首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
西藏高原降水变化趋势的气候分析   总被引:84,自引:8,他引:76  
杜军  马玉才 《地理学报》2004,59(3):375-382
利用西藏1971~2000年月降水量、降水日数资料,分析了近30年高原降水的变化趋势。结果发现,西藏大部分地区年降水量变化为正趋势,降水倾向率为1.4~66.6 mm/10a,而阿里地区呈较为明显的减少趋势。年降水日数变化阿里地区、林芝地区东部为负趋势,正趋势以那曲地区中西部、昌都地区北部最为明显。20世纪70年代高原西部为正距平、东部为负距平,20世纪80年代大部分地区为负距平,20世纪90年代高原西部为负距平,东部为正距平。近30年来西藏高原平均年、四季降水量均呈增加趋势,年降水量以19.9 mm/10a的速率增加,尤其是20世纪90年代增幅较大,1992年以来春、夏季降水明显增加。阿里地区出现了暖干化趋势。年降水异常偏涝年主要出现在20世纪80和90年代。  相似文献   

2.
西藏羊卓雍湖流域近45 年气温和降水的变化趋势   总被引:4,自引:0,他引:4  
杜军  胡军  唐述君  鲍建华  拉巴 《地理学报》2008,63(11):1160-1168
利用西藏羊卓雍湖流域气象、水文观测站1961-2005 年逐月的平均气温、降水量等资 料, 分析了近45 年流域气温、降水的年际和年代际变化特征和异常年份, 以及羊湖水位变化趋势及影响因子, 结果表明: 近45 年流域年平均气温以0.25 oC/10a 的速率显著升高, 增温主要表现在秋、冬季。近25 年, 流域平均降水量除冬季呈减少趋势外, 其他各季节表现为显 著的增加趋势, 增幅为11.4~30.0 mm/10a, 夏季增幅最大; 年降水量以54.2 mm/10a 的速率明显增加。20 世纪60 年代至90 年代, 除夏季外, 其他3 季表现为逐年代增温趋势。在夏季, 降水量除80 年代偏少外, 其他3 个年代偏多; 而冬季相反, 80 年代降水偏多, 其他3 个年代偏少。流域年平均气温异常偏高年出现过3 次, 且发生在20 世纪90 年代末至21 世纪初; 60 年代后期和70 年代初降水多异常年份。自1997 年发电以来, 降水量呈增加趋势, 流域平均降水量达409.7 mm, 明显高于平衡降水量, 水位呈较明显的上升趋势。降水增多、日照减少, 以及气温明显升高、冰雪融水增加是造成水位上升的主要原因。  相似文献   

3.
拉萨近半个世纪降水的变化特征   总被引:7,自引:1,他引:6  
杜军  建军  余燕群  杨斌  拉巴 《干旱区地理》2008,31(3):397-402
利用拉萨1952-2005年逐月降水量,≥0.1 mm、1.0 mm、5.0 mm和10.0 mm年降水日数,分析了近半个世纪拉萨年、季降水量及年降水日数的年际和年代际变化.结果发现:近半个世纪以来,拉萨年降水量表现为前30年呈不显著的减少趋势,减幅为17.8 mm/10 a;季降水量除夏季呈不显著的减少趋势外,其它各季均表现为增加趋势,以秋季增幅最大;≥0.1 mm、≥1.0 mm和≥5.0 mm年降水日数表现为不同程度的增加趋势.近25年≥10.0 mm的年降水日数呈极显著的增加趋势.20世纪50年代至80年代夏季降水量表现为逐年代减少趋势,秋季降水量则呈逐年代增加趋势,而冬季降水量为负距平.各等级年降水日数20世纪80年代偏少,90年代偏多.年降水量异常偏旱年主要出现在20世纪80年代,50年代和60年代的初期各出现一次异常偏涝年,70年代从未出现过异常年份.14年振荡周期可能是影响年降水量的主导周期.  相似文献   

