首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
In this paper we present the current capabilities for numerical weather prediction of precipitation over China using a suite of ten multimodels and our superensemble based forecasts. Our suite of models includes the operational suite selected by NCARs TIGGE archives for the THORPEX Program. These are: ECMWF, UKMO, JMA, NCEP, CMA, CMC, BOM, MF, KMA and the CPTEC models. The superensemble strategy includes a training and a forecasts phase, for these the periods chosen for this study include the months February through September for the years 2007 and 2008. This paper addresses precipitation forecasts for the medium range i.e. Days 1 to 3 and extending out to Day 10 of forecasts using this suite of global models. For training and forecasts validations we have made use of an advanced TRMM satellite based rainfall product. We make use of standard metrics for forecast validations that include the RMS errors, spatial correlations and the equitable threat scores. The results of skill forecasts of precipitation clearly demonstrate that it is possible to obtain higher skills for precipitation forecasts for Days 1 through 3 of forecasts from the use of the multimodel superensemble as compared to the best model of this suite. Between Days 4 to 10 it is possible to have very high skills from the multimodel superensemble for the RMS error of precipitation. Those skills are shown for a global belt and especially over China. Phenomenologically this product was also found very useful for precipitation forecasts for the Onset of the South China Sea monsoon, the life cycle of the mei-yu rains and post typhoon landfall heavy rains and flood events. The higher skills of the multimodel superensemble make it a very useful product for such real time events.  相似文献   

2.
基于TIGGE资料的地面气温多模式超级集合预报   总被引:13,自引:3,他引:10       下载免费PDF全文
基于TIGGE资料, 采用均方根误差分别对欧洲中期天气预报中心、日本气象厅、美国国家环境预报中心和英国气象局4个中心集合预报的地面气温场集合平均结果进行检验评估, 比较各中心地面气温的预报效果。并利用超级集合、多模式集合平均和消除偏差集合平均3种方法对4个中心的地面气温预报进行集成, 同时对预报结果进行分析。结果表明: 2007年夏季日本气象厅与欧洲中期天气预报中心在北半球大部分地区预报效果最好, 各中心在不同地区预报效果不同。超级集合与消除偏差集合平均降低了预报误差, 预报效果优于最好的单个中心预报和多模式集合平均。对于较长的预报时效, 消除偏差集合平均表现出了更好的预报性能。  相似文献   

3.
A 15 member ensemble of 20th century simulations using the ECHAM4–T42 atmospheric GCM is utilized to investigate the potential predictability of interannual variations of seasonal rainfall over Africa. Common boundary conditions are the global sea surface temperatures (SST) and sea ice extent. A canonical correlation analysis (CCA) between observed and ensemble mean ECHAM4 precipitation over Africa is applied in order to identify the most predictable anomaly patterns of precipitation and the related SST anomalies. The CCA is then used to formulate a re-calibration approach similar to model output statistics (MOS) and to derive precipitation forecasts over Africa. Predictand is the climate research unit (CRU) gridded precipitation over Africa. As predictor we use observed SST anomalies, ensemble mean precipitation over Africa and a combined vector of mean sea level pressure, streamfunction and velocity potential at 850 hPa. The different forecast approaches are compared. Most skill for African precipitation forecasts is provided by tropical Atlantic (Gulf of Guinea) SST anomalies which mainly affect rainfall over the Guinean coast and Sahel. The El Niño/Southern Oscillation (ENSO) influences southern and East Africa, however with a lower skill. Indian Ocean SST anomalies, partly independent from ENSO, have an impact particularly on East Africa. As suggested by the large agreement between the simulated and observed precipitation, the ECHAM4 rainfall provides a skillful predictor for CRU precipitation over Africa. However, MOS re-calibration is needed in order to provide skillful forecasts. Forecasts using MOS re-calibrated model precipitation are at least as skillful as forecast using dynamical variables from the model or instantaneous SST. In many cases, MOS re-calibrated precipitation forecasts provide more skill. However, differences are not systematic for all regions and seasons, and often small.  相似文献   

