfide precipitation. The PRB demonstrates that induced sulfate reduction and ZVI are capable of attaining a regulatory limit of 5 µg/L total arsenic, capturing of 97% of the arsenic entering the PRB, and sustaining decreased arsenic concentrations for approximately 2 years, suggesting that the technology is appropriate for consideration at other sites with similar hydrogeochemical conditions. The results indicate the importance of delivery and longevity of minimum sulfate concentrations and of maintaining sufficient dissolved organic carbon and/or microscale ZVI to precipitate FeS, a precursor phase to arsenic‐bearing pyrite that may provide a stable, long‐term sink for arsenic.  相似文献   

10.
Arsenic in groundwater has been a concern in South and Southeast Asia for more than a decade. We explore here the possibility that hydrogeologic factors recently shown to influence the distribution of arsenic might also affect the level of contamination of shallow (<20 m) wells with microbial pathogens. A total of 96 shallow tube wells in two nearby villages of Bangladesh were surveyed during the wet and dry seasons, along with 55 deeper wells in neighboring villages. One of the two villages is located in a particularly sandy environment where recharge is rapid and shallow wells contain little arsenic. Shallow aquifers in the other village are capped with an impermeable clay layer, recharge is an order of magnitude slower, and arsenic levels are high. The fecal indicator E. coli was detected in 43% of shallow wells, compared with 12% of deeper wells. More shallow wells contained E. coli during the wet season (61%) than during the dry season (9%). In the wet season, a higher proportion of shallow wells in the village with low arsenic levels (72%) contained E. coli compared with the village having high arsenic levels (43%). Differences in arsenic and E. coli distributions between the two sites are likely due to the differences in permeability of near‐surface sediments although differences in average well‐depth between the two villages (9 ± 4 vs. 15 ± 3 m) may play a role as well. Hydrogeologic conditions that favor high levels of fecal contamination but low levels of arsenic in shallow groundwater should be taken into account during arsenic mitigation throughout South and Southeast Asia.  相似文献   

11.
Early diagenetic modification of magnetic properties is an important process in marine sediments, but temporal and spatial variability of diagenetic processes have rarely been reported for recent coastal sediments. The magnetic properties of sediments from the Ria de Vigo (NW Spain) define a marked three-part zonation with depth. The uppermost zone is magnetically dominated by (titano-)magnetite. In the intermediate zone, rapid down-core dissolution of (titano-)magnetite increases the relative influence of high-coercivity magnetic minerals, which react more slowly during reductive dissolution than (titano-)magnetite. This zone is characterized by the ubiquitous occurrence of framboidal iron sulphides. Pyrite is the dominant iron sulphide, but framboidal ferrimagnetic greigite is also frequently observed in association with pyrite. The lowermost zone is characterized by an almost complete depletion of magnetic minerals associated with progressive reduction of detrital iron oxides with depth. This zonation is controlled by organic matter diagenesis, which varies with water depth and wave-induced sediment resuspension and organic matter reoxidation in the water column. This leads to a shallowing and thinning of each zone with more intense reductive diagenesis toward the interior of the ria. Such a zonation seems to be a common feature in shallow water marine environments. If preserved, the described zonation and its spatial variability provide a potential tool for detecting estuarine-like environments in the geological record. Magnetic detection of current or past reductive conditions also has important implications for assessing paleoenvironmental proxies that are sensitive to diagenetic redox state.  相似文献   

