首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Mount Erebus, a large intraplate stratovolcano dominating Ross Island, Antarctica, hosts the world's only active phonolite lava lakes. The main manifestation of activity at Erebus volcano in December 2004 was as the presence of two convecting lava lakes within an inner crater. The long-lived Ray Lake, ~ 1400 m2 in area, was the site of up to 10 small Strombolian eruptions per day. A new but short-lived, ~ 1000–1200 m2 lake formed at Werner vent in December 2004 sourced by lava flowing from a crater formed in 1993 by a phreatic eruption. We measured the radiative heat flux from the two lakes in December 2004 using a compact infrared (IR) imaging camera. Daily thermal IR surveys from the Main Crater rim provide images of the lava lake surface temperatures and identify sites of upwelling and downwelling. The radiative heat outputs calculated for the Ray and Werner Lakes are 30–35 MW and 20 MW, respectively. We estimate that the magma flux needed to sustain the combined heat loss is ~ 250–710 kg s− 1, that the minimum volume of the magma reservoir is 2 km3, and that the radius of the conduit feeding the Ray lake is ~ 2 m.  相似文献   

2.
After the phreatic eruption in 1982–83, volcanic activities at Kusatsu–Shirane volcano had been decreasing and reached a minimum in 1990, had turned to a temporal rise in activity up to 1994 and then decreased again at least up to 1997. During this low-activity period we observed a relatively short (≤ 1 y) cyclic variation in polythionates (PT) in the Yugama lake water. Spectral power density analysis of the PT time-series by an autoregressive (maximum entropy spectral estimation, MESE) method indicates that the major frequency in the PT variations is 1.0 y− 1 and the minor is 2–3 y− 1 (1.0 and 0.3–0.5 y in periodicity, respectively). Annual variations in the lake temperature are ruled out for explaining these periodicities. We attribute these cyclic variations to a cyclic magnification-reduction in meteoric-water injection into a hydrothermal regime where volcanic gases from cooling magma bodies at depth and cooler oxidized groundwater come into contact with each other. This interaction may result in a periodical change in the composition and flux of SO2 and H2S gases being discharged into the lake and forming PT. From a phase deviation (2–3 months) in the cycles between the annual precipitation, including snowmelt, and the PT time-series, we estimated the maximal depth of a hydrothermal reservoir beneath the lake assuming a vertical hydraulic conductivity (5 × 10− 3 cm/s) of the volcanic detritus around the summit hydrothermal system. Chloride in the lake water reached a maximum 1.5 years faster than PT. This is most likely due to a gradual elevation of the potentiometric front of a concentrated sublimnic solution in the hydrothermal reservoir. Variations of dissolved SO2 and H2S in the lake water were not consistent with those of the fumarolic gases on the north flank of the volcano. This fact together with additional observations strongly suggests that these fumaroles may have the same origin but are chemically modified by a subsurface aquifer. The PT monitoring at active crater lakes during a quiescent period can provide insight into the annual expansions and reductions of a volcano-hosted hydrothermal reservoir.  相似文献   

3.
Under optimum circumstances, thermal infrared data recorded from satellites can measure water surface temperatures to accuracies of a few tenths of a degree Celsius. Such techniques are applied here to evaluate volcanic crater lake temperatures. At present, band 6 of the Landsat Thematic Mapper (TM) is the most pertinent sensor in this respect, although its nominal 120 × 120 m “footprint” only permits useful measurements of circular lakes exceeding 340 m in diameter. In addition, the radiative properties of the atmosphere between sensor and target at the instant of observation should be well-characterised in order to make confident measurements of surface temperatures with single-band infrared data.An analysis is presented of three TM band-6 images of the crater lake at Poás volcano, Costa Rica, recorded on February 6, 1986, March 13, 1987, and May 10, 1988. In the February 1986 scene, the band-6-derived water surface temperature is 36°C which is 3°C less than a field measurement made in the same month. Since the satellite measurement was integrated over some 14,400 m2 of the lake surface, while the field measurement was obtained at a single point below the surface, the former may be more representative of surface heat losses. Subsequent TM data reveal an increasing discrepancy between contemporaneous field and satellite observations, probably because the lake diameter had decreased to 250 m by March 1987, and to less than 200 m by mid-1988, greatly reducing the likelihood of obtaining a pure “lake” pixel.The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) which is earmarked for orbit on the first of NASA's Earth Observing System satellite platforms later this decade has five discrete spectral bands in the thermal infrared region and will produce data composed of 90 × 90 m pixels. These specifications could enable the determination of water surface temperatures of > 250 m diameter crater lakes by algorithms that implicitly account for atmospheric effects.  相似文献   