4.
This study addresses the predictability of rainfall variations over South America and the Amazon basin. A primary factor leading to model inaccuracy in precipitation forecasts is the coarse resolution data utilized by coupled models during the training phase. By using MERRA reanalysis and statistical downscaling along with the superensemble methodology, it is possible to obtain more precise forecast of rainfall anomalies over tropical South America during austral fall. Selective inclusion (and exclusion) of member models also allows for increased accuracy of superensemble forecasts. The use of coupled atmospheric–ocean numerical models to predict the rainfall anomalies has had mixed results. Improvement in individual member models is also possible on smaller spatial scales and in regions where substantial topographical changes were not handled well under original model initial conditions. The combination of downscaling and superensemble methodologies with other research methods presents the potential opportunity for increased accuracy not only in seasonal forecasts but on shorter temporal scales as well.  相似文献   

5.
北半球中纬度地区地面气温的超级集合预报   总被引:25,自引:7,他引:18  
基于TIGGE资料中的ECMWF、JMA、NCEP和UKMO四个中心2007年6月1日-8月31日北半球中纬度地区地面气温24~168 h集合预报资料,分别利用固定训练期超级集合(SUP, Superensemble)和滑动训练期超级集合(R-SUP, Running Training Period Superensemble )对2007年8月8-31日预报期24 d进行超级集合预报试验.采用均方根误差对预报结果进行检验评估,比较了两种超级集合方法与最好的单个中心模式预报、多模式集合平均的预报效果.结果表明,SUP预报有效降低了预报误差,24~144 h的预报效果优于多模式集合平均(EMN, Ensemble Mean)和最好的单个中心预报,168 h的预报效果略差于EMN.R-SUP预报进一步改善了预报效果.对于24~168 h的预报,R-SUP预报效果都要优于EMN.尤其对于168 h的预报,R-SUP改进了预报效果,优于EMN.  相似文献   

6.
During the summer monsoon (1 June to 30 September) 2007, real-time district level rainfall forecasts in short-range time scale were generated for Indian region applying multimodel ensemble technique. The pre-assigned grid point weights on the basis of correlation coefficients (CC) between the observed values and forecast values are determined for each constituent model at the resolution of 0.5° × 0.5° utilizing two seasons datasets (1 June to 30 September, 2005 and 2006), and the multimodel ensemble forecasts (day 1 and day 2 forecasts) are generated at the same resolution on a real-time basis. The ensemble forecast fields are then used to prepare forecasts for each district taking the average value of all grid points falling in a particular district. In this paper we examined the performance skill of the multimodel ensemble-based real-time district level short-range forecast of rainfall. It has clearly emerged from the results that the multimodel ensemble technique reported in this study is superior to each ensemble member. District wise performance of the ensemble rainfall forecast reveals that the technique, in general, is capable of providing reasonably good forecast skill over most districts of the country, particularly over the districts where the monsoon systems are dominant. Though the procedure shows appreciable skill to predict occurrence or non-occurrence of rainfall at the district level, it always underestimates rainfall amount, particularly in heavy rainfall events. Possible reasons of this failure may be due to model bias and poor data assimilation procedure.  相似文献   

7.
Performance of national centers for environmental prediction based global forecast system (GFS) T574/L64 and GFS T382/L64 over Indian region has been evaluated for the summer monsoon season of 2011. The real-time model outputs are generated daily at India Meteorological Department, New Delhi for the forecasts up to 7 days. Verification of rainfall forecasts has been carried out against observed rainfall analysis. Performance of the model is also examined in terms of lower tropospheric wind circulation, vertical structure of specific humidity and precipitable water content. Case study of a monsoon depression is also illustrated. Results obtained show that, in general, both the GFS T382 and T574 forecasts are skillful to capture climatologically heavy rainfall regions. However, the accuracy in prediction of location and magnitude of rainfall fluctuates considerably. The verification results, at the spatial scale of 50 km resolution, in a regional spatial scale and country as a whole, in terms of continuous skill score, time series and categorical statistics, have demonstrated superiority of GFS T574 against T382 over Indian region. Both the model shows bias of lower tropospheric drying and upper tropospheric moistening. A bias of anti-cyclonic circulation in the lower tropospheric level lay over the central India, where rainfall as well as precipitable water content shows negative bias. Considerable differences between GFS T574 and T382 are noticed in the structure of model bias in terms of lower tropospheric wind circulation, vertical structure of specific humidity and precipitable water contents. The magnitude of error for these parameters increases with forecast lead time in both GFS T574 and T382. The results documented are expected to be useful to the forecasters, monsoon researchers and modeling community.  相似文献   

