首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sediment provenance studies commonly utilize isotopic signatures to resolve detrital mineral sources and routing. However, non-unique ages and geochemical characteristics across geographically distinct crystalline source regions can lead to significant ambiguities in mineral provenance interpretations. Such ambiguity is apparent in southern Australia’s Cenozoic Eucla Basin, which hosts world-class heavy mineral sand resources. Here, new Hf isotope data are provided from four heavy mineral prospects (N = 8, n = 844 [N = samples, n = grains]). Zircon grain shape data are also presented for a suite of detrital Eucla Basin samples (N = 22, n = 35,604) and the basin’s underlying basement, the Coompana Province (N = 13, n = 824). The data are integrated with published detrital and non-detrital primary zircon data to investigate the efficacy of grain shape analysis to better resolve the basin’s mineral provenance. Zircon Hf isotope compositions indicate a primary Mesoproterozoic juvenile source for zircon melts (~1250–1000 Ma, ?2.5 < ?Hf > ~+5) with additional contributions from a range of juvenile to evolved late Archean to Phanerozoic-aged zircon bearing magmas (?28.0 < ?Hf > +11). U–Pb geochronology and Hf isotopes are incapable of differentiating Mesoproterozoic-aged source rocks bounding the region for the majority of heavy mineral deposits analyzed as potential sources express overlapping crystallization ages and similarities in Hf-isotope characteristics. However, distinct zircon grain shapes (i.e., perimeter, major axis and circularity) facilitate improved differentiation across these Mesoproterozoic sources. Filtering of U–Pb age, Hf isotope and shape data implicate the underlying Madura and Coompana provinces as dominant sediment sources for Eucla Basin detritus aged ~1400–1000 Ma. The lack of direct sediment pathways between the underlying basement provinces and placer sediments analyzed demonstrates the significance of zircon reworking from intermediate sedimentary basins in the formation of the economically significant Eucla Basin beach placers. Zircon grain shape represents a cheaply acquired and readily incorporated grain characteristic that can enhance provenance investigations.  相似文献   

