首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 281 毫秒
1.
山区河流准三维水沙输运与河床演变模拟   总被引:1,自引:0,他引:1  
程根伟 《山地学报》2001,19(3):207-212
在渠道水力学和河流动力学研究的基础上,对不规则河流形态下的纵向流速分布和弯道水流进行了讨论,并分析了任意断面和垂线位置的流场计算公式。在综合各种泥沙动力学研究成果基础之上,探讨了在天然河流中的悬移质输沙能力与沉积条件,分析了河床质起动的控制性因素及推移质输沙方程。提出了受冲淤影响的河床质粒径组成和动态递推公式。结合这些流场与泥沙计算方法及河床形态调整技术,作者提出一个准三维河流动力学模型。该模型只需要河流几何形状、人流条件以及泥沙级配参数,能够模拟出不规则几何形态的河道断面流速分布及平面流场分布,并且对于弯道水流特征与泥沙输送一沉积特征也能得到较好的表现。该模型是对有关河流演变理论和实验成果的综合应用,为研究山区高含沙水流下的河床变形以及洪水演进提供了强有力的工具。  相似文献   

2.
黄河中游悬移质泥沙粒径与流域环境的关系   总被引:4,自引:0,他引:4  
刘爱霞  卢金发 《地理学报》2002,57(2):232-237
以黄河中游多沙粗沙区为研究区,在流域泥沙粒径、降雨、地面物质组成、地面形态、植被和高含沙水流等资料采集的基础上,采用“环境要素法”和多元回归分析来阐明泥沙粒径空间分异的机理。研究表明,随降雨不均匀系数的减小,断面最大含沙量的减小,流域内黄土覆盖面积的增大,以及植被盖度的增大和沟谷密度的减小,悬移质泥沙粒径趋于变细,反之,趋于变粗。其中,流域地面物质对泥沙粒径组成起最重要的控制作用,其次是植被,高含沙水流、沟谷密度和降雨影响作用相对较小。  相似文献   

3.
黄河宁蒙段河道淤积严重,阐明近源粗泥沙和远源细泥沙分选沉积规律对于河道淤积治理有重要意义。本研究基于120根河道钻孔泥沙样品,通过粒径分布和元素矿物组成,分析了河道>0.05 mm、>0.08 mm和>0.1 mm粗泥沙沿河分选沉积变化特征,并定量评估了近源粗泥沙和远源细泥沙沉积对于河道泥沙淤积的贡献。结果表明:黄河宁蒙段河道淤积的主要是来源于近源沙漠及其下伏砒砂岩区>0.08 mm的粗泥沙,而来源于上游黄土区<0.05 mm的细泥沙主要沉积在河道滩地,对河道淤积的贡献小于30%。因此,风水复合侵蚀引起的沿黄沙漠和下伏砒砂岩粗泥沙入黄是黄河宁蒙沙漠河段河道淤积的根源,也是该河段“悬河”的治理重点。  相似文献   

4.
黑赖沟流域位于内蒙古风-水两相交互侵蚀区域,主河道的泥沙输移特征较为复杂。为了分析河道沉积粒度与地貌过程的关系,文中主要通过探讨粒度参数与外营力特征的关系对沉积粒度的成因机制进行了研究。在分析过程中首先对河床沉积粒度参数、风成颗粒的最大粒径、河流功率和面积-高程积分值沿河道方向的连续变化值进行了计算,分别对不同河段的外营力活动特征进行分析,并以此为基础,将粒度参数作为因变量,其余三者作为自变量,建立了多元回归函数。分析结果显示不同河段外营力对河床沉积物的影响特征不同,其中上游河段河床沉积物主要受径流和风力作用影响;中游河段主要受河流作用影响,沉积颗粒的分选性最差,沉积颗粒的大小与河流功率关系密切,粗质颗粒难以被搬运到下游河段;下游河段受库布齐沙漠影响的可能性较大。就河道整体特征来讲,河道两侧地貌的侵蚀演化特征对河道内的沉积颗粒影响不显著,河床沉积物特征主要受河流和风力作用,其中沉积颗粒的平均粒径主要反映了河流功率的大小,风力作用对沉积颗粒的分选性具有一定影响。河道内的风成颗粒主要来自流域西部,粒径值不会大于0.88Φ,其中下游河段内的风成颗粒比上游河段略粗。总而言之,河流作用对河道沉积粒度特征的影响起主要作用,风力作用次之。  相似文献   