12.
We evaluated sources and pathways of groundwater recharge for a heterogeneous alluvial aquifer beneath an agricultural field, based on multi‐level monitoring of hydrochemistry and environmental isotopes of a riverside groundwater system at Buyeo, Korea. Two distinct groundwater zones were identified with depth: (1) a shallow oxic groundwater zone, characterized by elevated concentrations of NO3? and (2) a deeper (>10–14 m from the ground surface) sub‐oxic groundwater zone with high concentrations of dissolved Fe, silica, and HCO3?, but little nitrate. The change of redox zones occurred at a depth where the aquifer sediments change from an upper sandy stratum to a silty stratum with mud caps. The δ18O and δ2H values of groundwater were also different between the two zones. Hydrochemical and δ18O? δ2H data of oxic groundwater are similar to those of soil water. This illustrates that recharge of oxic groundwater mainly occurs through direct infiltration of rain and irrigation water in the sandy soil area where vegetable cropping with abundant fertilizer use is predominant. Oxic groundwater is therefore severely contaminated by agrochemical pollutants such as nitrate. In contrast, deeper sub‐oxic groundwater contains only small amounts of dissolved oxygen (DO) and NO3?. The 3H contents and elevated silica concentrations in sub‐oxic groundwater indicate a somewhat longer mean residence time of groundwater within this part of the aquifer. Sub‐oxic groundwater was also characterized by higher δ18O and δ2H values and lower d‐excess values, indicating significant evaporation during recharge. We suggest that recharge of sub‐oxic groundwater occurs in the areas of paddy rice fields where standing irrigation and rain water are affected by strong evaporation, and that reducing conditions develop during subsequent sub‐surface infiltration. This study illustrates the existence of two groundwater bodies with different recharge processes within an alluvial aquifer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Local surface water and stormflow were infiltrated intermittently from a 40-ha basin between September 2003 and September 2007 to determine the feasibility of recharging alluvial aquifers pumped for public supply, near Stockton, California. Infiltration of water produced a pressure response that propagated through unconsolidated alluvial-fan deposits to 125 m below land surface (bls) in 5 d and through deeper, more consolidated alluvial deposits to 194 m bls in 25 d, resulting in increased water levels in nearby monitoring wells. The top of the saturated zone near the basin fluctuates seasonally from depths of about 15 to 20 m. Since the start of recharge, water infiltrated from the basin has reached depths as great as 165 m bls. On the basis of sulfur hexafluoride tracer test data, basin water moved downward through the saturated alluvial deposits until reaching more permeable zones about 110 m bls. Once reaching these permeable zones, water moved rapidly to nearby pumping wells at rates as high as 13 m/d. Flow to wells through highly permeable material was confirmed on the basis of flowmeter logging, and simulated numerically using a two-dimensional radial groundwater flow model. Arsenic concentrations increased slightly as a result of recharge from 2 to 6 μg/L immediately below the basin. Although few water-quality issues were identified during sample collection, high groundwater velocities and short travel times to nearby wells may have implications for groundwater management at this and at other sites in heterogeneous alluvial aquifers.  相似文献   

14.
Understanding the nature of communication between aquifers can be challenging when using traditional physical and geochemical groundwater sampling approaches. This study uses two multiport wells completed within Edwards and Trinity aquifers in central Texas to determine the degree of groundwater inter‐flow between adjacent aquifers. Potentiometric surfaces, hydraulic conductivities, and groundwater major ion concentrations and Sr isotope values were measured from multiple zones within three hydrostratigraphic units (Edwards and Upper and Middle Trinity aquifers). Physical and geochemical data from the multiport wells were combined with historical measurements of groundwater levels and geochemical compositions from the region to characterize groundwater flow and identify controls on the geochemical compositions of the Edwards and Trinity aquifers. Our results suggest that vertical groundwater flow between Edwards and Middle Trinity aquifers is likely limited by low permeability, evaporite‐rich units within the Upper and Middle Trinity. Potentiometric surface levels in both aquifers vary with changes in wet vs. dry conditions, indicating that recharge to both aquifers occurs through distinct recharge areas. Geochemical compositions in the Edwards, Upper, and Middle Trinity aquifers are distinct and likely reflect groundwater interaction with different lithologies (e.g., carbonates, evaporites, and siliceous sediments) as opposed to mixing of groundwater between the aquifers. These results have implications for the management of these aquifers as they indicate that, under current conditions, pumping of either aquifer will likely not induce vertical cross‐formational flow between the aquifers. Inter‐flow between the Trinity and the Edwards aquifers, however, should be reevaluated as pumping patterns and hydrogeologic conditions change.  相似文献   

15.
Saline seepage zone development, and hence the onset of dryland salinity, is a major environmental problem occurring within the Spicers Creek catchment. The primary objective of this paper was to identify previously unmapped faults and show the correlation between these faults and groundwater salinization. As identified from this study, there is a close association between geological structural features and the formation of saline seepage zones. The most saline groundwaters in the catchment were encountered where two geological structures join and form a fault intersection. These saline groundwaters are found at various depths within the fractured aquifers, and changes in groundwater chemistry in the aquifers are associated with the presence of fault zones. 18O and δ2H stable isotopes, together with 87Sr/86Sr isotopic ratios, indicate that groundwaters within the fault zones are enriched in 18O and have a strontium signature similar to seawater. This study identifies several geological structures in the Spicers Creek catchment and demonstrates that groundwaters with the highest salinity arise where fault intersections occur. The results of this study may be used to interpret further the mechanisms leading to seepage zone formation in dryland salinity‐affected catchments located throughout the Central West region of New South Wales, Australia. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
This study explores linkages between the microbial composition and hydrochemical variables of pristine groundwater to identify active redox conditions and processes. Two confined aquifers underlying the city of Qianjiang in the Jianghan Plain in China were selected for this study, having different recharge sources and strong hydrochemical gradients. Typical methods for establishing redox processes according to threshold concentration criteria for geochemical parameters suggest iron or sulphate reduction processes. High‐throughput 16S rRNA sequencing was used to obtain diversity and taxonomic information on microbial communities. Instead of revealing iron‐ and sulphate‐reducing bacteria, salt‐ and alkali‐tolerant bacteria, such as the phylum Firmicutes and the class Gammaproteobacteria, and in particular, the family Bacillaceae, were dominant in the downstream groundwater of the first aquifer that had high ion concentrations caused by the dissolution of calcite and dolomite; meanwhile, the heterotrophic microaerophilic families Comamonadaceae and Rhodocyclaceae prevailed in the upstream groundwater of the first aquifer. Sulphate‐reducing bacteria were extremely abundant in the upstream groundwater of the second aquifer, as the SO42? concentration was especially high. Methanogens and methanotrophs were predominant in the downstream groundwater of the second aquifer even though the concentration of SO42? was much higher than 0.5 mg L?1. The microbial communities, together with the geochemical parameters, indicated that the upstream region of the first aquifer was suboxic, that Fe(III) and Mn(IV) reductions were not the main redox processes in the downstream groundwater of the first aquifer with high Fe and Mn concentrations, and that the redox processes in the upstream and downstream regions of the second confined aquifer were SO42? reduction and methanogenesis, respectively. This study expands understanding of the linkages between microbial communities and hydrogeochemistry in pristine groundwaters and provides more evidence for identifying active redox conditions and processes.  相似文献   