3.
This paper presents combined U/Pb, Th/U and Hf isotope analyses on detrital and magmatic zircon grains together with whole-rock geochemical analyses of two basement and eight sedimentary rock samples from the Namuskluft and the Dreigratberg in southern Namibia (Gariep Belt). The sedimentary sections evolved during the Cryogenian on the SW part of the Kalahari Craton and where therefore deposited in an active rift setting during the break-up of Rodinia. Due to insufficient palaeomagnetic data, the position of the Kalahari Craton within Rodinia is still under discussion. There are possibilities to locate Kalahari along the western side of Australia/Mawsonland (Pisarevski et al. in Proterozoic East Gondwana: supercontinent assembly and break-up, Geological Society, London, 2003; Evans in Ancient Orogens and modern analogues. Geological Society, London, 2009; and others) or together with the Congo-Sao Francisco and Rio de la Plata Cratons (Li et al. in Prec Res 45: 203–2014, 2008; Frimmel et al. in Int J Earth Sci (Geol Rundsch) 100: 323–354, 2011; and others). It is sill unclear which craton rifted away from the Kalahari Craton during the Cryogenian. Although Middle to Upper Cryogenian magmatic activity is known for the SE Kalahari Craton (our working area) (Richtersveld Suite, Rosh Pinah Fm), all the presented samples show no U/Pb zircon ages younger than ca. 1.0 Ga and non-older than 2.06 Ga. The obtained U/Pb ages fit very well to the exposed basement of the Kalahari Craton (1.0–1.4 Ga Namaqua Province, 1.7–2.0 Ga Vioolsdrif Granite Suite and Orange River Group) and allow no correlation with a foreign craton such as the Rio de la Plata or Australia/Mawsonland. Lu–Hf isotopic signatures of detrital zircon point to the recycling of mainly Palaeoproterozoic and to a smaller amount of Archean crust in the source areas. εHf(t) signatures range between ?24 and +14.8, which relate to TDM model ages between 1.05 and 3.1 Ga. Only few detrital zircon grains derived from magmas generated from Mesoproterozoic crustal material show more juvenile εHf(t) signatures of +14, +8 to +4 with TDM model ages of 1.05–1.6 Ga. During Neoproterozoic deposition, only old cratonic crust with an inherited continental arc signature was available in the source area clearly demonstrated by Hf isotope composition of detrital zircon and geochemical bulk analysis of sedimentary rocks. The granodiorites of the Palaeoproterozoic basement underlying Namuskluft section are ca. 1.9 Ga old and show εHf(t) signatures of ?3 to ?5.5 with TDM model ages of 2.4–2.7 Ga. These basement rocks demonstrate the extreme uplift and deep erosion of the underlying Kalahari Craton at its western margin before general subsidence during Cryogenian and Ediacaran time. The sedimentary sequence of the two examined sections (Namuskluft and Dreigratberg) proposes the presence of a basin and an increasing subsidence at the SW part of the Kalahari Craton during the Cryogenian. Therefore, we propose the initial formation of an intra-cratonic sag basin during the Lower Cryogenian that evolved later to a rift basin at the cratonic margin due to increasing crustal tension and rifting together with the opening of the Adamastor Ocean. As the zircons of the sedimentary rocks filling this basin show neither rift-related U/Pb ages nor an exotic craton as a possible source area, the only plausible sedimentary transport direction providing the found U/Pb ages would be from the E or the SE, directly from the heart of the Kalahari Craton. Due to subsidence and ongoing sedimentation from E/SE directions, the rift-related magmatic rocks were simply covered by the input of old intra-cratonic material that explains the absence of Neoproterozoic zircon grains in our samples. The geochemical analyses show the erosion of a continental arc and related sedimentary rocks with an overall felsic provenance. The source area was a deeply eroded and incised magmatic arc that evolved on continental crust, without any evidence for a passive margin. All of this can be explained by the erosion of rocks related to the Namaqua Belt, which represents one of the two major peaks of zircon U–Pb ages in all analysed samples. Therefore, the Namaqua Belt was well exposed during the Cryogenian, available to erosion and apart from the also well-exposed Palaeoproterozoic basement of the Kalahari Craton one potential source area for the sedimentary rocks in the investigated areas.  相似文献   

4.
Discoveries of >4 Ga old zircon grains in the northwest Yilgarn of Western Australia led to the conclusion that evolved crust formed on the Earth within the first few 100 Ma after accretion. Little is known, however, about the fate of the first crust that shaped early Earth's surface. Here we report combined solution and laser-ablation Lu–Hf–U–Pb isotope analyses of early Archean and Hadean detrital zircon grains from different rocks of the Narryer Gneiss Complex (NGC), Yilgarn Craton, Western Australia. The zircons show two distinct groups with separate evolutionary trends in their Hf isotopes. The majority of the zircon grains point to separation from a depleted mantle reservoir at ∼3.8–3.9 Ga. The second Hf isotope trend implies reworking of older Hadean zircon grains. The major trend starting at 3.8–3.9 Ga defined by the Hf isotopes corresponds to a Lu/Hf that is characteristic for felsic crust and consequently, the primary sources for these zircons presumably had a chemical composition characteristic of continental crust. Reworked Hadean crust appears to have evolved with a similar low Lu/Hf, such that the early crust was probably evolved with respect to Lu–Hf distributions. The co-variation of Hf isotopes vs. age in zircon grains from Mt. Narryer and Jack Hills zircon grains implies a similar crustal source for both sediments in a single, major crustal domain. Age spectra and associated Hf isotopes in the zircon grains strongly argue for ongoing magmatic reworking over hundreds of millions of years of the felsic crustal domain in which the zircon grains formed. Late-stage metamorphic zircon grains from the Meeberrie Gneiss unit yield a mean U–Pb age of 3294.5 ± 3.2 Ma with initial Hf isotopes that correspond to the evolutionary trend defined by older NGC zircon grains and overlap with other detrital zircon grains, proving their genetic relationship. This ‘Meeberrie event’ is interpret here as the last reworking event in the precursor domain before final deposition. The continuous magmatic activity in one crustal domain during the Archean is recorded by the U–Pb ages and Hf isotope systematics of zircon grains and implies reworking of existing crust. We suspect that the most likely driving force for such reworking of crustal material is ongoing crustal collision and subduction. A comparison of Hf isotope signatures of zircon grains from other Archean terranes shows that similar trends are recognised within all sampled Archean domains. This implies either a global trend in crustal growth and reworking, or a genetic connection of Archean terranes in close paleo-proximity to each other. Notably, the Archean Acasta gneiss (Canada) shows a similar reworking patterns to the Yilgarn Craton of Hadean samples implying either a common Hadean source or amalgamation at the Hadean–Archean transition.  相似文献   

