首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seasonal variation of the turbidity (suspended substance) has been investigated in Lake Biwa. During the last five years, vertical and horizontal distributions of water temperature, turbidity, electric conductivity and chlorophyll-a have been obtained both in the south basin and the southern part of the north basin of Lake Biwa. The benthic nepheloid layer (BNL) developed in the seasons of thermal stratification, and is not detectable in the non-stratification period (winter). The BNL is mainly maintained by the organic matter such as phytoplankton under decomposition. However, the turbidity in the nepheloid layer was much affected by the turbid water from rivers after heavy rainfall. In this case, the major component of the suspended substance (SS) in the nepheloid layer was inorganic soil. The particulate P concentration, which is originated from phytoplankton, also increased after a rain fall. This suggests that phytoplankton in the surface layer sinks with clay and silt coming through rivers. From summer to the end of the stratification period, another kind of turbidity appeared in the bottom layer. This is caused by the chemical reaction of manganese under the anoxic condition. The resuspension of bottom sediment by strong currents also occurred, but it is not a major process for maintaining the BNL.  相似文献   

2.
The seasonal vertical distribution of particulate matter (PM) was studied in two contrasting areas: (a) the mesotrophic Skagerrak (in the North Sea); and (b) the oligotrophic northeastern Aegean Sea (eastern Mediterranean). Similarities and differences of the PM distribution in the two areas are assessed with respect to the prevailing hydrographic conditions and the PM composition. Hydrographic conditions in both of the areas are characterised by strong density gradients, resulting from the inflow of low-salinity water, i.e. Baltic Sea water and Black Sea water for the Skagerrak and the northeastern Aegean Sea, respectively.Enhanced primary production and particles mainly of biogenic origin characterise the mesotrophic Skagerrak, whereas five-fold lower particle concentrations appeared in the oligotrophic Aegean Sea. The input of riverine particulates was limited in both of the areas. In the Skagerrak, the strong stratification resulted in particle accumulation on/above the pycnocline and the development of pronounced intermediate nepheloid layers (INLs). The pycnocline-related INLs were formed entirely by dinoflagellates. The pycnocline hindered the vertical movement and sinking rates of particles, thus favouring primary production. Particle horizontal advection along the density discontinuities was probably enhanced. This pattern was not observed in the stratified waters of the northeastern Aegean Sea, probably due to the very low particle concentrations and/or the fact that phytoplankton maxima appeared in deeper waters. Pronounced INLs were identified in the Skagerrak below the pycnocline; these are attributed to accumulated or advected dinoflagellate skeletal remains mixed with clay mineral particles. This was revealed only by means of SEM observations. X-ray diffraction analysis could not provide information on the type of phytoplankton present, because dinoflagellates form their skeletons from organic material. Frontal stations in the northeastern Aegean Sea exhibited pronounced vertical movement of particles towards the deeper waters. Benthic nepheloid layers (BNL) were observed in the Skagerrak; these were related to the resuspended fine-grained surface sediments. In the northeastern Aegean Sea, although near-bottom current velocities were sufficient to resuspend surface sediments, resuspension occurred only episodically. The BNLs here are related mostly to near-bottom phytoplankton growth.  相似文献   

3.
Tie-series sediment trap materials at different water depths and surface sediments in northern and central South China Sea (SCS) were analyzed for organic carbon, amino acids, amino sugars and carbohydrates. Results show that particulate organic carbon (POC) is mainly derived from marine plankton, only 1.4%–1.6% of primary production sinks into deep SCS water column and less than 0.22 % of primary production ultimately reaches the sediments. The ranineralization and dissolution of organic matter as well as the compositional alterations of organic matter mixtures may mainly take place in the upper few hundred meters of water column, deep carbonate (opal) lysocline zones, and interface layers between sediments and water column, rather than in mid-waters. The organic geochemical parameters such as (T aa +T sug )OC%, AA/AS, Gluam/Galam, Arom. AA/non-prot. AA, ASP/b-ALA, Glu/g-ABA decrease from living marine plankton (or planktonic shells), to settling particulate matter and to sediments suggesting that they appear to be gad early degraded indicators of organic matter. Project supported by the National Natural Science Foundation of China (Grant No. 49776297). Cruises financially supported by State Oceanic Administration and German Federal Ministry of Research and Technology.  相似文献   

4.
5.
The concentrations of organic matter that enters the aquatic environment in dissolved form, organic matter fractions adsorbed on suspended mineral particles, and the total concentration of suspended matter in the Yenisei water were studied using rapid optical methods. Spectral characteristics of light attenuation and absorption by river water and its filtrates were analyzed in summer. Total discharges of organic carbon and suspended matter by the river were evaluated.  相似文献   

