首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Variations in deposition of terrigenous fine sediments and their grain-size distributions from a high-resolution marine sediment record offshore northwest Africa (30°51.0′N; 10°16.1′W) document climate changes on the African continent during the Holocene. End-member grain-size distributions of the terrigenous silt fraction, which are related to fluvial and aeolian dust transport, indicate millennial-scale variability in the dominant transport processes at the investigation site off northwest Africa as well as recurring periods of dry conditions in northwest Africa during the Holocene. The terrigenous record from the subtropical North Atlantic reflects generally humid conditions before the Younger Dryas, during the early to mid-Holocene, as well as after 1.3 kyr BP. By contrast, continental runoff was reduced and arid conditions were prevalent at the beginning of the Younger Dryas and during the mid- and late Holocene. A comparison with high- and low-latitude Holocene climate records reveals a strong link between northwest African climate and Northern Hemisphere atmospheric circulation throughout the Holocene. Due to its proximal position, close to an ephemeral river system draining the Atlas Mountains as well as the adjacent Saharan desert, this detailed marine sediment record, which has a temporal resolution between 15 and 120 years, is ideally suited to enhance our understanding of ocean-continent-atmosphere interactions in African climates and the hydrological cycle of northern Africa after the last deglaciation.  相似文献   

2.
早全新世降温事件的湖泊沉积证据   总被引:12,自引:1,他引:12  
我国华北干旱-半干旱区封闭湖泊流域化学风化历史记录了全新世以来次级的气候环境波动过程。高精度的沉积物地球化学、物理及生物参数变化表明,在全新世早-中期过渡阶段存在一次强降温气候事件,具体表现为流域化学风化减弱(高Rb/Sr比)、湖泊产生力减弱(低有机碳)以及湖泊水位下降。虽然该事件的寒冷程度比Younger Dryas弱,但是其与来自湖沼(包括北极、非洲、北美、西欧、青藏高原、祁连山等)、海洋(比北大西洋、地中海、加勒比海等)、欧-美大陆生物组合、极地冰芯等在内的环境记录的冷事件发生时间基本一致,集中发生于8.0-8.5ka B.P.之间。  相似文献   

3.
A paucity of empirical non‐marine data means that uncertainty surrounds the impact of climate change on terrestrial ecosystems in tropical regions beyond the last glacial period. The sedimentary fill of the Bosumtwi impact crater (Ghana) provides the longest continuous Quaternary terrestrial archive of environmental change in West Africa, spanning the last ~1.08 million years. Here we explore the drivers of change in ecosystem and climate in tropical West Africa for the past ~540 000 years using pollen analysis and the nitrogen isotope composition of bulk organic matter preserved in sediments from Lake Bosumtwi. Variations in grass pollen abundance (0?99%) indicate transitions between grassland and forest. Coeval variations in the nitrogen isotopic composition of organic matter indicate that intervals of grassland expansion coincided with minimum lake levels and low regional moisture availability. The observed changes responded to orbitally paced global climate variations on both glacial–interglacial and shorter timescales. Importantly, the magnitude of ecosystem change revealed by our data exceeds that previously determined from marine records, demonstrating for the first time the high sensitivity of tropical lowland ecosystems to Quaternary climate change.
  相似文献   

4.
The Holocene climate evolution in Northern Africa is studied in a 9000-yr-long transient simulation with a coupled atmosphere–ocean–vegetation model forced by changes in insolation and atmospheric greenhouse gas concentrations. The model simulates in the monsoonal domains a significant decrease in precipitation under influence of the orbitally forced reduction in summer insolation. In the Western Sahara region, the simulated mid-Holocene transition from humid to arid conditions (the termination of the African Humid Period) is highly non-linear with the occurrence of centennial-scale climate fluctuations due to the biogeophysical feedback between precipitation and vegetation cover. This result is in agreement with proxy data from the Western Sahara region. The other monsoonal regions experience a more gradual climate evolution that linearly follows the insolation forcing, which appears in disagreement with available lake level records.  相似文献   