5.
鄂尔多斯盆地北部直罗组原生灰色砂岩具有高铀背景值的特征,在层间氧化阶段砂岩同沉积期富集的铀元素遭受氧化迁出构成该区铀成矿的重要铀源。本文对鄂尔多斯盆地北部铀矿区直罗组砂岩进行了碎屑锆石U-Pb定年、重矿物和古水流分析,深入分析了该区直罗组的沉积物源,并探讨了富铀砂岩的成因。结果显示:矿区直罗组砂岩碎屑锆石U-Pb年龄主要集中在251~308Ma,322~354Ma,1529~2182Ma,2200~2632Ma四个年龄区间;富Mn钛铁矿、锆石、磷灰石和榍石的重矿物组合指示物源主要为中酸性岩浆岩;通过与源区对比分析认为铀矿区直罗组物源主要来自盆地之北的乌拉山—大青山地区和狼山东部地区的新太古代、古元古代和晚古生代中酸性岩浆岩及新太古代、古元古代变质岩。结合源区岩体铀含量特征分析,发现晚古生代中酸性岩浆岩相对于源区其它岩体强烈富集铀元素,是研究区直罗组高铀背景值砂岩形成发育的主要原因。晚古生代中酸性岩浆岩的形成与古亚洲洋的演化密切相关,其分布特征可以作为中东亚成矿域内盆地铀资源远景预测的重要依据。  相似文献   

6.
Detrital zircon U–Pb ages and heavy mineral assemblages provide conflicting evidence of the provenance of the Ordovician–lower Silurian Tumblagooda Sandstone, a fluvial to shallow marine, red-bed succession over 2000 m thick, within the northern Perth and Southern Carnarvon basins in Western Australia. Tourmaline composition indicates a main provenance from interior continental terranes dominated by ‘Li-poor granitoids, pegmatites and aplites’ and ‘Ca-poor metapelites, metapsammites and quartz-tourmaline rocks,’ akin to the Yilgarn Craton to the east of outcrop of the Tumblagooda Sandstone. Other possible source areas include orogens mostly to the south but lack tourmaline analyses for comparison. Taking into account the lack of garnets—a conspicuous component of the adjacent Proterozoic Northampton Inlier—the limited zircon data are compatible with the Albany–Fraser and Pinjarra orogens along the southern and western margins of Australia and/or terranes in or adjacent to East Africa and/or Antarctica, as ultimate source regions with a minor contribution from the Yilgarn Craton, as with other Phanerozoic strata in Western Australia. Whereas the textural and mineralogical maturity of the sandstone could be explained by derivation from such regions, it is more likely that the source was relatively local and that the sediment passed through several phases of reworking. The main source of ilmenite and hematite, by comparison, may have been mafic–ultramafic rocks and/or banded iron formations within the Archean Yilgarn Craton to the east or the Pilbara Craton to the northeast, mobilised by acidic meteoric waters. Iron oxides forming the earliest cements may have been derived from the oxidation of detrital hematite and ilmenite grains concentrated along some bedding laminae or transported in solution from beyond the zone of deposition. Whereas the detrital iron oxides most likely come from the craton to the east of outcrop of the Tumblagooda Sandstone, the sand grains appear to have originally come from a relatively local orogenic source.  相似文献   