17.
In natural waters arsenic normally occurs in the oxidation states +III (arsenite) and +V (arsenate). The removal of As(III) is more difficult than the removal of As(V). Therefore, As(III) has to be oxidized to As(V) prior to its removal. The oxidation in the presence of air or pure oxygen is slow. The oxidation rate can be increased by ozone, chlorine, hypochlorite, chlorine dioxide, or H2O2. The oxidation of As(III) is also possible in the presence of manganese oxide coated sands or by advanced oxidation processes. Arsenic can be removed from waters by coprecipitation with Fe(OH)3, MnO2 or during water softening. Fixed‐bed filters have successfully been applied for the removal of arsenic.The effectiveness of arsenic removal was tested in the presence of adsorbents such as FeOOH, activated alumina, ferruginous manganese ore, granular activated carbon, or natural zeolites. Other removal technologies are anion exchange, electrocoagulation, and membrane filtration by ultrafiltration, nanofiltration or reverse osmosis.  相似文献   

18.
Arsenic in private drinking water wells is a significant problem across much of eastern Wisconsin, USA. The release mechanism and stratigraphic distribution of sulfide and iron (hydr)oxide sources of arsenic in bedrock aquifers are well understood for northeastern Wisconsin. However, recent geologic mapping has identified numerous small bedrock folds to the south, and the impact of these geologic structures on local groundwater flow and well contamination has been little studied. This paper examines the hydrologic and structural effects of the Beaver Dam anticline, southeast Wisconsin, on arsenic in groundwater in the region. Multivariate logistic regression shows wells near the Beaver Dam anticline are statistically more likely to detect arsenic in groundwater compared to wells farther away. Structural and hydrologic changes related to folding are interpreted to be the cause. Core drilled near the fold axis is heavily fractured, and many fractures are filled with sulfides. Elevated hydraulic conductivity estimates are also recorded near the fold axis, which may reflect a higher concentration of vertical fractures. These structural and hydrologic changes may have led to systematic changes in the distribution and concentration of arsenic-bearing mineral hosts, resulting in the observed detection pattern. For areas with similar underlying geology, this approach may improve prediction of arsenic risk down to the local level.  相似文献   

19.
Warner KL 《Ground water》2001,39(3):433-442
The lower Illinois River Basin (LIRB) covers 47,000 km2 of central and western Illinois. In the LIRB, 90% of the ground water supplies are from the deep and shallow glacial drift aquifers. The deep glacial drift aquifer (DGDA) is below 152 m altitude, a sand and gravel deposit that fills the Mahomet Buried Bedrock Valley, and overlain by more than 30.5 m of clayey till. The LIRB is part of the USGS National Water Quality Assessment program, which has an objective to describe the status and trends of surface and ground water quality. In the DGDA, 55% of the wells used for public drinking-water supply and 43% of the wells used for domestic drinking water supply have arsenic concentrations above 10 micrograms/L (a new U.S. EPA drinking water standard). Arsenic concentrations greater than 25 micrograms/L in ground water are mostly in the form of arsenite (AsIII). The proportion of arsenate (AsV) to arsenite does not change along the flowpath of the DGDA. Because of the limited number of arsenic species analyses, no clear relations between species and other trace elements, major ions, or physical parameters could be established. Arsenic and barium concentrations increase from east to west in the DGDA and are positively correlated. Chloride and arsenic are positively correlated and provide evidence that arsenic may be derived locally from underlying bedrock. Solid phase geochemical analysis of the till, sand and gravel, and bedrock show the highest presence of arsenic in the underlying organic-rich carbonate bedrock. The black shale or coal within the organic-rich carbonate bedrock is a potential source of arsenic. Most high arsenic concentrations found in the DGDA are west and downgradient of the bedrock structural features. Geologic structures in the bedrock are potential pathways for recharge to the DGDA from surrounding bedrock.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号