4.
庐山旅游区气候变化特征及其影响因素分析   总被引:1,自引:1,他引:0  
叶正伟  吴威 《地理科学》2011,31(10):1221-1227
采用Mann-Kendall方法,对1955~2008年庐山旅游区气候要素进行变化趋势分析和突变检验,结果表明,近54 a来气温和降水都出现了不同程度的差异性升高和增加趋势。庐山旅游区年平均气温上升趋势较显著,20世纪90年代以来年平均气温明显偏高,并在1996年左右发生了突变。极端最高气温升高幅度微弱,但极端最低气温上升趋势显著,且升高幅度较大。年降水量呈微弱的增加趋势,20世纪70年代频繁波动突变,且20世纪70年代以来年降水量都较以前偏高,其中20世纪90年代最高。近年来,最大日暴雨量和年暴雨日数都呈增加趋势,20世纪90年代是最大日暴雨量和暴雨日数的最高时期。夏秋季节暴雨频繁,暴雨6月最多,大暴雨8月最多,且年降水量增加趋势的贡献可能是夏秋季节极端降水事件增加的结果。  相似文献   

5.
1960—2009年湖南省暴雨极端事件的气候特征   总被引:4,自引:1,他引:3  
本文采用湖南省88个地面气象站点1960-2009年的逐日降水资料,运用一元线性回归、M-K突变分析及小波分析等方法分析了湖南省50年来区域暴雨极端事件的时空分布特征及变化趋势。研究表明:过去50年暴雨极端事件增多、强度增大。暴雨极端事件有波动上升的趋势,20世纪60年代和80年代偏少,70年代和90年代偏多;在80年代末到90年代初暴雨极端事件由小变大是一突变现象,且存在2年、5年、7年和21年左右的周期振荡。降水量明显高于平均值的月份集中在4—8月,而暴雨降水量和暴雨总次数明显高于平均值的月份集中在5-8月。降水量湘西地区可能更加少雨,湘北洞庭湖区和湘中部分地区有可能向多雨转变的趋势;湘东和湘南有可能向干旱转变。暴雨降水量、最大日降水量、暴雨次数、暴雨强度和降水集中率在湘中、湘西南和湘西北个别地区可能比原来更少,其余地区均可能增多。  相似文献   

6.
在分析我国季风区西北缘宁夏河东沙地西部的油松(Pinus tabulaeformis)树木年轮宽度年表与气温降水相关关系基础上,建立了树轮宽度指数与年降水量的转换方程。交叉检验结果表明转换方程比较稳定,重建结果合理可靠。公元1899年来降水量重建结果表明:研究区在20世纪40年代以前,降水变化波动幅度较大,年际间干湿变化明显,20世纪40-80年代间降水波动幅度变小且频率增加,20世纪80年代以后降水变化波动幅度又趋于增大且频率减小;与昌灵山、贺兰山和祁连山东段降水变化对比分析发现河东沙地西部的降水量变化与周边地区气候演变存在一定的同步性;宁夏河东沙地西部20世纪10年代、20世纪20-30年代初期、20世纪末以及2004-2006年的相对干旱时期有利于该区沙漠化范围的扩大,对该区沙漠化治理不利,而20世纪初期、20世纪10年代末期、20世纪30-40年代、20世纪90年代的相对湿润时期在一定程度上减缓了暖干化趋势,有利于沙漠化范围的缩小。周期分析结果表明,宁夏河东沙地西部1899年来降水量变化存在2~4 a、5~7 a和10 a左右变化周期。  相似文献   

7.
利用清代雨雪分寸记录和现代器测资料,重建了成都1796—2015年分辨率为年的雨季降水量序列。结果表明,过去220 a间成都的平均雨季降水量为838 mm,19世纪20~40年代、80年代到20世纪10年代、20世纪30~40年代降水偏多,19世纪初到20年代、50~70年代、20世纪20年代、50年代到21世纪初降水偏少,并在1879—1880年发生了由少到多的明显突变;降水最多的10 a为1832年、1896年、1898年、1899年、1903年、1907年、1915年、1921年、1937年和1947年,最少的10 a为1814年、1838年、1865年、1868年、1869年、1872年、1930年、1939年、1970年和2002年。成都雨季降水量存在显著的50~75 a周期,和太平洋年代际振荡(Pacific Decadal Oscillation, PDO)指数在50~70 a信号上存在较强的负相关,且与上一年冬季至当年秋季北印度洋的全球海表温度(SST)及当年夏秋季赤道太平洋的SST也存在较强的负相关,SST偏暖(冷)时,雨季降水量往往偏少(多)。  相似文献   