7.
Neoproterozoic sedimentary sequences in the South China Block provide great opportunity to examine the tectonic evolution and crustal accretion during this period. This study presents U–Pb ages and Hf isotope composition of detrital zircons and Nd isotope composition of whole rocks of the Neoproterozoic sequences from the Yangtze Block, part of the South China Block. Age patterns of detrital zircons imply that the source area experienced three major periods of magmatic activity at 2,300–2,560, 1,900–2,100 and 770–1,000?Ma and two major episodes of juvenile crust accretion at 2,600–3,400 and 770–1,000?Ma. The maximum age of the Gucheng glaciation can be restricted at?~768?Ma from the youngest detrital zircon ages, probably corresponding to the Kaigas glaciation rather than to the Sturtian glaciation. High La/Sc ratio and low Cr/Th, Sc/Th and Co/Th ratios of the sedimentary rocks point to a derivation from dominantly felsic upper continental crustal sources, whereas large variation of εNd(t) and εHf(t) values indicates that mantle-derived magmatic rocks also provided material to the sedimentary sequences in different degrees. The shift in εNd(t) values of whole rocks and U–Pb age spectra of detrital zircons records the evolution from a back-arc to retro-arc foreland to a rift basin. Age distribution of detrital zircons from the Neoproterozoic sequences, compared with those of the major crustal blocks of Rodinia, implies that the position of the Yangtze Block was probably adjacent to northern India rather than between Australia and Laurentia before the breakup of the Rodinia supercontinent.  相似文献   

8.
Detrital zircon from the Carboniferous Girrakool Beds in the central Tablelands Complex of the southern New England Orogen, Australia, is dominated by ca 350–320 Ma grains with a peak at ca 330 Ma; there are very few Proterozoic or Archean grains. A maximum deposition age for the Girrakool Beds of ca 309 Ma is identified. These data overlap the age of the Carboniferous Keepit arc, a continental volcanic arc along the western margin of the Tamworth Belt. Zircon trace-element and isotopic compositions support petrographic evidence of a volcanic arc provenance for sedimentary and metasedimentary rocks of the central Tablelands Complex. Zircon Hf isotope data for ca 350–320 Ma detrital grains become less radiogenic over the 30 million-year record. This pattern is observed with maturation of continental volcanic arcs but is opposite to the longer-term pattern documented in extensional accretionary orogens, such as the New England Orogen. Volcanic activity in the Keepit arc is inferred to decrease rapidly at ca 320 Ma, based on a major change in the detrital zircon age distribution. Although subduction continues, this decrease is inferred to coincide with the onset of trench retreat, slab rollback and the eastward migration of the magmatic arc that led to the Late Carboniferous to early Permian period of extension, S-type granite production and intrusion into the forearc basin, high-temperature–low-pressure metamorphism, and development of rift basins such as the Sydney–Gunnedah–Bowen system.  相似文献   

9.
Detrital zircon U/Pb geochronology is a common tool used to resolve stratigraphic questions,inform basin evolution and constrain regional geological histories.In favourable circumstances,detrital zircon populations can contain a concomitant volcanic contribution that provides constraints on the age of deposition.However,for non-volcanic settings,proving isolated detrital zircon grains are from contemporaneous and potentially remote volcanism is challenging.Here we use same grain(U-Th)/He thermochronology coupled with U/Pb geochronology to identify detrital zircon grains of contemporary volcanic origin.(U-Th)/He ages from Cretaceous zircon grains in southern Australia define a single population with a weighted mean age of 104±6.1 Ma.indistinguishable from zircon U/Pb geochronology and palynology(~104.0-107.5 Ma).Detrital zircon trace-element geochemistry is consistent with a continental signature for parent rocks and coupled with detrital grain ages,supports derivation from a2000 km distant early-to mid-Cretaceous Whitsunday Volcanic Province in eastern Australia.Thus,integration of biostratigraphy,single-grain zircon double-dating(geochronology and thermochronology)and grain geochemistry enhances fingerprinting of zircon source region and transport history.A distal volcanic source and rapid continental-scale transport to southern Australia is supported here.  相似文献   