5.
《Quaternary Science Reviews》2007,26(17-18):2042-2066
A review of seven outstanding issues on Mediterranean palaeoenvironments is presented. These are related to the dominant orbital pacing of climate variability, the length of the interglacial vegetation succession, the influence of the African summer monsoon, the seasonality of precipitation during boreal insolation maxima, the moisture balance during glacial maxima and the appearance of the mediterranean-type climate rhythm and evolution of mediterranean sclerophyllous plants. What emerges is that (1) marine δ18Oplanktonic and SST records show that precession has been a fundamental tempo of Mediterranean climate change, representing both a low-latitude signal (runoff from North Africa) and the direct influence of insolation at Mediterranean latitudes, but high-latitude glacial effects (41-kyr and 100-kyr cycles) became superimposed after 2.8 Ma. Sapropel and dust deposition patterns in marine cores reveal that obliquity also has an effect on Mediterranean climate through dry–wet oscillations, which are independent of glacial–interglacial variability. (2) The temperate part of interglacial vegetation succession has a duration of approximately half a precession cycle. This persisted during the interval of obliquity-dominated glacial cycles (∼2.8–1 Ma), with distinct forest successions following the precessional cycles. However, these are not always separated by an open vegetation phase because of minimal ice growth, producing an impression of a prolonged interglacial forest interval. (3) The effect of an enhanced African monsoon during summer insolation maxima has been mainly indirect, in terms of Nile discharge and runoff along the North African coast, leading to increased freshwater input into the Mediterranean Sea, reduced deep-water ventilation and sapropel deposition. (4) The notion of an accentuated summer rain regime in the northern Mediterranean borderlands also contributing to a freshening of the Mediterranean Sea during boreal insolation maxima is not supported by the available evidence, which suggests increased summer aridity. (5) Recent improvements in chronological precision and data resolution point to an increase in aridity and decreased temperatures during the Last Glacial Maximum (21±2 ka), but suggest an increase in effective moisture during the immediately preceding interval of 24–27 ka. (6) The mediterranean-type climate is not exclusively a post-3.6 Ma phenomenon, but may have appeared intermittently during the course of the Tertiary (or before). (7) If that is the case, then the paradigm that the sclerophyllous evergreen habit represents a pre-adaptation to summer drought may need re-evaluation.  相似文献   

6.
Palynological records of Middle and Late Pleistocene marine sediments off African shores is reviewed in order to reveal long-term patterns of vegetation change during climate cycles. Whether the transport of pollen and spores from the source areas on the continent to the ocean floor is mainly by wind or predominantly by rivers depends on the region. Despite the differences in transportation, accumulation rates in the marine sediments decline exponentially with distance to the shore. The marine sediments provide well-dated records presenting the vegetation history of the main biomes of western and southern Africa. The extent of different biomes varied with the climate changes of the glacial interglacial cycle. The Mediterranean forest area expanded during interglacials, the northern Saharan desert during glacials, and the semi-desert area in between during the transitions. In the sub-Saharan mountains ericaceous scrubland spread mainly during glacials and the mountainous forest area often increased during intermediate periods. Savannahs extended or shifted to lower latitudes during glacials. While the representation of the tropical rain forest fluctuated with summer insolation and precession, that of the subtropical biomes showed more obliquity variability or followed the pattern of glacial and interglacials.  相似文献   