5.
黄河内蒙古段淤积泥沙洪水冲刷效应   总被引:1,自引:1,他引:0  
汪宏芳  贾晓鹏  王海兵 《中国沙漠》2014,34(4):1143-1149
为了探讨黄河内蒙古段淤积泥沙的洪水冲刷效应,于2012年对其三湖河口水文站河道监测断面汛期(7-10月)流量、悬移质泥沙含量以及洪水期间(2012年8月20日-2012年10月1日)悬移质泥沙含量、粒度百分含量的垂直变化特征与流量的关系进行了统计和分析。结果表明:(1)该次洪水具有峰高量大、洪峰过程在河段内持续时间长、洪水起涨和消退缓慢、峰形矮胖的特点;(2)洪水过程中,小于0.05 mm的细颗粒泥沙在2 000 m3·s-1左右的流量下就能输移通过,在2 000~2 400 m3·s-1时输沙强度最大,对河道淤积泥沙可以达到输沙最优的效果;而粒径大于0.05 mm的泥沙输移的效果不好。  相似文献   

6.
无定河流域的人工沉积汇及其 对泥沙输移比的影响   总被引:3,自引:0,他引:3  
许炯心 《地理研究》2010,29(3):397-407
依据1956~1996年的资料,计算出了无定河流域历年的人工沉积汇、侵蚀量、泥沙输移比,进行了时间序列分析,并运用回归分析方法,建立了统计关系,揭示了无定河流域人工沉积汇对泥沙输移比的影响。研究表明,无定河流域侵蚀量和产沙量有明显的减小趋势;人工沉积汇先是增大,达到峰值后再减小;泥沙输移比先减小而后增大。这说明,无定河泥沙输移比的时间变化趋势,主要受人工沉积汇的控制。建立的多元回归方程表明,坝地面积增大对流域泥沙输移比减小的贡献最大;地表径流系数减小对流域泥沙输移比减小的贡献居第二位;在3个降水因子中,最大30日降水的贡献最大,汛期降水次之,最大1日降水再次之。在坡面措施和沟道措施中,沟道措施对流域泥沙输移比减小的影响要大于坡面措施。  相似文献   

7.
孙虎  甘枝茂  吴成基 《中国沙漠》1997,17(3):261-268
对黄河中游河口镇至龙门区间的产沙岩层与河流悬移质输沙进行了耦合平衡分析,确定了该区间各种产沙岩层的产沙数量,并推算出黄土、基岩和风沙对河流粗泥沙(d>0.05mm)的贡献率分别为61.2%、34.2%和4.6%。同时,分析了该区间侵蚀产粗泥沙的分布规律。  相似文献   

8.
黄河中游支流悬移质粒度与含沙量、流量间的复杂关系   总被引:16,自引:4,他引:12  
许炯心 《地理研究》2003,22(1):39-48
本文以黄河中游若干支流为例,研究了宽变幅水沙两相流河流悬移质泥沙的粒度特征。结果表明,宽变幅水沙两相流河流的悬移质泥沙粒度特征与含沙量、流量之间具有复杂的关系。就同一站点而言,随着含沙量和流量的增大,大于0.05mm的粗颗粒泥沙的百分比迅速减小,并达到最小值;当含沙量和流量进一步增大时,其百分比又迅速增大,表现出明显的双值关系。对于小于0.01mm细泥沙而言,情形正好相反。黄河中游不同的支流之间,悬移质泥沙粒度特征与年均含沙量的关系也是复杂的。这些变化图形可以用非高含沙水流与高含沙水流不同的物理力学行为来解释  相似文献   