10.
《International Geology Review》2012,54(18):2291-2312
ABSTRACT

As the north part of Simao Terrane, Lanping Basin is located between the Sanjiang Tethys Orogen (STO) and Yangtze Block, also the junction zone between the Gondwanaland and Cathaysian old land (Pan Huaxia mainland), which includes Yangtze and Cathaysian Blocks. The aim of this study is to decipher the provenance of the sedimentary units in the Lanping Basin and affiliation of Simao Terrane by the U-Pb ages, Hf isotope of detrital zircons and whole-rock geochemistry. The whole-rock geochemistry and the mineral composition indicate that most of the Triassic–Paleocene sedimentary rocks are derived from the upper crust and exhibit recycled orogen features. The detrital zircon U-Pb ages from the North Simao Terrane are consistent with the magmatic events during Early Neoproterozoic and Permian in the Western Yangtze Block. And the detrital zircons ages from North Simao Terrane show same distribution features as the Permian–Triassic magmatic rocks, which are distributed in the Simao Terrane and along major sutures. These comparisons suggest that the clastic sediments in Lanping Basin (North Simao Terrane) are derived from Early Neoproterozoic and Permian magmatic rocks from Western Yangtze Block, Permian–Triassic magmatic rocks from Simao Terrane, along Jinshajiang, Garz-Litang and Ailaoshan Sutures. The comparison of the detrital zircon age distributions shows that Simao Terrane and Yangtze Block exhibited similarity tectonic setting in the evolution history, especially during Paleoproterozoic–Late Paleozoic. This suggests that the Simao Terrane is part of Cathaysian old land, although Simao Terrane was separated from Yangtze Block for short period during Early Paleozoic. Besides, the Hf mapping, stratigraphic succession, paleogeography and paleomagnetism in SW China support that Simao Terrane has a Cathaysian old land-affinity, rather than one involving Gondwanaland.  相似文献   

11.
We present detrital zircon UPb SHRIMP age patterns for the central segment (34–42°S) of an extensive accretionary complex along coastal Chile together with ages for some relevant igneous rocks. The complex consists of a basally accreted high pressure/low temperature Western Series outboard of a frontally accreted Eastern Series that was overprinted by high temperature/low pressure metamorphism. Eleven new SHRIMP detrital zircon age patterns have been obtained for meta-turbidites from the central (34–42°S) segment of the accretionary complex, four from previously undated metamorphic complexes and associated intrusive rocks from the main Andean cordillera, and three from igneous rocks in Argentina that were considered as possible sediment source areas. There are no Mesozoic detrital zircons in the accretionary rocks. Early Paleozoic zircons are an essential component of the provenance, and Grenville-age zircons and isolated grains as old as 3 Ga occur in most rocks, although much less commonly in the Western Series of the southern sector. In the northernmost sector (34–38°30′S) Proterozoic zircon grains constitute more than 50% of the detrital spectra, in contrast with less than 10% in the southern sector (39–42°S). The youngest igneous detrital zircons in both the northern Western (307 Ma) and Eastern Series (345 Ma) are considered to closely date sedimentation of the protoliths. Both oxygen and LuHf isotopic analyses of a selection of Permian to Neoproterozoic detrital zircon grains indicate that the respective igneous source rocks had significant crustal contributions. The results suggest that Early Paleozoic orogenic belts (Pampean and Famatinian) containing material recycled from cratonic areas of South America supplied detritus to this part of the paleo-Pacific coast. In contrast, in the southern exposures of the Western Series studied here, Permian detrital zircons (253–295 Ma) dominate, indicating much younger deposition. The northern sector has scarce Early to Middle Devonian detrital zircons, prominent south of 39°S. The sedimentary protolith of the northern sector was probably deposited in a passive margin setting starved of Devonian (Achalian) detritus by a topographic barrier formed by the Precordillera, and possibly Chilenia, terranes. Devonian subduction-related metamorphic and plutonic rocks developed south of 39°S, beyond the possible southern limit of Chilenia, where sedimentation of accretionary rocks continued until Permian times.  相似文献   