7.
Isotopic ratios of Sr and Nd from lithogenic components of three isochronous core sections recovered from an east-west transect in the Eastern Mediterranean Sea (EMS) have been analyzed. The data are used for a quantitative estimate of the temporal and spatial variation of detrital flux to the EMS, assuming Saharan dust and Aegean/Nile particulate matter as dominant end members. It was established that the carbonate-free Saharan dust flux during deposition of the nonsapropel layers of marine oxygen isotope stage 5.4 (MIS 5.4) was similar to the present flux. During the deposition of sapropels S5 and S6, however, the Saharan dust input was drastically reduced and was not balanced by a change in the riverine influx at this time. Denser vegetation cover during more humid conditions may have reduced physical erosion and sediment removal in the source area. During marine oxygen isotope stage 6.2 (MIS 6.2) a pronounced increase of Saharan dust and detrital influx from the Aegean region is evident and implies more arid conditions in the southern and northern catchment areas. During this period, intersite variations are interpreted in terms of their geographic location relative to the seaways connecting the Aegean Sea and EMS. The width of the straits and hence the amount of sediment entering the eastern basins may have been affected by a low sea level that impeded interbasin sediment dispersal.  相似文献   

8.
Atmospheric mineral dust aerosols affect Earth’s radiative balance and are an important climate forcing and feedback mechanism. Dust is argued to have played an important role in past natural climate changes through glacial cycles, yet temporal and spatial dust variability remain poorly constrained, with scientific understanding of uncertainties associated with radiative perturbations due to mineral dust classified as “very low”. To advance understanding of the dust cycle, we present a high-resolution dust record from the Red Sea, sourced principally from Arabia, with a precise chronology relative to global sea level/ice volume variability. Our record correlates well with a high-resolution Asian dust record from the Chinese Loess Plateau. Importing our age model from the Red Sea to the Chinese Loess Plateau provides a first detailed millennial-scale age model for the Chinese loess, which has been notoriously difficult to date at this resolution and provides a basis for inter-regional correlation of Chinese dust records. We observe a high baseline of dust emissions from Arabia and China, even through interglacials, with strong superimposed millennial-scale variability. Conversely, the distal EPICA Dome C Antarctic ice core record, which is widely used to calculate the radiative impact of dust variations, appears biased to sharply delineated glacial/interglacial contrasts. Calculations based on this Antarctic dust record will therefore overestimate the radiative contrast of atmospheric dust loadings on glacial/interglacial timescales. Additional differences between Arabian/Asian and circum-Saharan records reveal that climate models could be improved by avoiding ‘global mean’ dust considerations and instead including large-scale regions with different dust source variability.  相似文献   

9.
地中海位于非洲季风气候和欧洲温带气候的交界处,同时接受周边地区岩石性质和风化状况差异极大的碎屑物质,所以是研究地球表层水文循环的理想区域。前人的认识集中于撒哈拉风尘和尼罗河输入,往往忽视了其他的陆源碎屑沉积,尤其对不同水文气候条件下的潜在变化缺乏考虑。针对形成于全新世非洲湿润期的腐泥层S1页岩沉积,并结合采自岩心顶部的晚全新世/现代沉积物,文章从18个站位选取了30个样品开展碎屑组分的地球化学分析,通过在具有不同干湿环境背景的时间片段上开展盆地尺度的对比(约9.5~8.9 ka vs. 约1.7~0 ka),探讨全新世东地中海的陆源碎屑输入模式。Ti/Al、Zr/Al、Ca/Al、Y/Al都清晰显示了经向和纬向上的梯度变化,可用作撒哈拉风尘的可靠指标;这些碎屑元素之间的差异反映了北非风尘来源和传送路径的变化。这些风尘指标在南-北向上的一致变化指示了副热带高压与西风带的交互界限为36°N,该界限在全新世应稳定存在。与风尘相反,河流输入的指标值在早全新世时显著高于现代,并呈现不同的地理分布。K/Al具有西高东低、北高南低的分布特征,指示了地中海北部沿岸地区的河流输入。根据与Ti/Al、K/Al的差异,利用(Cr+Ni)/Al可较好地识别被增强的季风降雨所激活的北非古河流沉积。河流输入在早全新世时显著上升,但不同河流系统的影响范围差异很大,受制于源区水文气候、表层洋流搬运等因素。  相似文献   