9.
长江河口悬浮泥沙的混合过程   总被引:2,自引:0,他引:2  
刘红  何青  王亚  陈吉余 《地理学报》2012,67(9):1269-1281
根据准同步观测的悬浮泥沙及表层沉积物粒度、流速、含沙量资料, 分析了长江口及临近海域悬浮泥沙在河口的混合过程。长江河口-陆架系统悬浮泥沙中值粒径呈现“细-粗-细”的变化规律, 河口上段悬浮泥沙中值粒径为8.9 μm, 拦门沙海域为10.5 μm, 陆架区为4.5 μm, 北支为9.9 μm, 杭州湾口为5.6 μm, 泥沙类型为粘土质粉砂。河口上段和陆架区悬浮泥沙与表层沉积物的垂向混合作用较弱, 拦门沙区域二者发生强烈的混合和交换, 悬浮泥沙在由长江河口向陆架系统输移过程中仅有表层泥沙保留了流域输入的泥沙粒度特征。长江口悬浮泥沙中值粒径与含沙量呈良好的正相关关系, 水流的剪切作用是引起拦门沙海域泥沙再悬浮、近底高含沙量和悬浮泥沙粒径增加的主要原因, 悬浮泥沙粒径和含沙量的增加主要由粉砂组分的增加引起。2007 年长江河口区范围内悬浮泥沙中值粒径比2003 年普遍减小11%, 含沙量比2003 年减小22%, 河口上段含沙量对流域来沙减少的响应最为敏感, 而拦门沙区的泥沙粒径对流域来沙减少的响应最敏感。在长江流域来沙量减少的背景下, 河口拦门沙区域仍能维持较高的含沙量, 主要缘于河口系统内部的供沙  相似文献   

10.
长江上游水库群的开发和利用,导致上游入库泥沙的减少,坡面侵蚀产沙贡献增加,造成三峡水库入库泥沙沉积及其来源的变化;同时,大坝蓄水使干支流之间存在水流和物质能量的交换作用,缓慢的流速导致三峡水库支流富营养化现象较突出。所以,三峡水库入库泥沙的构成,库区干支流悬移质泥沙特征以及消落带泥沙沉积过程是迫切需要研究的问题。本文选择三峡库区中游忠县境内长江干流和一级支流汝溪河作为研究对象,采集雨季7—9月长江干流和支流汝溪河悬移质泥沙和汝溪河库湾消落带沉积泥沙剖面分层样品,并测试样品的颗粒组成和Cs-137活度。结果表明:7月份低水位时期,干流和支流悬移泥沙的中值粒径分别为12.81μm和18.87μm,且支流砂粒体积百分比较干流高,说明支流悬移泥沙比干流粗;~(137)Cs比活度分别为0.87和0.65 Bq/kg,均较低。而8月份和9月份,干流悬移泥沙颗粒粗细和7月份相当,而支流悬移泥沙的平均中值粒径仅为6.05μm,与干流悬移质泥沙相比偏细;~(137)Cs比活度分别为1.23和2.16 Bq/kg。可以发现无论是干流还是支流,~(137)Cs比活度变化均表现为8月份比7月份偏高,且8月份支流~(137)Cs比活度比干流偏高。这是因为7月份是暴雨导致的表下层侵蚀泥沙,泥沙颗粒较粗且~(137)Cs比活度较低;而8月份的悬移泥沙主要归结于频繁的中小雨引起的坡面表层侵蚀产沙,泥沙颗粒较细且富含~(137)Cs。对于支流典型泥沙沉积剖面的研究表明,从2008至今,汝溪河库湾消落带泥沙总淤积厚度在7 cm左右,中值粒径介于4.6~13.7μm之间,~(137)Cs比活度的范围为1.39~1.97 Bq/kg。根据~(137)Cs比活度结合河流输沙颗粒组成的旋回分层特征,可以大致区分出雨季和旱季的沉积泥沙,初步弄清支流消落带泥沙沉积过程。  相似文献   