8.
塔里木河流域径流量周期特征及其影响因素   总被引:3,自引:1,他引:2  
采用交叉小波变换与小波相干方法分析了塔里木河流域近40 a来年径流量、年降水量和年平均温度的周期特征,结果表明:塔河流域年径流量、年降水量和年均温度存在2.0~6.0 a左右的显著周期变化,除卡群站年径流量周期变化不显著,其余水文站的年径流量周期强烈震荡主要分布于20世纪60年代中后期至70年代以及90年代以后;各站年降水量的显著周期主要分布于20世纪80年代以后;年均气温显著周期主要分布于20世纪60年代中后期至70年代。同古孜洛克和卡群的径流量显著周期变化主要受和田和莎车降水量的影响;沙里桂兰克1965~1968的径流量显著周期主要是阿合齐气温周期显著变化引起的,20世纪90年代以后阿合齐降水量成为影响径流量周期变化的主要因素;大山口的年径流量周期变化受降水量和气温的共同影响。阿拉尔径流量的周期变化在20世纪70年代主要受源流降水量显著周期变化。由于人口和耕地面积的迅速增加,源流区用水量增加,20世纪90年代以后降水量的周期变化没有引起阿拉尔径流量的周期变化。  相似文献   

9.
泾河流域近50年来的径流时空变化与驱动力分析   总被引:5,自引:2,他引:3  
利用近50 a的实测数据,分析了泾河流域的径流时空变化规律和主要驱动因子。研究表明:年降水量和径流深的空间分布均呈现从南到北的明显减少趋势,并在上游山区出现高值区。流域径流总量自20世纪60年代到21世纪初显著减少,由50.1 mm减到22.3 mm,但各区域的变化很不均匀,其中西部、西南和东南的子流域径流大量减少,可达17.5 mm/10 a;北部和东北则减少不明显,最大减少率仅为1.3 mm/10 a。降水量变化曾是径流减少的重要原因,但20世纪90年代后实施的退耕还林等生态工程在2000年后已经成为引起径流减少的最主要原因。  相似文献   

10.
辽宁省近44年夏季降水变化及区域特征分析   总被引:9,自引:3,他引:6  
利用辽宁省39个气象观测站1961-2004年夏季(6~8月)的降水资料,通过趋势系数、REOF、滑动均方差等方法,对辽宁省近44年夏季降水的时空变化特征进行了分析。结果表明,辽宁夏季降水长期变化呈微弱的减少趋势,以14 mm/10 a的速率减少。20世纪60年代到70年代中期降水以偏多为主,70年代中期到80年代初降水偏少,80年代中期降水偏多,80年代末到90年代初降水偏少,90年代中期降水偏多,90年代后期至今降水一直持续偏少。辽宁夏季降水分为中北部地区及盘锦、抚顺、营口地区、辽河以西部地区、东南部地区3个不同的区域,3个区夏季降水的长期变化趋势都为减少趋势,其中东南部地区降水减少趋势明显大于其他两个区。  相似文献   

11.
There were a series of severe floods along the middle to lower reaches of the Yangtze River (Changjiang River) in China during the 1990s. The extensive summer (June, July and August) precipitation is mostly responsible for the flooding. The summer rainfall in the 1980s and the 1990s is much higher than that in the previous 3 decades. The means for 1990-1999 is +87.62 mm above normal, marked the 1990s the wettest decade since the 1950s. Six stations with a time span of 1880-1999 are selected to establish century -long rainfall series. This series also shows that the 1990s is the wettest decade during the last 120 years. In the wettest 12 years, four occurred in the 1990s (1991,1996,1998 and 1999). Both global and China’s temperature show there is a relative lower air temperature during the 1960-1970s, and a rapid warming in the 1980-1990s. Comparisons of rainfall between 1960-1979 and 1980-1999 show there are dramatic changes. In the cold period 1960-1979, the summer rainfall along the Yangtze River is 3.8 % to 4.7 % below the normal, during the warm period 1980-1999, over 8.4 % to 18.2 % of summer rainfall occurs. Over the whole eastern China, the summer rainfall shows opposite spatial patterns from the 1960-1970s to 1980-1990s. The consistent trend toward more rainfall with global warming is also presented by the greenhouse scenario modeling. A millennial Drought/flood Index for the middle to lower reaches of the Yangtze River showed that although the surplus summer rainfall in the 1990s is the severest during the past 150 years, it is not outstanding in the context of past millennium. Power spectra of the Drought/flood Index show significant interdecadal periods at 33.3 and 11.8 years. Thus, both the natural inter-decadal variations and the global warming may play important roles in the frequent floods witnessed during the last two decades.  相似文献   