6.
The Basque coastal waters (South Bay of Biscay) are directly influenced by the Adour River freshwater plume. The Adour outflow leads to important variations of suspended matter concentrations and turbidity, which in turn may affect biological productivity and water quality. This study aims at both developing specific algorithms and testing the efficiency of atmospherically corrected MODIS-Aqua 250-m surface reflectance product (MYD09) to map total suspended matter concentrations and turbidity within the Adour coastal region. First, regional empirical algorithms based on in-situ data were tested to retrieve the concentration of total suspended matter and turbidity from the remote sensing reflectance. Then, the respective sensitivity of MODIS surface reflectance bands 1 and 2 for water quality application was investigated as well as the quality of atmospheric corrections. Finally, selected algorithms were applied to the MYD09 product. The resulting 250-m resolution maps were then compared to 1000-m maps produced by IFREMER and comparisons between satellite measurements and in-situ sampling points were performed. Results show that MODIS-Aqua band 1 (620–670 nm) is appropriate for predicting turbidity and total suspended matter concentrations using polynomial regression models, whilst band 2 is unadapted. Comparison between total suspended matter concentration 250-m resolution maps and mineral suspended matter 1000-m maps (generated by IFREMER) produced consistent results. A high correlation was obtained between turbidity measured in-situ and turbidity retrieved from MODIS-Aqua satellite data.  相似文献   

7.
利用地震海洋学方法在南海北部陆架和上陆坡区域发现了15个雾状层.这些雾状层的延伸长度从几千米到几十千米,厚度十几米到一百米,其顶界所处水深在135 m至715.5 m范围之间.雾状层在地震海洋学剖面上表现为强反射特征.不同于其他传统声学或光学方法,地震海洋学方法分辨率高,且能在短时间内对整个水体进行成像,可以记录到雾状层的时空变化特征,实现对雾状层的"四维"观测.南海北部上陆坡区域是内孤立波浅化、能量耗散集中的区域,在此过程中内孤立波会导致较大的波致流速,侵蚀海底使得表面沉积物再悬浮,进入水体,形成和维持雾状层的存在.  相似文献   

8.
兴凯湖春季水体悬浮颗粒物和CDOM吸收特性   总被引:1,自引:0,他引:1  
为了分析兴凯湖水体光学活性物质的吸收特性、来源和空间分布以及对400~700 nm范围内总吸收的贡献,于2013年5月对该水体进行野外实验,对水体中浮游藻类、非藻类颗粒物和有色可溶性有机物的吸收特性和水质参数进行测定.结果表明:总悬浮颗粒物的吸收光谱与非藻类颗粒物相似,色素颗粒物含量较少且单一,非藻类颗粒物在总悬浮颗粒物吸收中占主导地位,其贡献率始终在50%以上.CDOM吸收曲线的拟合函数斜率值Sg均高于其它水体.440 nm处总悬浮颗粒物和非藻类颗粒物的吸收系数ap(440)、ad(440)与总悬浮颗粒物、无机悬浮颗粒物和有机悬浮颗粒物浓度相关性均较好,与叶绿素a(Chl.a)浓度的相关性较差.兴凯湖与其它Ⅱ类水体的差异性表现在440 nm处CDOM吸收系数ag(440)与Chl.a浓度、溶解性有机碳(DOC)浓度均无显著相关性,说明DOC以无色部分为主.总体上,大兴凯湖各吸收系数和水质参数均值均低于小兴凯湖,后者水质受农耕区退水及周围渔业、旅游业的影响较大.  相似文献   

9.
Shelf-to-canyon suspended sediment transport during major storms was studied at the southwestern end of the Gulf of Lions. Waves, near-bottom currents, temperature and water turbidity were measured on the inner shelf at 28-m water depth and in the Cap de Creus submarine canyon head at 300 m depth from November 2003 to March 2004. Two major storm events producing waves Hs>6 m coming from the E–SE sector took place, the first on 3–4 December 2003 (max Hs: 8.4 m) and the second on 20–22 February 2004 (max Hs: 7 m). During these events, shelf water flowed downcanyon producing strong near-bottom currents on the canyon head due to storm-induced downwelling, which was enhanced by dense shelf water cascading in February 2004. These processes generated different pulses of downcanyon suspended sediment transport. During the peak of both storms, the highest waves and the increasing near-bottom currents resuspended sediment on the canyon head and the adjacent outer shelf causing the first downcanyon sediment transport pulses. The December event ended just after these first pulses, when the induced downwelling finished suddenly due to restoration of shelf water stratification. This event was too short to allow the sediment resuspended on the shallow shelf to reach the canyon head. In contrast, the February event, reinforced by dense shelf water cascading, was long enough to transfer resuspended sediment from shallow shelf areas to the canyon head in two different pulses at the end of the event. The downcanyon transport during these last two pulses was one order of magnitude higher than those during the December event and during the first pulses of the February event and accounted for more than half of the total downcanyon sediment transport during the fall 2003 and winter 2004 period. Major storm events, especially during winter vertical mixing periods, produce major episodes of shelf-to-canyon sediment transport at the southwestern end of the Gulf of Lions. Hydrographic structure and storm duration are important factors controlling off-shelf sediment transport during these events.  相似文献   