11.
响水河中游右岸沙丘群粒度分布特征   总被引:2,自引:2,他引:0  
王勇  韩广  杨林  郭宇航  肖涛 《中国沙漠》2017,37(1):26-32
在野外实地考察和测量的基础上,沿盛行风向,对西辽河平原西部响水河中游右岸普遍发育的新月形沙丘链进行样品采集。经室内激光粒度仪测定,研究了河岸沙丘粒度分布规律。结果表明:(1)响水河右岸沙丘及丘间地以中沙为主,而河谷谷底细沙含量最多,平沙地次之。(2)滨岸沙丘由迎风坡脚到丘顶平均粒径变小,远岸沙丘由迎风坡脚到丘顶平均粒径变大;多数沙丘分选性由两侧坡脚到丘顶变好;多数沙丘丘顶偏度值和峰态值大于两侧坡脚。(3)滨岸沙丘受风、水两相作用,能从较深地层获得沙源;其下风向沙丘主要受风力作用,沙源主要为丘间地沙及上风向风沙流携带的较细沙。  相似文献   

12.
黄河入海泥沙输运及沉积过程的数值模拟   总被引:19,自引:0,他引:19  
李国胜  王海龙  董超 《地理学报》2005,60(5):707-716
以利津站代表的黄河入海径流和泥沙数据驱动ECOMSED模型,对黄河入海泥沙悬移输运过程的逐月时空变化、输送通量以及海底沉积效应进行了数值模拟实验。分析结果表明,在忽略再悬浮作用条件下,黄河入海泥沙的输运扩散过程具有明显的季节变化规律,且这种变化具有年际相似性。黄河泥沙入渤海后总体朝向辽东湾西侧海岸扩散,而主要沉降区域是黄河口附近,且随着距离的增大,沉积通量迅速降低。模拟沉积速率一般在0.5~0.1 mm/年左右,与实际调查结果非常接近。海底地形等高线向渤海海盆西部、渤海湾南部,以及渤海海峡方向突出,也反映了泥沙通量的输送方向。从黄河入海泥沙悬移扩散过程的季节变化特征及其海底沉积效应来看,渤海海域泥沙悬移输运过程受潮汐动力、余流和和底层流场等因子的制约。除了黄河河口地区以外,各月悬浮泥沙高浓度区基本一致,集中分布在潮流能量最强的海域,潮流水平动能的大小与悬沙浓度大小分布基本一致。泥沙悬移输运方向与模拟获得的渤海三维风驱-潮致Lagrange余流的方向具有明显的相关关系,泥沙扩散的方向和强度明显受余流方向和强度的控制。  相似文献   

13.
黄河下游泥沙淤积的经验统计关系   总被引:4,自引:0,他引:4  
许炯心 《地理研究》1997,16(1):23-30
以黄河下游历年实测水文泥沙资料为基础,运用多元回归分析方法,建立了下游河道淤积量与淤积强度的经验统计关系。揭示了不同粒径组泥沙的来量和它们在全沙中所占的比率对下游河道淤积特征的影响。同时,研究了高含沙洪水及清水基流对下游河道淤积的影响。  相似文献   

14.
北洛河下游河槽形成与输沙特性   总被引:8,自引:0,他引:8  
齐璞  孙赞盈 《地理学报》1995,50(2):168-177
北洛河发湖泊于黄河粗沙来源区,年均含沙量达128kg/m^3年均流量仅25m^3.s,是典型的多沙河流,但由于泥沙主要由高含沙洪水输送,平水流量小,含沙量低,经常保持窄深稳定河槽,使高含沙洪水挟带的泥沙能顺利输送而不淤,并形成弯曲性河流。  相似文献   