8.
This paper examines the connection between the probability of precipitation and forecast amounts from Weather Research and Forecasting (WRF) model runs over Central and West Africa. A one season period (June–September 2010) was used to investigate the quantitative precipitation forecast–probability relationship. The predictive capability of this relationship was then tested on an independent sample of data (June–September 2011); 2010 and 2011 were wet and dry years, respectively. The results show that rainfall is less likely to occur in those areas where the model indicates no precipitation than it is elsewhere in the domain. Rainfall is more likely to occur in those regions where precipitation is predicted, especially where the predicted precipitation amounts are largest. The probabilities of rainfall forecasts based on this relationship are found to possess skill as measured by relative operating characteristic curves, reliability diagrams, and Brier skill scores. Skillful forecasts from the technique exist throughout 24-h periods for which WRF output was available. The results suggest that this forecasting tool might assist forecasters throughout the season in a wide variety of weather events and not only in areas of difficult-to-forecast convective systems.  相似文献   

9.
A new approach to ensemble forecasting of rainfall over India based on daily outputs of four operational numerical weather prediction (NWP) models in the medium-range timescale (up to 5 days) is proposed in this study. Four global models, namely ECMWF, JMA, GFS and UKMO available on real-time basis at India Meteorological Department, New Delhi, are used simultaneously with adequate weights to obtain a multi-model ensemble (MME) technique. In this technique, weights for each NWP model at each grid point are assigned on the basis of unbiased mean absolute error between the bias-corrected forecast and observed rainfall time series of 366 daily data of 3 consecutive southwest monsoon periods (JJAS) of 2008, 2009 and 2010. Apart from MME, a simple ensemble mean (ENSM) forecast is also generated and experimented. The prediction skill of MME is examined against observed and corresponding outputs of each constituent model during monsoon 2011. The inter-comparison reveals that MME is able to provide more realistic forecast of rainfall over Indian monsoon region by taking the strength of each constituent model. It has been further found that the weighted MME technique has higher skill in predicting daily rainfall compared to ENSM and individual member models. RMSE is found to be lowest in MME forecasts both in magnitude and area coverage. This indicates that fluctuations of day-to-day errors are relatively less in the MME forecast. The inter-comparison of domain-averaged skill scores for different rainfall thresholds further clearly demonstrates that the MME algorithm improves slightly above the ENSM and member models.  相似文献   

10.
江苏—南黄海地区M≥6强震有序网络结构及其预测研究   总被引:2,自引:1,他引:1  
基于TIGGE(THORPEX Interactive Grand Global Ensemble,全球交互式大集合)资料中欧洲中期天气预报中心(European Centre for Medium-Range Weather,ECMWF)、日本气象厅(Japan Meteorological Agency,JMA)、美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)和英国气象局(United Kingdom Met Office,UKMO)4个中心的北半球地面2m气温集合平均预报资料,利用插值技术与回归分析,并引入了消除偏差集合平均(bias-removed ensemble mean,BREM)和多模式超级集合(superensemble,SUP)方法进行统计降尺度预报研究.结果表明,在2007年夏季3个月中,4个单中心的降尺度预报明显地改善了预报效果.引入SUP和BREM两种集成预报方法后,预报误差得到进一步减小.对比综合表现最好的单中心ECMWF的预报,1~7d的降尺度预报误差改进率均达20%以上.研究还发现,引入SUP方法的降尺度预报效果优于引入BREM方法的降尺度预报,利用双线性插值方法在上述两方案中的预报效果优于其他3种插值方法.  相似文献   

11.
基于TIGGE(THORPEX Interactive Grand Global Ensemble,全球交互式大集合)资料中欧洲中期天气预报中心(European Centre for Medium-Range Weather,ECMWF)、日本气象厅(Japan Meteorological Agency,JMA)、美国国家环境预报中心(National Centers for Environmental Prediction,NCEP)和英国气象局(United Kingdom Met Office,UKMO)4个中心的北半球地面2 m气温集合平均预报资料,利用插值技术与回归分析,并引入了消除偏差集合平均(bias-removed ensemble mean,BREM)和多模式超级集合(superensemble,SUP)方法进行统计降尺度预报研究。结果表明,在2007年夏季3个月中,4个单中心的降尺度预报明显地改善了预报效果。引入SUP和BREM两种集成预报方法后,预报误差得到进一步减小。对比综合表现最好的单中心ECMWF的预报,1~7 d的降尺度预报误差改进率均达20%以上。研究还发现,引入SUP方法的降尺度预报效果优于引入BREM方法的降尺度预报,利用双线性插值方法在上述两方案中的预报效果优于其他3种插值方法。  相似文献   