12.
Flooding 1990s along the Yangtze River, has it concern of global warming?   总被引:4,自引:0,他引:4  
1 IntroductionFloods occurring along the Yangtze River (Changjiang River) valley make up about 35.8 % of the floods over China[1]. Most noteworthily, a series of severe floods happened along the middle to lower Yangtze River and caused great damages during the past decade. The flood of 1991 afflicted 0.98 million hectares of farmland and resulted in 1,200 loss of life. Severe flood occurred again over this region in 1996. An extremely destructive flood emerged during the summer of 1998, wh…  相似文献   

13.
Based on the mean yearly precipitation and the total yearly evaporation data of 295 meteorological stations in China in 1951-1999, the aridity index is calculated in this paper. According to the aridity index, the climatic regions in China are classified into three types, namely, arid region, semi-arid region and humid region. Dry and wet climate boundaries in China fluctuate markedly and differentiate greatly in each region in the past 50 years. The fluctuation amplitudes are 20-400 km in Northeast China, 40-400 km in North China, 30-350 km in the eastern part of Northwest China and 40-370 km in Southwest China. Before the 1980s (including 1980), the climate tended to be dry in Northeast China and North China, to be wet in the eastern part of Northwest China and very wet in Southwest China. Since the 1990s there have been dry signs in Southwest China, the eastern part of Northwest China and North China. The climate becomes wetter in Northeast China. Semi-arid region is the transitional zone between humid and arid regions, the monsoon edge belt in China, and the susceptible region of environmental evolution. At the end of the 1960s dry and wet climate in China witnessed abrupt changes, changing wetness into dryness. Dry and wet climate boundaries show the fluctuation characteristics of the whole shifts and the opposite fluctuations of eastward, westward, southward and northward directions. The fluctuations of climatic boundaries and the dry and wet variations of climate have distinctive interdecadal features.  相似文献   

14.
1951-2010 年中国主要气候区划界线的移动   总被引:10,自引:2,他引:8  
根据采用同一区划方法、指标体系划分的1951-1980 年及1981-2010 年中国气候区划结果,对比分析了过去60 年中国气候区划的主要界线变化特征。结果表明:1951-1980 年至1981-2010 年,我国寒温带界线西缩、北移;暖温带北界东段北移,其中最大北移幅度超过1个纬度;北亚热带北界东段平均北移1 个纬度以上,并越过淮河一线;中亚热带北界中段从江汉平原南沿移至了江汉平原北部,最大移动幅度达2 个纬度;南亚热带北界西段北移0.5~2 个纬度;青藏高原亚寒带范围缩小,高原温带范围增加。东北湿润、半湿润区虽转干与趋湿并存,但其中温带地区的湿润-半湿润东界东移,大兴安岭中部与南部的半湿润-半干旱界线北扩;其他地区的干湿分界线虽未出现明显移动,但北方半干旱及华北半湿润区总体转干,河西走廊、新疆及青藏高原的干旱、半干旱区总体转湿;而南方湿润区则趋干与转湿并存。  相似文献   

15.
Based on the mean yearly precipitation and the total yearly evaporation data of 295 meteorological stations in China in 1951–1999, the aridity index is calculated in this paper. According to the aridity index, the climatic regions in China are classified into three types, namely, arid region, semi-arid region and humid region. Dry and wet climate boundaries in China fluctuate markedly and differentiate greatly in each region in the past 50 years. The fluctuation amplitudes are 20–400 km in Northeast China, 40–400 km in North China, 30–350 km in the eastern part of Northwest China and 40–370 km in Southwest China. Before the 1980s (including 1980), the climate tended to be dry in Northeast China and North China, to be wet in the eastern part of Northwest China and very wet in Southwest China. Since the 1990s there have been dry signs in Southwest China, the eastern part of Northwest China and North China. The climate becomes wetter in Northeast China. Semi-arid region is the transitional zone between humid and arid regions, the monsoon edge belt in China, and the susceptible region of environmental evolution. At the end of the 1960s dry and wet climate in China witnessed abrupt changes, changing wetness into dryness. Dry and wet climate boundaries show the fluctuation characteristics of the whole shifts and the opposite fluctuations of eastward, westward, southward and northward directions. The fluctuations of climatic boundaries and the dry and wet variations of climate have distinctive interdecadal features.  相似文献   