4.
Three crater lakes from Mexican volcanoes were sampled and analyzed at various dates to determine their chemical characteristics. Strong differences were observed in the chemistry among the three lakes: Nevado de Toluca, considered as dormant, El Chichón at a post-eruptive stage, and Popocatépetl at a pre-eruptive stage. Not surprisingly, no influence of volcanic activity was found at the Nevado de Toluca volcano, while the other volcanoes showed a correlation between the changing level of activity and the evolution of chemical trends. Low pHs (<3.0) were measured in the water from the active volcanoes, while a pH of 5.6 was measured at the Nevado de Toluca Sun lake. Changes with time were observed at Popocatépetl and El Chichón. Concentrations of volcanic-gas derived species like Cl, SO42− and F decreased irregularly at El Chichón from 1983 until 1997. Major cations concentrations also diminished at El Chichón. A 100% increase in the SO42− content was measured at Popocatépetl between 1985 and 1994. An increase in the Mg/Cl ratio between 1992 (Mg/Cl=0.085) and 1994 (Mg/Cl=0.177) was observed at Popocatépetl, before the disappearance of the crater lake in 1994. It is concluded that chemical analysis of crater lakes may provide a useful additional tool for active-volcano monitoring.  相似文献   

5.
Four groups of thermal springs with temperatures from 50 to 80 °C are located on the S–SW–W slopes of El Chichón volcano, a composite dome-tephra edifice, which exploded in 1982 with a 1 km wide, 160 m deep crater left. Very dynamic thermal activity inside the crater (variations in chemistry and migration of pools and fumaroles, drastic changes in the crater lake volume and chemistry) contrasts with the stable behavior of the flank hot springs during the time of observations (1974–2005). All known groups of hot springs are located on the contact of the basement and volcanic edifice, and only on the W–SW–S slopes of the volcano at almost same elevations 600–650 m asl and less than 3 km of direct distance from the crater. Three groups of near-neutral (pH ≈ 6) springs at SW–S slopes have the total thermal water outflow rate higher than 300 l/s and are similar in composition. The fourth and farthest group on the western slope discharges acidic (pH ≈ 2) saline (10 g/kg of Cl) water with a much lower outflow rate (< 10 l/s).  相似文献   

6.
A sudden eruption at Santa Ana occurred on 1 October 2005, producing an ash-and-gas plume to a height in excess of 10 km above the volcano. Several days before, thermal infrared images of the crater provided precursory signals of the eruption. A significant increase in the extent and intensity of the fumarolic field inside the crater rim and of the surface temperature of the crater’s lake was observed. Changes in energy input was also estimated to explain the increase in lake temperature based on energy/mass balance calculations.  相似文献   

7.
The results of a hydroacoustic monitoring experiment in the Kelut Crater lake, Indonesia, prior to its 1990 eruption, are presented, with the benefit of hindsight. Indeed, the underwater noise levels in three widely separated frequency bands, together with the lake water temperature, was radio-transmitted and almost continuously recorded from a period of quiescence of the volcano till the onset of its 10 February 1990, eruption, which destroyed the monitoring buoy. The comparative analysis of the noise variations in the three bands, together with seismic and temperature data, have shed light on the mechanisms underlying the pre-eruptive activity. The three acoustic levels had shown conspicuous, yet distinctive, changes prior to the eruption. Acoustic level in the low-frequency (1–50 Hz) band, which increased one year before the resumption of seismic activity and the lake warming up, is interpreted as the result of boiling at depth. The source of high-acoustic level in the audiometric (500–5000 Hz) range is clearly the bubbling of volcanic gases, occurring as a strong convective column in the middle of the lake. From the variations of this audiometric level, we have estimated that the degassing rate in the lake increased by a hundred-fold during the pre-eruptive period. Variations of ultrasonic (20–100 kHz) frequency acoustic level seem to be related with pressure and thermal changes within the hydrothermal system and its rock matrix beneath the lake. In conclusion, this experiment demonstrates the potential of hydroacoustic monitoring as an early warning system at crater lake volcanoes.  相似文献   