10.
The occurrence and propagation of abrupt climate change between the high and low-latitudes has become an important focus of paleoclimatic and paleoceanographic research. The causes of abrupt change have significant implications for understanding future manifestations of similar forcings under late Holocene (‘Anthropocene’) boundary conditions. Of particular interest are signals indicative of sub-millennial scale climate change in the sub-tropics of similar magnitude and frequency to those recorded in Greenland ice cores. Earlier research in the Arabian Sea has highlighted the sensitivity of sedimentary organic carbon and nitrogen isotope measurements for recording the state of the SW monsoon and associated Arabian Sea Oxygen Minimum Zone. In this study, we exploit the unprecedented fidelity of the sedimentary δ15N record to identify a 20 cm interval at ODP Site 723 containing a stadial/inter-stadial interval between 43-42 Kyr BP. We employ sedimentary nitrogen isotopes, chlorin pigment and alkenone abundances, major and minor element analyses of highly-resolved (2 mm ≈ 10 yr) samples across this interval to compare a comprehensive, multi-proxy data set to understand (a) the processes contributing to the δ15N signal in the longer records of denitrification; and (b) the associated climatic events, especially the relative intensity of summer and winter monsoons at these times. A lack of evidence for bioturbation in excess of our 2 mm sampling resolution facilitates decadal-scale oceanographic and climatic reconstructions. Using a four-component flux-dilution model, we show that the deposition of carbonate decreased in parallel with an increase in Total Organic Matter flux from stadial to inter-stadial time. This interval is also marked by a significant drop in lithogenic (dust) accumulation, analogous to a similar decrease noted during deglaciation in the Western Arabian Sea. Combined with alkenone U37K′-derived estimates for sea surface temperature (SST), we conclude that the climatological shift from stadial to inter-stadial conditions at low latitudes was characterized by repeated switches in mean monsoon state approximately every 200 yr. The winter monsoon was the dominant mode during maximum stadial conditions; conversely the summer monsoon was dominant during maximum interstadial-like conditions. However, each interval was separated by a distinct ‘inter-monsoon’ mode, indicated by a higher continental dust flux but warmer SST. Proxy records for changing bottom-water oxygenation show near-identical results down to the mm-scale, but hint at increased export production leading the onset of anoxia during the stadial/inter-stadial transition. The coherence of all sedimentary signals depicts a wholesale reorganization of the Arabian Sea climate and marine ecosystem over approximately 200 years, a period that may be associated with monsoon modulation by small oscillations in solar irradiance.  相似文献   

11.
The present-day clay mineral distribution in the southeastern Levantine Sea and its borderlands reveals a complex pattern of different sources and distribution paths. Smectite dominates the suspended load of the Nile River and of rivers in the Near East. Illite sources are dust-bearing winds from the Sahara and southwestern Europe. Kaolinite is prevalent in rivers of the Sinai, in Egyptian wadis, and in Saharan dust. A high-resolution sediment core from the southeastern Levantine Sea spanning the last 27 ka shows that all these sources contributed during the late Quaternary and that the Nile River played a very important role in the supply of clay. Nile influence was reduced during the glacial period but was higher during the African Humid Period. In contrast to the sharp beginning and end of the African Humid Period recorded in West African records (15 and 5.5 ka), our data show a more transitional pattern and slightly lower Nile River discharge rates not starting until 4 ka. The similarity of the smectite concentrations with fluctuations in sea-surface temperatures of the tropical western Indian Ocean indicates a close relationship between the Indian Ocean climate system and the discharge of the Nile River.  相似文献   