15.
This paper mainly analyzes the geomorphological changes of the tidal deposition in the Liaohe Estuary based on the multi-year bathymetric charts in 1990, 1996, 2002 and 2005 and Landsat TM images in 1987, 1994, 2002 and 2005. Evolution of the tidal depositional system during the past 20 years in the Liaohe River was studied on the basis of 50 boreholes drilling and 30 km shallow stratigraphic exploration from 2002 to 2005. The main tidal depositional body of the modern Liaohe River delta is located in the Shuangtaizihe Estuary. The stratum within the depth of 10 m includes tidal bank facies, tidal channel facies and neritic facies with paleo-delta facies underlying them. The sediments of tidal bank facies are mainly composed of sand and silt with siltation load and suspended load of about 50% respectively in proportion. The sediment of tidal channel facies and neritic facies is composed of clayey silt and silty clay which belongs to suspended load. The study area was a small bay between the old Daliaohe River, the old Dalinghe River and the Raoyanghe River complex delta since the Holocene to 1896. Many tidal banks formed and expanded rapidly after the Shuangtaizihe River was excavated by labor in 1896. The runoff and sediment discharge have decreased since the construction of brake at the Shuangtaizihe River in 1958.The Shuangtaizihe Estuary is in the state of deposition as a whole whose tidal bank is increasing and expanding southward, westward and northward. The maximum expansion speed is 87 to 683 m/a and the mean depositional rate is 0.189 m/a. Erosion occurred in some part of tidal bank with average erosional rate of 0.122 m/a. The tidal channel was filled up with sediment at a migration speed of 48–200 m/a. Geomorphologic changes have happened under the combined influences of runoff, ocean dynamics and human activities. The main source of sediment changes from river sediment to sediment driven by tidal current and longshore current.  相似文献   

16.
辽河三角洲地貌演化(英文)   总被引:1,自引:0,他引:1  
This paper mainly analyzes the geomorphological changes of the tidal deposition in the Liaohe Estuary based on the multi-year bathymetric charts in 1990, 1996, 2002 and 2005 and Landsat TM images in 1987, 1994, 2002 and 2005. Evolution of the tidal depositional system during the past 20 years in the Liaohe River was studied on the basis of 50 boreholes drilling and 30 km shallow stratigraphic exploration from 2002 to 2005. The main tidal depositional body of the modern Liaohe River delta is located in the Shuangtaizihe Estuary. The stratum within the depth of 10 m includes tidal bank facies, tidal channel facies and neritic facies with paleo-delta facies underlying them. The sediments of tidal bank facies are mainly composed of sand and silt with siltation load and suspended load of about 50% respectively in proportion. The sediment of tidal channel facies and neritic facies is composed of clayey silt and silty clay which belongs to suspended load. The study area was a small bay between the old Daliaohe River, the old Dalinghe River and the Raoyanghe River complex delta since the Holocene to 1896. Many tidal banks formed and expanded rapidly after the Shuangtaizihe River was excavated by labor in 1896. The runoff and sediment discharge have decreased since the construction of brake at the Shuangtaizihe River in 1958.The Shuangtaizihe Estuary is in the state of deposition as a whole whose tidal bank is increasing and expanding southward, westward and northward. The maximum expansion speed is 87 to 683 m/a and the mean depositional rate is 0.189 m/a. Erosion occurred in some part of tidal bank with average erosional rate of 0.122 m/a. The tidal channel was filled up with sediment at a migration speed of 48–200 m/a. Geomorphologic changes have happened under the combined influences of runoff, ocean dynamics and human activities. The main source of sediment changes from river sediment to sediment driven by tidal current and longshore current.  相似文献   