8.
The first crater of Nakadake, peak of Aso volcano, Japan, contains a hot water lake that shows interesting variations in water level and temperature. These variations were discovered by precise, continuous observations of the lake independent of precipitation. We developed a numerical model of a hot crater lake and compared with observational data for the period from July 2006 to January 2009. The numerical model revealed seasonal changes in mass flux (75–132 kg/s) and enthalpy (1,840–3,030 kJ/kg) for the fluid supplied to the lake. The relation between the enthalpy and mass flux indicates that the bottom input fluid is a mixture of high- and low-temperature fluids. Assuming a mixture of high-temperature steam at 800°C and liquid water at 100°C, we evaluated the liquid and steam fluxes. The liquid water flux shows a seasonal increase lagging behind the rainy season by 2 months, suggesting that the liquid water is predominantly groundwater. The fluctuation pattern in the flux of the high-temperature steam shows a relation with the amplitude of volcanic tremor, suggesting that heating of the hydrothermal system drives the tremor. Consequently, precise observations of a hot crater lake represent a potential method of monitoring volcanic hydrothermal systems in the shallow parts of the volcanoes.  相似文献   

9.
This paper describes a methodology for the monitoring of fumarole temperatures at medium ranges (~ 6 km) using a handheld infrared camera (wavelength range: 8–13.5 µm). As a relationship between fumarole temperatures, gas flux and volcanic activity has been demonstrated by a number of studies, fumarole temperature data has a potential use as a monitoring tool. Volcán de Colima is an andesitic stratovolcano with a 300 m diameter summit crater formed by the destruction of the 2004 lava dome by a series of explosions in 2005. Between January 2006 and August 2007, sequences of thermal images were recorded from a viewpoint 6 km to the north during regular 24–48 hour monitoring excursions. The temperatures of fumaroles on the crater rim and the ground surface on the volcano's flanks were measured. A methodology was developed to remove data affected by clouds or volcanic water vapour based on rates of temperature change and scatter within the data. For the remaining data, it is demonstrated mathematically that at this range, typical variations in atmospheric transmissivity will affect the apparent temperatures by +/− 2 °C, while a 25% change in fumarole heat flux would change it by 5–10 °C. The mean night-time apparent temperature of the fumaroles was calculated for each excursion and showed an irregular decline over the 19 month period. Subtracting the radiant heat flux of flank rocks from those of the fumaroles removes seasonal variations and gives the clearest view of trends in the fumarole heat flux. A sharp drop in fumarole temperature during February 2007 coincided with the emergence of a lava dome in the crater. The declining fumarole temperature is interpreted to reflect decreasing gas flux from the crater in line with a change in eruptive regime from frequent, small, ash-rich explosions to slow effusion of lava.  相似文献   

10.
Monitoring of crater lake chemistry during the recent decline and disappearance of the crater lake of Poás Volcano revealed that large variations in SO4/Cl, F/Cl, and Mg/Cl ratios were caused by the enhanced release of HCl vapor from the lake surface due to increasing lake temperature and solution acidity. Variation in the concentration of polythionic acids (H2SxO6, x=4–6) was the most reliable predictor of renewed phreatic eruptive activity at the volcano, exhibiting sharp decreases three months prior to the initiation of phreatic eruptions in June 1987. Polythionic acids may offer a direct indicator of changing subsurface magmatic activity whereas chloride-based element ratios may be influenced by surface volatilization of HCl and subsequent recycling of acidic fluids in crater lake volcanoes.  相似文献   

11.
We have developed an in-situ monitoring system for aqueous polythionates in the Yugama crater lake at Kusatsu-Shirane volcano. A commercially available nitrate-selective electrode has a Nernstian response to the concentration of polythionates in solution in the range of pH 2.5–11. However, many active crater lakes contain highly acidic water (pH ranges from 0.2 to 2). The monitoring system reduces the acidity of the lake water to pH 4 without changing the concentration of polythionates using a high efficiency cation-exchange membrane technique. The monitoring system was placed in a submersed station, because the Yugama surface lake water freezes in mid-winter. The system is described and preliminary data are reported.  相似文献   