16.
近50年青藏高原东部降雪的时空演变   总被引:1,自引:0,他引:1  
胡豪然  梁玲 《地理学报》2014,69(7):1002-1012
选用1967-2012年青藏高原东部60个站点的观测资料,分析了该地区降雪的时空演变特征,并结合降水和气温的变化,探讨了降雪与积雪的关系,结果表明:青藏高原东部年降雪量在1.3~152.5 mm范围内变化,空间分布差异显著;秋季降雪表现出中间多、周边少的特征,冬季降雪表现出由东南向西北递减的特征,春季降雪最多且空间分布与年降雪基本一致;降雪可划分为青南高原区、藏北高原区、柴达木盆地区、青藏高原东南缘区、川西高原西北部区、青藏高原南缘区、青海东北部区及藏南谷地区;就青藏高原整体而言,除秋季外,整年、冬季和春季降雪均表现出“少—多—少”的年代际变化特征,其中冬季降雪在1986年发生了由少到多的突变,整年、冬季和春季降雪均在1997年发生了由多到少的突变;不同区域降雪的时间变化规律各具特点;降雪与积雪的关系十分密切,春季降雪受气温的影响最为显著,秋季次之,冬季最弱;20世纪末,春季降雪受气温升高的影响表现出与降水变化相反的由多到少的气候突变特征。  相似文献   

17.
基于新疆阿勒泰地区7个观测站1961-2010年冬季逐日降水量资料,定义了大到暴雪特征量,并对其时间序列进行标准化,然后运用线性趋势、Cubic函数、M-K突变检验、Morlet小波变换、R/S分析等方法,研究了该区冬季大到暴雪的气候变化特征。结果表明:大到暴雪量对冬季降水总量的方差贡献较大。在气候分布上,大到暴雪特征量、冬季总降水量的大值区均位于北部东部,大值中心位于富蕴或阿勒泰站,方差贡献大值中心位于青河站;小值中心位于福海站。在年际尺度上,该区各特征量有7 a的显著周期变化特征;在年代际尺度上,有13~15 a、17~23 a、28~29 a的显著周期变化。在时间域上,大到暴雪量和频次在20世纪90年代之前以负距平为主,变化相对平稳,90年代之后以正距平为主,变化相对剧烈;大到暴雪强度60-70年代初、80年代中期到21世纪最初10 a波动幅度较大,70年代中期到80年代初变化相对平稳。Cubic函数拟合表明,大到暴雪特征量在80年代末90年代初发生了由少到多的转型,但没有突变点。在空间域上,各年代大到暴雪量大值区所在范围比较稳定,位于北部东部,小值区出现在河谷平原;值中心在60和90年代出现在富蕴站,其它年代出现在阿勒泰站;小值中心70年代出现在布尔津站,其它年代均出现在福海站;大到暴雪频次的变化与其不同的是大值中心90年代出现在青河站;大到暴雪强度在60和70年代大值中心位于阿勒泰站,80和90年代位于富蕴站,21世纪最初10 a位于哈巴河站,大值区分布也较复杂。大到暴雪特征量全区及各站均呈增多趋势;大到暴雪量是阿勒泰和福海站、大到暴雪频次和强度是阿勒泰、福海、富蕴站没有通过显著性检验,其它均通过了显著性检验。R/S分析表明,在未来该地区大到暴雪特征量将逐渐转为减少的趋势,尤其是吉木乃站。通过分析揭示了阿勒泰地区大到暴雪变化规律,对指导该地区经济生产布局、防灾减灾、暴雪灾害风险评估提供参考,同时也为短期气候预测提供依据。  相似文献   

18.
气候与地表覆被变化对梭磨河流域水文影响的分析   总被引:13,自引:10,他引:13  
分析了1960~1990年长江上游梭磨河流域气候和地表覆被变化及其对流域水文的影响。30年来,流域降水有所增加,有林地面积1957~1974年大幅下降,以后有所回升。有林地每公顷蓄积量由1957年的423m^3下降到1998年的177m^3,40年来林地质量不断下降,流域水文发生了明显的变化;年均流量自1972年以来不断上升,洪水频率、洪峰流量和土壤侵蚀模糊明显增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号