17.
水沙条件对黄河下游河道输沙功能的影响   总被引:4,自引:3,他引:1  
许炯心 《地理科学》2004,24(3):275-280
提出河道输沙功能指标Fs为进入某一河道的泥沙总量(干流与支流输入沙量之和)与输出这一河道的泥沙量之比。河道输沙功能与来水量和来沙量有密切关系,若来水减少,来沙增多,则河道输沙功能减弱。来沙中大于0.05 mm粗泥沙含量百分比与河道输沙功能指标成负相关。来沙系数、特别是粗泥沙的来沙系数,是决定黄河下游输沙功能的重要因子;来沙系数越大,则河道输沙功能指标越低。场次洪水的输沙功能指标随场次洪水最大含沙量的增大而降低,历年河道输沙功能指标随各年中高含沙水流频率的增高而降低。小浪底水库修建后,为我们通过调水调沙提高河道输沙功能提供可能。研究表明,场次洪水平均含沙量35 kg/m3,或场次洪水平均来沙系数为(0.015 kg·s)/m6,是在调水调沙中实现河道输沙功能优化的最优含沙量和最优来沙系数,平滩流量则是实现河道输沙功能最大化的最优流量级。  相似文献   

18.
对青藏高原东部若尔盖盆地内外实地考察,在玛曲瓶颈段黄河二级阶地前沿陡坎,发现了含有古深湖相和古河床河漫滩相地层序列的典型沉积剖面。通过沉积物粒度特征分析和光释光(optically stimulated luminescence,OSL)测年,研究结果表明:① 剖面下部淡蓝灰色古深湖相沉积层为深水厌氧环境下形成的湖相沉积物,而覆盖其上的杂色卵石层夹淡黄橙色透镜状沙层则是古河床河漫滩相沉积物,指示了强动力流水作用过程。这2组地层的不整合接触关系,是黄河切开若尔盖湖盆导致古湖水外泄的直接证据。② 剖面古深湖相沉积层顶部和古滨浅湖相沉积层底部的OSL测年结果表明,古黄河在37 ka BP切开若尔盖湖盆,导致湖水外泄,35 ka BP湖水变浅消失,黄河沟通了若尔盖盆地水系。③ 晚更新世东昆仑大断裂强烈的新构造运动和37 ka 温暖湿润气候的综合影响使得尚处于玛曲断陷谷地草原的古黄河源溯源侵蚀加剧,由西向东在玛曲城南瓶颈段切开了若尔盖古湖盆,导致古湖水外泄,从而沟通了若尔盖湖盆的水系,使之成为黄河源。该研究结果对于深入理解青藏高原东北部河湖水系演变及黄河水系的形成具有重要的科学意义。  相似文献   

19.
Five diagnostic experiments with a 3D baroclinic hydrodynamic and sediment transport model ECOMSED in couple with the third generation wave model SWAN and the Grant–Madsen bottom boundary layer model driven by the monthly sediment load of the Yellow River, were conducted to separately diagnose effects of different hydrodynamic factors on transport of suspended sediment discharged from the Yellow River in the Bohai Sea. Both transport and spatio-temporal distribution of suspended sediment concentration in the Bohai Sea were numerially simulated. It could be concluded that suspended sediment discharged from the Yellow River cannot be delivered in long distance under the condition of tidal current. Almost all of sediments from the Yellow River are deposited outside the delta under the condition of wind-driven current, and only very small of them are transported faraway. On the basis of wind forcing, sediments from the Yellow River are mainly transported north-northwestward, and others which are first delivered to the Laizhou Bay are continuously moved northward. An obvious 3D structure characteristic of sediment transport is produced in the wind-driven and tide-induced residual circulation condition. Transport patterns at all layers are generally consistent with circulation structure, but there is apparent deviation between the depth-averaged sediment flux and the circulation structure. The phase of temporal variation of sediment concentration is consistent with that of the bottom shear stress, both of which are proved to have a ten-day cycle in wave and current condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号