10.
Luo X  Mai B  Yang Q  Fu J  Sheng G  Wang Z 《Marine pollution bulletin》2004,48(11-12):1102-1115
Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) were measured in suspended particles and dissolved phase from the Baiertang water column and the Macao water column samples as collected from the Guangzhou channel of the Pearl River and the Macao harbor, where the sediments were heavily contaminated with organic pollutants. Total OCPs concentration varies from 23.4 to 61.7 ng/l in Baiertang water column and from 25.2 to 67.8 ng/l in Macao column, while total PAHs concentration varies from 987.1 to 2878.5 ng/l in the Baiertang water column and from 944.0 to 6654.6 ng/l in the Macao column. The vertical distribution profiles of pollutants and the partition of pollutants between particles and dissolved phases indicate that the sediments in Baiertang act as an important source of selected pollutants, and the pollutants in water of this region were mainly originated from the release and re-suspension of contaminants residing in the sediments. The sediments in Macao harbor act as a reservoir for organochlorine pesticides, such as DDTs mainly introduced by river inflow from Xijiang and PAHs input by brackish water from the Lingdingyang estuary. Combustion of fossil fuels and petroleum input are the main sources of PAHs in the Macao water column, while combustion of fossil fuels and coal is responsible for the PAHs in the Baiertang water column. The ratios of DDT/(DDD+DDE) for the Macao water column samples demonstrate that such chemicals were input into this region in recent times.  相似文献   

11.
Bulk suspended particulate matter (SPM), chlorophyll a (Chl a), ignition loss, particulate organic carbon (POC), organic nitrogen, inorganic phosphorus (PIP), and organic phosphorus were investigated in the heavily eutrophic Arakawa River estuary, Japan. Chl a was high (approximately 35 microg l(-1)) in summer and low (approximately 6.7 microg l(-1)) in winter and autumn. POC from living phytoplankton accounted for approximately 34% and approximately 70% of total POC during low- and high-biomass seasons, respectively. During the low-biomass season, detrital POC distribution was conservative, and less reactive, land-derived materials mainly composed particulate organic materials (POM), but complex mixing of land-derived POM and autochthonous planktonic detritus caused nonconservative detrital POC behavior during the high-biomass season. PIP concentration in SPM decreased with increasing salinity, likely by desorption of soluble orthophosphate (ortho-P). The ortho-P released from SPM, 56% of the ortho-P input from the Arakawa River to the bay, was a significant potential source of biologically available phosphorus causing eutrophication of coastal environments.  相似文献   

12.
Mixed layer depth (MLD) variability from seasonal to decadal time scales in the Bay of Biscay is studied in this work. A hydrographic time series running since 1991 in the study area, a climatology of the upper layer vertical structure based on the topology of this temperature profile time series and a one-dimensional water column model have been used for this purpose. The prevailing factors driving MLD variability have been determined with detail, and agreement with observations is achieved. Tests carried out to investigate climatological profile skill to reproduce the upper layer temporal evolution have demonstrated its ability to simulate variability at seasonal time scales and reproduce the most conspicuous events observed. This has enabled us to carry out a reconstruction of the MLD variability for the last 60 years in the study area. Favourable sequence of intense mixing events explains interannual differences and cases of extraordinary deepening of winter mixed layer. The negative phase of the Eastern Atlantic pattern seems to determine important interannual variability through intense episodes of cooling and mixing as in winter 2005 in the Bay of Biscay. Low-frequency variability is also observed. A very striking and unexpected shallower winter MLD during the 1970s and 1980s than those observed from 1995 has been found. Simulation results support this counter-intuitive outcome of shallower winter mixed layers concurrent with generalized upper water warming trends reported on several occasions for the area. The long-term trends in MLD seem related with decadal variability in the North Atlantic Oscillation, being in phase and opposition with other deepening-shallowing cycles found from subtropical-to-subpolar areas in the North Atlantic.  相似文献   