12.
U–Pb detrital zircon geochronology has been used to identify provenance and document sediment delivery systems during the deposition of the early Late Triassic Yanchang Formation in the south Ordos Basin. Two outcrop samples of the Yanchang Formation were collected from the southern and southwestern basin margin respectively. U–Pb detrital zircon geochronology of 158 single grains (out of 258 analyzed grains) shows that there are six distinct age populations, 250–300 Ma, 320–380 Ma, 380–420 Ma, 420–500 Ma, 1.7–2.1 Ga, and 2.3–2.6 Ga. The majority of grains with the two oldest age populations are interpreted as recycled from previous sediments. Multiple sources match the Paleozoic age populations of 380–420 and 420–500 Ma, including the Qilian–Qaidam terranes and the North Qilian orogenic belt to the west, and the Qinling orogenic belt to the south. However, the fact that both samples do not have the Neoproterozoic age populations, which are ubiquitous in these above source areas, suggests that the Late Triassic Yanchang Formation in the south Ordos Basin was not derived from the Qilian–Qaidam terranes, the North Qilian orogenic belt, and the Qinling orogenic belt. Very similar age distribution between the Proterozoic to Paleozoic sedimentary rocks and the early Late Triassic Yanchang Formation in the south Ordos Basin suggests that it was most likely recycled from previous sedimentary rocks from the North China block instead of sediments directly from two basin marginal deformation belts.  相似文献   

13.
Combined U–Pb and Lu–Hf isotope analyses of detrital zircon grains from the auriferous Eldorado Reef conglomerate, upper Central Rand Group, reveal new insights into the provenance of the sediments and thus, by implication, possibly also into that of the gold. Most of the detrital zircon grains, which are of magmatic origin, yielded Mesoarchaean ages clustering around 2.94 and 3.06 Ga. A subordinate zircon population gave ages with maxima at 3.28 and 3.44 Ga. The Mesoarchaean zircon grains mostly show super-chondritic ?Hft of up to +5.2, whereas the Palaeoarchaean zircon grains have nearly chondritic composition with ?Hft between −1.3 and +2.0. The new dataset of the Mesoarchaean zircon populations provides the first unambiguous evidence of the formation of juvenile crust not only at 3.06 but also at 2.94 Ga. As the analysed zircon grains are from the ruditic fraction, they must be derived from a comparatively proximal source in close vicinity to the Central Rand Basin. Based on currently available data, this source was most likely a magmatic arc that existed at the northern edge of the Witwatersrand Block at 3.06 Ga. An additional source might be the 2.94 Ga magmatic rocks of the Kraaipan Greenstone Belt that occurs to the west of the Witwatersrand Block. The minor fraction of Palaeoarchaean zircon grains in the Eldorado Reef perhaps stem from sources that are isotopically similar to the Barberton Greenstone Belt and the Limpopo Belt but were more proximal to the Central Rand Basin.  相似文献   

14.
物源供应不仅影响了冀中坳陷饶阳凹陷蠡县斜坡地区沙河街组一段展布特征,而且控制了沉积类型和相带分布,进而决定了有利油气储层的发育.为了厘清蠡县斜坡地区的物源特征,从而指导进一步的沉积体系研究和勘探开发工作,本文基于饶阳凹陷蠡县斜坡3D地震资料、古近系沙河街组沙一段岩石学特征、重矿物组合及ZTR指数、碎屑锆石晶型及U-Pb...  相似文献   