12.
Summary Objective combination schemes of predictions from different models have been applied to seasonal climate forecasts. These schemes are successful in producing a deterministic forecast superior to individual member models and better than the multi-model ensemble mean forecast. Recently, a variant of the conventional superensemble formulation was created to improve skills for seasonal climate forecasts, the Florida State University (FSU) Synthetic Superensemble. The idea of the synthetic algorithm is to generate a new data set from the predicted multimodel datasets for multiple linear regression. The synthetic data is created from the original dataset by finding a consistent spatial pattern between the observed analysis and the forecast data set. This procedure is a multiple linear regression problem in EOF space. The main contribution this paper is to discuss the feasibility of seasonal prediction based on the synthetic superensemble approach and to demonstrate that the use of this method in coupled models dataset can reduce the errors of seasonal climate forecasts over South America. In this study, a suite of FSU coupled atmospheric oceanic models was used. In evaluation the results from the FSU synthetic superensemble demonstrate greater skill for most of the variables tested here. The forecast produced by the proposed method out performs other conventional forecasts. These results suggest that the methodology and database employed are able to improve seasonal climate prediction over South America when compared to the use of single climate models or from the conventional ensemble averaging. The results show that anomalous conditions simulated over South America are reasonably realistic. The negative (positive) precipitation anomalies for the summer monsoon season of 1997/98 (2001/02) were predicted by Synthetic Superensemble formulation quite well. In summary, the forecast produced by the Synthetic Superensemble approach outperforms the other conventional forecasts.  相似文献   

13.
This study investigates multi-model ensemble forecasts of track and intensity of tropical cyclones over the western Pacific, based on forecast outputs from the China Meteorological Administration, European Centre for Medium-Range Weather Forecasts, Japan Meteorological Agency and National Centers for Environmental Prediction in the THORPEX Interactive Grand Global Ensemble (TIGGE) datasets. The multi-model ensemble schemes, namely the bias-removed ensemble mean (BREM) and superensemble (SUP), are compared with the ensemble mean (EMN) and single-model forecasts. Moreover, a new model bias estimation scheme is investigated and applied to the BREM and SUP schemes. The results showed that, compared with single-model forecasts and EMN, the multi-model ensembles of the BREM and SUP schemes can have smaller errors in most cases. However, there were also circumstances where BREM was less skillful than EMN, indicating that using a time-averaged error as model bias is not optimal. A new model bias estimation scheme of the biweight mean is introduced. Through minimizing the negative influence of singular errors, this scheme can obtain a more accurate model bias estimation and improve the BREM forecast skill. The application of the biweight mean in the bias calculation of SUP also resulted in improved skill. The results indicate that the modification of multi-model ensemble schemes through this bias estimation method is feasible.  相似文献   

14.
The present study is conducted to verify the short-range forecasts from mesoscale model version5 (MM5)/weather research and forecasting (WRF) model over the Indian region and to examine the impact of assimilation of quick scatterometer (QSCAT) near surface winds, spectral sensor microwave imager (SSM/I) wind speed and total precipitable water (TPW) on the forecasts by these models using their three-dimensional variational (3D-Var) data assimilation scheme for a 1-month period during July 2006. The control (without satellite data assimilation) as well as 3D-Var sensitivity experiments (with assimilating satellite data) using MM5/WRF were made for 48 h starting daily at 0000 UTC July 2006. The control run is analyzed for the intercomparison of MM5/WRF short-range forecasts and is also used as a baseline for assessing the MM5/WRF 3D-Var satellite data sensitivity experiments. As compared to the observation, the MM5 (WRF) control simulations strengthened (weakened) the cross equatorial flow over southern Arabian sea near peninsular India. The forecasts from MM5 and WRF showed a warm and moist bias at lower and upper levels with a cold bias at the middle level, which shows that the convective schemes of these models may be too active during the simulation. The forecast errors in predicted wind, temperature and humidity at different levels are lesser in WRF as compared to MM5, except the temperature prediction at lower level. The rainfall pattern and prediction skill from day 1 and day 2 forecasts by WRF is superior to MM5. The spatial distribution of forecast impact for wind, temperature, and humidity from 1-month assimilation experiments during July 2006 demonstrated that on average, for 24 and 48-h forecasts, the satellite data improved the MM5/WRF initial condition, so that model errors in predicted meteorological fields got reduced. Among the experiments, MM5/WRF wind speed prediction is most benefited from QSCAT surface wind and SSM/I TPW assimilation while temperature and humidity prediction is mostly improved due to latter. The largest improvement in MM5/WRF rainfall prediction is due to the assimilation of SSM/I TPW. The assimilation of SSM/I wind speed alone in MM5/WRF degraded the humidity and rainfall prediction. In summary the assimilation of satellite data showed similar impact on MM5/WRF prediction; largest improvement due to SSM/I TPW and degradation due to SSM/I wind speed.  相似文献   