12.
We investigate the source mechanism of long-period (LP) events observed at Kusatsu–Shirane Volcano, Japan, based on waveform inversions of their effective excitation functions. The effective excitation function, which represents the apparent excitation observed at individual receivers, is estimated by applying an autoregressive filter to the LP waveform. Assuming a point source, we apply this method to seven LP events the waveforms of which are characterized by simple decaying and nearly monochromatic oscillations with frequency in the range 1–3 Hz. The results of the waveform inversions show dominant volumetric change components accompanied by single force components, common to all the events analyzed, and suggesting a repeated activation of a sub-horizontal crack located 300 m beneath the summit crater lakes. Based on these results, we propose a model of the source process of LP seismicity, in which a gradual buildup of steam pressure in a hydrothermal crack in response to magmatic heat causes repeated discharges of steam from the crack. The rapid discharge of fluid causes the collapse of the fluid-filled crack and excites acoustic oscillations of the crack, which produce the characteristic waveforms observed in the LP events. The presence of a single force synchronous with the collapse of the crack is interpreted as the release of gravitational energy that occurs as the slug of steam ejected from the crack ascends toward the surface and is replaced by cooler water flowing downward in a fluid-filled conduit linking the crack and the base of the crater lake.  相似文献   

13.
The Soufriere of St. Vincent has been monitored for more than 25 years as part of a regional programme in the Lesser Antilles. In that time the volcano has erupted twice but our studies have shown no discernible change in regional seismicity before either event. However, very small seismic events were observed in the crater during the 1971–1972 eruption and were detected before the start of the 1979 explosive eruption; we believe that they were generated by thermally induced hydraulic fracturing within the lava mass inside the crater lake. We conclude that seismographic monitoring of Lesser Antillean volcanoes can give ambiguous results but that at least one instrument must be placed within 1 km of the vent if the earliest signs of activity are to be detected.  相似文献   

14.
Ambae (also known as Aoba), is a 38 × 16 km2 lozenge-shaped island volcano with a coastal population of around 10 000. At the summit of the volcano is lake Voui — one of the largest active crater lakes worldwide, with 40 × 106 m3 of acidic water perched 1400 m a.s.l. After more than 300 years of dormancy, Ambae volcano reawakened with phreatic eruptions through Voui in 1995, and culminating in a series of surtseyan eruptions in 2005, followed by a rapid and spectacular colour change of the lake from light blue to red in 2006. Integrating lake water chemistry with new measurements of SO2 emissions from the volcano during the 2005–2006 eruptive period helps to explain the unusual and spectacular volcanic activity of Ambae — initially, a degassed magma approached the lake bed and triggered the surtseyan eruption. Depressurization of the conduit facilitated ascent of volatile-rich magma from the deeper plumbing system. The construction of a cone during eruption and the high degassing destabilised the equilibrium of lake stratification leading to a limnic event and subsequently the spectacular colour change.  相似文献   

15.
Using an infrared radiation thermometer, measurements by remote sensing were carried out for surface temperatures of the bottom-floor and wall of the central pit and its surrounding crater bottom of Mihara volcano, Ooshima, Japan. Isotherms for the wall of the central pit are compared with the thermal and other surface manifestations. Heat discharge from the summit crater of Mihara volcano is estimated on the basis of various meteorological and other techniques, and for convenience of computation it is divided into the following three categories; latent and sensible heat transferred by ascending volcanic gas; heat emitted from the bottom-floor and wall of the central pit; and heat transported conductively and convectively from the underground heat source through the western, southern and eastern parts of the crater bottom. The computed heat discharge is estimated to be 1.4 x 107 cal s−1, which is about one order of magnitude less than that of the minor eruption on 28 February 1974. The methodology developed here for estimation of the heat discharge from a volcano can also be applied to other volcanoes.  相似文献   

16.
An explosive eruption occurred at the summit of Bezymianny volcano (Kamchatka Peninsula, Russia) on 11 January 2005 which was initially detected from seismic observations by the Kamchatka Volcanic Eruption Response Team (KVERT). This prompted the acquisition of 17 Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite images of the volcano over the following 10 months. Visible and infrared data from ASTER revealed significant changes to the morphology of the summit lava dome, later seen with field based thermal infrared (TIR) camera surveys in August 2005. The morphology of the summit lava dome was observed to have changed from previous year’s observations and historical accounts. In August 2005 the dome contained a new crater and two small lava lobes. Stepped scarps within the new summit crater suggest a partial collapse mechanism of formation, rather than a purely explosive origin. Hot pyroclastic deposits were also observed to have pooled in the moat between the current lava dome and the 1956 crater wall. The visual and thermal data revealed a complex eruption sequence of explosion(s), viscous lava extrusion, and finally the formation of the collapse crater. Based on this sequence, the conduit could have become blocked/pressurized, which could signify the start of a new behavioural phase for the volcano and lead to the potential of larger eruptions in the future.  相似文献   