15.
为研究东昆仑南缘中下二叠统马尔争组沉积物源及沉积构造背景,对东昆仑南缘哥日卓托地区中下二叠统马尔争组进行了详细的沉积地层划分、沉积环境及碎屑锆石U-Pb年代学进行了研究。结果表明,马尔争组为一套形成于大陆斜坡半深海-深海环境的浊积岩系。碎屑锆石U-Pb年龄谱可明显划分为早古生代和新元古代两个主年龄谱及古、中元古代两个次级年龄谱。主年龄谱分别为396~573Ma和727~947Ma,峰值年龄分别为421 Ma和862Ma。次级年龄谱分别为1117~1993Ma和2319~3063Ma,峰值年龄不明显。本文认为东昆仑南缘哥日卓托地区马尔争组物质来源较为复杂,显示早古生代、新元古代、中元古代和古元古代多个时代物源共同供给的特征。东昆仑造山带早古生代岩浆岩和新元古代岩浆岩为其提供了约60~65%的沉积物源,而古老的变质基底为其提供了仅约30~35%的沉积碎屑。综合区域资料认为马尔争组形成于相对稳定的被动大陆边缘沉积构造背景,该期阿尼玛卿古特提斯洋还未开始向北俯冲。  相似文献   

16.
We compare detrital U/Pb zircon age spectra of Carboniferous and Permian / Lower Triassic sedimentary rocks from different structural positions within the Austroalpine nappe pile with published ages of magmatic and metamorphic events in the Eastern Alps and the West Carpathians. Similarities between sink and possible sources are used to derive provenance of sediments and distinct frequency peaks in sink and source age pattern are used for paleogeographic plate tectonic reconstructions. From this, travel paths of Austroalpine and West Carpathian basement units are traced from the Late Neoproterozoic to the Jurassic. We place the ancestry of basement units on the northeastern Gondwana margin, next to Anatolia and the Iranian Luth-Tabas blocks. Late Cambrian rifting by retreat of the Cadomian Arc failed and continental slivers re-attached to Gondwana during a late Cambrian / early Ordovician orogenic event. In the Upper Ordovician crustal fragments of the Galatian superterrane rifted off Gondwana through retreat of the Rheic subduction. An Eo-Variscan orogenic event at ~390 Ma in the Austroalpine developed on the northern rim of Galatia, simultaneously with a passive margin evolution to the south of it. The climax of Variscan orogeny occurred already during a Meso-Variscan phase at ~350 Ma by double-sided subduction beneath Galatia fragments. The Neo-Variscan event at ~330 Ma was mild in eastern Austroalpine units. This orogenic phase was hot enough to deliver detrital white mica into adjacent basins but too cold to create significant volumes of magmatic or metamorphic zircon. Finally, the different zircon age spectra in today's adjacent Carboniferous to Lower Triassic sediments disprove original neighbourhood of basins. We propose lateral displacement of major Austroalpine and West-Carpathian units along transform faults transecting Apulia. The intracontinental transform system was released by opening of the Penninic Ocean and simultaneous closure of the Meliata Hallstatt Ocean as part of the Tethys.  相似文献   

17.
为研究可尔因地区侏倭组的物源体系及其与可尔因地区李家沟伟晶岩之间的成因联系,对出露于西康群侏倭组中的变质沉积岩进行了全岩地球化学、锆石U?Pb定年以及Lu?Hf同位素分析. 分析结果显示侏倭组变质沉积岩具高SiO2、Al2O3的地球化学特征,稀土元素配分曲线整体右倾,与澳大利亚晚太古宙沉积岩(PAAS)配分一致. 阴极发光图像(CL)显示,碎屑锆石普遍具有岩浆震荡环带,部分受重结晶改造及存在变质增生边. 碎屑锆石的U?Pb年龄谱具有313~227 Ma和461~401 Ma两个主峰以及938~774 Ma和2 048~1 928 Ma两个次峰. εHf(t)值在-17.1~+13.3之间,二阶段模式年龄(TDM2)分布在3 240~499 Ma之间. 综合全岩地球化学、锆石U?Pb?Hf同位素特征及区域地质对比,认为可尔因地区侏倭组变质沉积岩的物源主要为来自大陆岛弧的长英质岩石,并伴有一些再循环沉积物,主要接收了来自东昆仑、北秦岭及扬子陆块的物质. 可尔因地区李家沟伟晶岩为侏倭组变质沉积岩直接部分熔融固结形成.   相似文献   