13.
Summary A layer of a few hundred meters thickness with suspended matter (a nepheloid zone) was discovered byEwing andThorndike [4]3) near the bottom on the continental slope of the North Atlantic. A downward pressure gradient is produced in this layer due to increment of water density with suspensoid. When only the Coriolis force balances with this pressure gradient, a bottom nepheloid current flows southwestward parallel to the depth contours with a velocity of about 10 (cm/sec) for a slope of one degree. The pressure gradient for fluid with locally variable density above a sloping bottom is treated and an extra term due to density gradient along the slope is derived. The vertical profiles of the nepheloid current with an effect on the vertical eddy viscosity are computed. Two kinds of vertical distributions of eddy viscosity are determined from the observed nepheloid distributions and used in the calculations: constant but different values at two layers and those increasing with height. The effect of the change of density along the bottom is treated by introducing dimensionless variables. Rossby number of the nepheloid current becomes about 10–2 indicating inertia terms to be negligible. Rossby number of turbidity currents ranges from 2 (in a decaying area) to 5 (developing area), suggesting that inertia terms are more important than Coriolis terms. The trajectories of turbidity currents are computed from motion of a mass of mud under the Coriolis force and friction, and the results are applied to those inferred byHand andEmery [6] in the San Diego Through off California.LGO Contribution Number 925.  相似文献   

14.
During the summers of 2005 and 2006, experiments designed to understand the properties of densely concentrated, thin layers of plankton and the processes governing their dynamics were conducted in Monterey Bay, California, USA. Our goal was to elucidate the role that species-specific properties of phytoplankton play in thin layer dynamics. Using adaptive sampling, we collected water samples from inside and outside bio-optical features of the water column. Characterization of the phytoplankton was compiled from live and preserved samples, and analyzed within a framework of physical, optical, chemical and acoustical data. In both years, Monterey Bay was home to an extraordinarily diverse assemblage of phytoplankton and other protists. Bioluminescent dinoflagellates, and Harmful Algal Bloom (HAB) taxa were common. In 2005, community assemblages were widespread, thus advection of water through the experimental mooring array did not result in floristic changes. In 2006 phytoplankton were very patchy in horizontal distribution, and advection of water through the array was at times accompanied by dramatic shifts in community composition. Individual taxa often exhibited disparate patterns of vertical distribution, with some found throughout the water column, whereas others were restricted to narrow depth intervals. Thin layers were observed in both years. In 2005, the dinoflagellate Akashiwo sanguinea formed intense thin layers near the pycnocline at night, and migrated to near surface waters at dawn. In 2006, layer composition was more complex, and related to the water mass present at the time of sampling. Optically detected thin layers of phytoplankton can be studied from the perspective of the impact their high biomass has on both ecological processes, and ocean optics. But thin layers can also be studied from the species-specific perspective of each organism, its role within the thin layer habitat, and the impact that life within a thin layer has on its life history and ecology. Several low-abundance taxa appeared to be restricted to narrow depth intervals in the water column, and constitute species-specific thin layers with the potential to have a large ecological impact even if their biomass is too low to dominate an optically defined thin layer. Concentration into thin layers may also facilitate obligatory relationships between taxa, such as the hypothesized interrelationships between cryptomonads, Myrionecta rubra, and Dinophysis spp., all of which were observed in this system. Complexity of vertical structure in Monterey Bay rivals that already demonstrated in topographically constrained, stratified systems, and presents challenges to our theoretical framework of phytoplankton ecology.  相似文献   

15.
16.
The characteristics of chromophoric dissolved organic matter (CDOM) were studied in Hudson Bay and Hudson Strait in the Canadian Arctic. Hudson Bay receives a disproportionately large influx of river runoff. With high dissolved organic matter (DOM) concentrations in Arctic rivers the influence of CDOM on coastal and ocean systems can be significant, yet the distribution, characteristics and potential consequences of CDOM in these waters remain unknown. We collected 470 discrete water samples in offshore, coastal, estuarine and river waters in the region during September and October 2005. Mixing of CDOM appeared conservative with salinity, although regional differences exist due to variable DOM composition in the rivers discharging to the Bay and the presence of sea-ice melt, which has low CDOM concentrations and low salinity. There were higher concentrations of CDOM in Hudson Bay, especially in coastal waters with salinities <28<28, due to river runoff. Using CDOM composition of water masses as a tracer for the freshwater components revealed that river runoff is largely constrained to nearshore waters in Hudson Bay, while sea-ice melt is distributed more evenly in the Bay. Strong inshore–offshore gradients in the bio-optical properties of the surface waters in the Hudson Bay cause large variation in penetration of ultraviolet radiation and the photic depth within the bay, potentially controlling the vertical distribution of biomass and occurrence of deep chlorophyll maxima which are prevalent only in the more transparent offshore waters of the bay. The CDOM distribution and associated photoprocesses may influence the thermodynamics and stratification of the coastal waters, through trapping of radiant heating within the top few meters of the water column. Photoproduction of biologically labile substrates from CDOM could potentially stimulate the growth of biomass in Hudson Bay coastal waters. Further studies are needed to investigate the importance of terrestrial DOM in the Hudson Bay region, and the impact of hydroelectric development and climate change on these processes.  相似文献   