15.
A review on aspects of climate simulation assessment   总被引:2,自引:0,他引:2  
This paper reviews some aspects of evaluation of climate simulation, including the ITCZ, the surface air temperature (SAT), and the monsoon. A brief introduction of some recently proposed approaches in weather forecast verification is followed by a discussion on their possible application to evaluation of climate simulation. The authors suggest five strategies to extend the forecast verification methods to climate simulation evaluation regardless significant differences between the forecasts and climate simulations. It is argued that resolution, convection scheme, stratocumulus cloud cover, among other processes in the atmospheric general circulation model (AGCM) and the ocean-atmosphere feedback are the potential causes for the double ITCZ problem in coupled models and AGCM simulations, based on the system- and component-level evaluations as well as the downscaling strategies in some recent research. Evaluations of simulated SAT and monsoons suggest that both coupled models and AGCMs show good performance in representing the SAT evolution and its variability over the past century in terms of correlation and wavelet analysis but poor at reproducing rainfall, and in addition, the AGCM alone is not suitable for monsoon regions due to the lack of air-sea interactions.  相似文献   

16.
NMC与HLAFS降水预报的比较   总被引:10,自引:3,他引:7  
刘还珠  黄卓 《气象》1998,24(1):47-52
建立了一套既适用于对预报员降水预报评估,又适用于对数值预报模式降水预报评估的客观检验方法,从对1996年7-9月检验的结果分析表明预报员对大雨预报Ts评分高于HLAFS并且除西北地区外,其它区的24小时大雨预报都超过气候概率,表现为大于0的技巧评分,预报员和HLAFS对大雨预报的漏报率多于空报率,而对小雨和中雨的预报相反,两者都是空报多于漏报,预报中对西北地区的降水预报漏报较多。  相似文献   

17.
2004年主汛期各数值预报模式定量降水预报评估   总被引:23,自引:2,他引:23       下载免费PDF全文
王雨 《应用气象学报》2006,17(3):316-324
随着数值预报技术的飞速发展, 模式定量降水预报已成为天气预报业务工作中的主要参考依据。本文对目前在国家气象中心应用的3个业务运行模式T213L31, HLAFS0.25, 华北中尺度模式MM5和德国模式及日本模式的降水预报产品进行了季节空间分布、区域时间序列演变及统计检验, 试图从空间、时间及统计方面对降水预报产品的预报性能进行综合评估。检验结果表明:目前的数值预报模式对短期时效内定量降水预报均具有一定的空间预报能力, 但强降水中心位置有一定的偏差; 从时间序列演变检验来看, 模式对区域强降水过程的发展趋势具有较强的预报能力, 但降水量预报与实况有一定的差距; 从累加统计评分检验结果来看, 模式短期时效的预报性能差别不大, 全球模式在小中雨预报方面有一定优势, 其中日本模式的综合预报性能最好, 大雨以上量级的预报则是国内的模式有一定的优势, 其中华北中尺度MM5模式, T213L31模式各有所长, 但均存在预报量和预报区偏大问题。  相似文献   