18.
《Comptes Rendus Geoscience》2018,350(6):255-266
The Oued Togba and Sebkha Gezmayet units of the Adrar Souttouf Massif in the southern Moroccan Sahara are thought to represent tectonic fragments that may have an affinity to the Avalonian and Meguma terranes of eastern North America. Here we study siliciclastic rocks of the Sebkha Gezmayet unit with respect to their detrital zircon spectra. Beside the commonly used U–Th–Pb ages, several aspects of zircon morphology (length, width, roundness, surficial indicators of sedimentary transport, morphotype) are described. The detrital zircon age spectrum of the Sebkha Gezmayet unit resembles that of the already dated underlying igneous rocks. Occurrences of Early Devonian zircon ages are at odds with the magmatic history of the West African Craton but are common in the Avalonian and Meguma terranes, which were affected by the Appalachian orogenies. The scarcity of Mesoproterozoic detrital zircon grains corroborates the previously suggested Meguma terrane affinity of this part of the Adrar Souttouf Massif. Combining zircon morphology and isotopic data, we propose first assumptions on the sedimentary environments of the Sebkha Gezmayet unit during different periods of the Palaeozoic.  相似文献   

19.
The uplift of Tibet Plateau and the marginal sea spreading have had important influence on the tectonic, landform and drainage system in East Asia, although the marginal sea spreading in shaping the topography and drainage reorganization in East Asia has been still controversial. Here we present U-Pb age and Hf isotopic composition of detrital zircon grains from Cenozoic sedimentary rocks in Taiwan to understand how the provenance and river systems evolved. Our data show that the U-Pb age spectra of detrital zircon grains in Paleogene sandstones are dominated by Yanshanian (180–67 Ma) zircon grains and with subordinate or nil Proterozoic and Archean zircon grains. These results are in contrast to those in Miocene rocks that are dominated by the Indosinian (257–205 Ma) zircon grains together with Yanshanian, Proterozoic and Archean population. The initial Hf isotope ratios [εHf(t)] of the zircon grains also display systematic change in Paleogene and Neogene strata. Our data demonstrate that the Hsuehshan Range and Western Foothills in Taiwan have the same sedimentary sources. The source region of Paleogene strata was mainly located at the coast in southeast China and migrated inland over time. The source might have reached the Lower Yangtze region during early Miocene. Although the mechanism of transport of sediments from the Lower Yangtze region to Taiwan is unclear, we speculate that the Minjiang River might have been larger in Early Miocene than the present and might have delivered inland material along the boundary of Yangtze and Cathaysia Blocks to Taiwan. These were then captured by the Yangtze River systems at some time after Late Miocene. This change corresponds to the time of the drainage reorganization in East Tibet, such as Yangtze River, and the regional subsidence resulting from the opening of marginal sea. The combined effects of Tibet uplift and opening of marginal sea might have shaped the topography and river system reorganization in East Tibet. The evolution of topography and drainage systems in southeast China seems to be mainly controlled by the opening of marginal sea.  相似文献   

20.
《Gondwana Research》2014,26(4):1680-1689
In southern Tibet, Late Triassic sequences are especially important to understanding the assembly of the Lhasa terrane prior to Indo-Asian collision. We report new data relevant to the provenance of a Late Triassic clastic sequence from the Mailonggang Formation in the central Lhasa terrane, Tibet. Petrographic studies and detrital heavy mineral assemblages indicate a proximal orogenic provenance, including volcanic, sedimentary and some ultramafic and metamorphic rocks. In situ detrital zircon Hf and U–Pb isotope data are consistent with derivation of these rocks from nearby Triassic magmatic rocks and basement that comprise part of the newly recognized Late Permian–Triassic Sumdo–Cuoqen orogenic belt. The new data suggests correlation with the Upper Triassic Langjiexue Group which lies on the opposing (southern) side of Indus–Yarlung ophiolite. Sediments from both the Mailonggang Formation and Langjiexue Group are interpreted to represent formerly contiguous parts of a sequence deposited on the southern flanks of the Sumdo–Cuoqen belt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号