17.
The Fitzroy estuary (Queensland, Australia) receives large, but highly episodic, river flows from a catchment (144,000 km(2)) which has undergone major land clearing. Large quantities of suspended sediments, and particulate and dissolved organic carbon are delivered. At peak flows, delta(13)C (-21.7+/-0.8 per thousand) and C/N (14.8+/-1.3) of the suspended solids indicate that the particulate organic material entering the estuary is principally soil organic carbon. At the lower beginning flows the particulate organic matter comes from in-stream producers (delta(13)C=-26 per thousand). The DOC load is about 10 times the POC load. Using the inverse method, budgets for POC and DOC were constructed for high and low flows. Under high flows, only a small portion of the POC and DOC load is lost in the estuary. Under dry season (low flow) conditions the estuary is a sink for DOC, but remains a source of POC to the coastal waters.  相似文献   

18.
In Funka Bay of Hokkaido, Japan, seawater, suspended matter and settling matter were collected once every month in the summer of 1974. These samples were analyzed for234Th, a short-lived daughter of dissolved238U. A pronounced disequilibrium between234Th and238U, and a highly variable concentration of234Th were found. Positive correlation, however, exist among the deficiency of234Th relative to238U in seawater, the concentration of particulate234Th, the fraction of particulate234Th to total234Th in seawater, the total dry weight of suspended matter, and the primary productivity during the month previous to sampling. The specific activity of234Th for the settling particles (620 ± 170 dpm/g) was nearly equal to that for suspended particles (720 ± 600 dpm/g) but much greater than that for plankton (47 ± 24 dpm/g). These facts suggest that suspended particles are somehow closely related to the removal of heavy metals from seawater, in spite of the negligibly small settling flux of suspended matter. The residence time of thorium in Funka Bay (mean depth: 60 m) is found to be about 60 days, which is nearly equal to those of210Pb and210Po.  相似文献   

19.
Observations in Elefsis Bay, an anoxic basin in the Saronikos Gulf, indicate that the large accumulation of ammonia, phosphates and silicates in the deep water are the result of the decomposition of organic matter during the anoxic period. The processes of denitrification, nitrate reduction and organic decomposition are also evident. Ammonia predominates in the inorganic fraction within the whole water column.  相似文献   

20.
To investigate the role of coastal canyons in the transfer of organic matter from the shelf to the slope and basin, we deployed sediment trap/current meter pairs at the head of five canyons in the Gulf of Lions (GoL) between November 2003 and May 2004. Analysis of organic carbon, biogenic silica, Corg isotopic composition, Corg/total nitrogen, chloropigments, and amino acids clearly shows the seasonal influence and effect of extreme meteorological events on the composition of collected particles. The sampling period was divided into three “scenarios”. The first corresponded to a large easterly storm and flood of the Rhone river during stratified water column conditions; the composition of material collected during this event was influenced by increased transfer of riverine and coastal particulate matter, with a lower Corg content. During the second “fall-winter” scenario, northern and northwestern winds blowing over the shelf caused cooling and homogenization of the shelf water column; particles collected at this time reflected the homogeneous source of particulate matter transported through canyons; particles sitting in the vicinity of canyon heads are most likely swept downslope by the general south-westward circulation. Organic tracers indicate a degraded origin for organic matter transported during this period. A third “spring” scenario corresponded to northern winds alternating with eastward windstorms that triggered and/or enhanced the cascading of dense waters accumulated on the bottom of the shelf due to previous cooling. These conditions occurred in conjunction with increased phytoplankton productivity in shelf surface waters. Organic matter advected mainly by dense shelf water cascading was fresher due to the transport of newly produced particles and a variable terrestrial fraction; this fraction depended on the proportion of resuspended material accumulated during previous high discharge periods that was involved in each transport pulse. The tight link shown between meteorological conditions and organic matter transport is important for continental margin geochemical studies as future changes in climatic conditions may lead to dramatic changes in carbon sequestration capability and in the ecosystems of deep margin environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号