18.
Summary From 1994 to 2003, fifty-five tropical cyclones entered the Canadian Hurricane Centre (CHC) Response Zone, or about 42% of all named Atlantic tropical cyclones in this ten-year period, and 2003 was the fourth consecutive year for a tropical cyclone to make landfall in Canada. The CHC forecasts all tropical cyclones that enter the CHC Response Zone and assumes the lead in forecasting once the cyclone enters its area of forecast responsibility. This study acknowledges the challenges of forecasting such tropical cyclones at extratropical latitudes. If a tropical cyclone has been declared extratropical, global models may no longer use vortex bogussing to carry the cyclone, and even if it is modeled, large model errors often result. The purpose of this study is to develop a new version of the Florida State University (FSU) hurricane superensemble with greater skill in tracking tropical cyclones, especially at extratropical latitudes. This has been achieved from the development of the synthetic superensemble, which is similar to the operational version of the multi-model superensemble that is used at FSU. The synthetic superensemble differs in that is has a larger set of member models consisting of regular member models, synthetic versions of these models, and the operational superensemble and its synthetic version. This synthetic superensemble is being used here to forecast hurricane tracks from the 2001, 2002, and 2003 hurricane seasons. The track forecasts from this method have generally less error than those of the member models, the operational superensemble, and the ensemble mean. This study shows that the synthetic superensemble performs consistently well and would be an asset to operational hurricane track forecasting.  相似文献   

19.
基于季节内振荡的延伸预报试验   总被引:11,自引:2,他引:9  
粱萍  丁一汇 《大气科学》2012,36(1):102-116
2~4周的延伸预报是近年来国际上天气和气候业务预报发展的一个重要方向。本文以江淮梅雨区降水为例, 在利用集合经验模态分解 (EEMD) 及多变量EOF方法获取梅雨区降水及其影响系统低频信号的基础上, 采用最优子集回归方法、 经验波传播 (EWP) 方法及全球海气耦合模式产品, 对梅雨季节内演变的延伸期预报方法进行了预报和试验, 以期为建立延伸期预报业务提供科学依据。试验结果表明: (1) 大气季节内振荡对梅雨区降水的延伸预报具有重要的应用价值, 可能是联系天气过程和异常的重要系统。(2) 通过EEMD方法提取前期降水演变及影响因子的季节内振荡信号, 采用最优子集回归统计学方法对梅雨区逐候降水量演变进行超前30天预报是有可能的。(3) EWP经验动力方法对热带ITCZ活跃异常的未来40天东传可能具有较好的预报效果, 还可能较好地预报出延伸期的梅雨区风场距平演变, 具有一定应用价值。(4) 全球海气耦合动力模式输出产品在延伸期环流形势趋势预报及20天左右的MJO指数预报方面有一定的参考价值。  相似文献   

20.
基于华南地区自动站逐小时观测资料, 采用传统站点评分、邻域法等评估华南区域高分辨率数值模式(包括GRAPES_GZ_R 1 km模式和GRAPES_GZ 3 km模式)对降水、地面温度和风场等要素的预报能力。结果表明: GRAPES_GZ_R 1 km模式的降水预报技巧优于GRAPES_GZ 3 km模式, 模式预报以正偏差为主。对于不同起报时间的预报, 00时(世界时, 下同)起报的预报效果优于12时。GRAPES_GZ_R 1 km模式的TS评分是GRAPES_GZ 3 km模式的两倍以上, 对不同降水阈值的评分均较高。分数技巧评分(FSS)显示GRAPES_GZ_R 1 km模式6 h累计降水预报在0.1 mm、1 mm及5 mm以上的降水均可达到最低预报技巧尺度, 对所检验降水对象的空间位置把握能力更好。2 m气温和10 m风速检验结果表明两个模式均能较好把握广东省温度的分布特征, GRAPES_GZ_R 1 km模式对2 m气温预报结果优于GRAPES_GZ 3 km模式, 预报绝对误差更小; 两个模式对风速的预报整体偏强, 预报偏差在1~4 m/s之间, 但相比之下GRAPES_GZ 3 km模式在风场预报上表现更好。GRAPES_GZ_R 1 km模式的2 m气温和10 m风速预报偏差随降水过程存在明显波动, 强降水过后温度预报整体偏低, 风速预报偏强, 在模式产品订正、使用等需要考虑模式对主要天气系统的预报情况。总的来说, GRAPES_GZ_R 1 km模式的预报产品具有较好的参考价值。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号