17.
长白山天池火山是目前最具潜在喷发危险的活火山。依据长白山天池火山的最新监测研究成果,结合地形地貌、水文流域特点及天池火山历史喷发类型,重点分析了长白山天池火山未来喷发时发生溃湖洪水的危险性。利用相关的水动力学公式,建立了溃口规模和洪水湿周、流量和流速的内在关系。详细分析溃湖洪峰在下游二道白河镇、白山水电站、红石水电站等关键位置的最大流量及流速。结果表明,若天池火山湖水溃泄一半即10亿m3时,距火山口50km处的二道白河镇瞬时洪水流速达84 904m3/s,该镇将全部被淹没。下游的白山水库、丰满水库将分别受到流量23 560m3/s和1 505m3/s洪水的冲击,水库安全受到严重威胁。  相似文献   

18.
The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a useful tool for detecting low quantities of sulfur dioxide at passively degassing volcanoes such as Lascar volcano, Chile. Two mini-UV spectrometers (MUSes) were used to make transects of Lascar volcano’s sulfur dioxide plume on December 7, 2004, during a coordinated overpass of ASTER. SO2 burdens were retrieved using the thermal infrared channels of the acquired ASTER image. This allowed for a direct comparison between the two methods in order to validate the ASTER SO2 retrieval. The results were extremely encouraging with ASTER deriving SO2 fluxes within the range of fluxes obtained by the MUSe.  相似文献   

19.
The ratio of 87Sr/86Sr was measured from different water samples of thermal/mineral (hot spring as well as crater lake) and meteoric origins, in order to specify the location and to verify the detailed model of a volcano-hydrothermal system beneath Zao volcano. The ratio showed a trimodal distribution for the case of thermal/mineral water: 0.7052–0.7053 (Type A, Zao hot spring), 0.7039–0.7043 (Type B, Okama crater lake and Shin-funkiko hot spring), and 0.7070–0.7073 (Type C, Gaga, Aone, and Togatta hot springs), respectively. However, in comparison, the ratio was found to be higher for meteoric waters (0.7077–0.7079). The water from the central volcanic edifice (Type B) was found to be similar to that of nearby volcanic rocks in their Sr isotopic ratio. This indicates that the Sr in water was derived from shallow volcanic rocks. The 87Sr/86Sr ratio for water from the Zao hot spring (Type A) was intermediate between those of the pre-Tertiary granitic and the Quaternary volcanic rocks, thus suggesting that the water had reacted with both volcanic and granitic rocks. The location of the vapor–liquid separation was determined as the boundary of the pre-Tertiary granitic and the Quaternary volcanic rocks by comparing the results of this strontium isotopic study with those of Kiyosu and Kurahashi [Kiyosu, Y., Kurahashi, M., 1984. Isotopic geochemistry of acid thermal waters and volcanic gases from Zao volcano in Japan. J. Volcanol. Geotherm. Res. 21, 313–331.].  相似文献   

20.
Poa´s Volcano is an active stratovolcano in Costa Rica that has a lake in its active crater. The crater lake has high temperatures (50–90 °C), high acidity (pH ≈ 0.0), and a high dissolved-solids content (100 g/kg). The volcano has numerous freshwater springs on its flanks, but a few on the northwestern flank are highly acidic (pH = 1.6–2.5) and have high dissolved-solids concentrations (2–22 g/kg). This study analyzes the regional groundwater system at Poa´s and demonstrates the likelihood that the water discharging from the acidic springs in the Rio Agrio watershed originates at the acidic crater lake. Both heat and solute transport are analyzed on a regional scale through numerical simulations using the HST3D finite-difference model, which solves the coupled equations for fluid flow, heat transport, and solute transport. The code allows fluid viscosity and density to be functions of both temperature and solute concentration. The simulations use estimates for recharge to the mountain and a range of values and various distributions of permeability and porosity. Several sensitivity analyses are performed to test how the uncertainty in many of the model parameters affects the simulation results. These uncertainties yield an estimated range of travel times from the crater lake to the Rio Agrio springs of 1–30 years, which is in close agreement with the results of tritium analyses of the springs. Calculated groundwater fluxes into and out of the crater lake are both about several hundred kg/s. These fluxes must be accounted for in water budgets of the crater lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号