12.
The interactions between climatic and volcanic forcing on diatom communities contained in a 50,000-year sedimentary sequence from Lake Massoko, Tanzania, were examined. At the century scale, 19 discrete tephra inputs to the lake isolated the sedimentary nutrient supply and shifted the diatom communities to those tolerant of low phosphorus levels, whereas at the millennial scale, diatom-inferred shifts in precipitation–evaporation based on conductivity optima and diatom life-form ratios were broadly similar to lake-level reconstructions from Lake Rukwa, Lake Malawi, and others in the region. Some fluctuations of Lake Massoko are consistent with the precession-driven changes in insolation, but the major climate shifts do not relate directly to orbital forcing of summer insolation south of the equator and show more consistency with records from the equatorial and northern tropics that receive rainfall from the passing of the intertropical convergence zone. Sea surface temperatures are strongly correlated to multimillennial-scale climate patterns over this region of Africa.  相似文献   

13.
《Quaternary Science Reviews》2005,24(14-15):1623-1636
The large dataset obtained from the extensive study of IMAGES core MD95-2043 recovered from the Alboran Sea (Western Mediterranean) shows the periodicities and phase relationships of oceanographic and atmospheric processes on a millennial time-scale. The 1470-yr cycle is the most significant, with the exception of the records reflecting climatic or environmental changes on land which show statistically significant 3300 and 8000 frequency bands. The investigation of these core records on a millennial scale resolution allows us to establish the evolution of oceanographic and atmospheric mechanisms that influenced the Western Mediterranean region in the course of the Dansgaard/Oeschger cycles. Accordingly, possible land–sea interactions can be identified and situated in the context of the temporal succession of the different climatic processes. For instance, Saharan dust supply from Northern Africa appears to lead high-latitude climate changes, suggesting that low-latitude feedback processes were involved in forcing the millennial climatic variability in the westernmost Mediterranean.  相似文献   

14.
The Palaeozoic marine invertebrate fossil record in southern Africa is characterised by extensive data for the Early and Middle Devonian but extremely limited or absent for other Palaeozoic Periods. The Mesozoic Era is lacking in marine invertebrate fossils for the Triassic, Late Jurassic, and Cretaceous. For the Cenozoic Era there is limited marine megafossil information. Overall, in benthic, cool waters, Palaeozoic, marine megafossils from southern Africa appear to represent relatively low diversity communities, when compared to ecologically comparable warm water environments elsewhere. However, the marine benthic Cretaceous and Cenozoic faunas of southwestern Africa are typically diverse warm water types, until the later Miocene when cool waters again prevailed. The Benguela Current clearly influenced lower diversity faunas.Climatically, it can be inferred from the marine megabenthic pal˦ontological evidence, thatwarm conditions were present from Early Cambrian until mid-Ordovician times, followed by a much cooler climate that persisted well into the Middle Devonian. The Late Palaeozoic evidence thus indicates cool to cold conditions. In contrast, the Late Permian fossils are consistent with warmer conditions, continuing through Late Jurassic and Cretaceous times along the East African and West African coasts, until the Late Miocene.Within the Gondwanan framework, a Central African region can be envisaged that was subject to non-marine conditions during the entire Phanerozoic Eon. Peripheral to this central African region were marine environments of various ages. The geological history of these peripheral regions was fairly unique. Some features in southern Africa are similar of those found in the Paraná Basin and the Falkland Islands.Most of North Africa from central Senegal to Libya contains a Phanerozoic marine cover extending from the Early Cambrian through to the Carboniferous, characterised by warm water faunas, except for the Ordovician which yields cool-cold water faunas.The Palaeozoic of Arabia, which was an integral part of Africa until the Miocene, has yieldedwarm water fossils.  相似文献   

15.
《Quaternary Science Reviews》2005,24(12-13):1375-1389
High-resolution analyses of the elemental composition of calcite and biogenic silica (BSi) content in piston cores from Lake Edward, equatorial Africa, document complex interactions between climate variability and lacustrine geochemistry over the past 5400 years. Correlation of these records from Lake Edward to other climatically-forced geochemical and lake level records from Lakes Naivasha, Tanganyika, and Turkana allows us to develop a chronology of drought events in equatorial East Africa during the late Holocene. Major drought events of at least century-scale duration are recorded in lacustrine records at about 850, 1500, ∼2000, and 4100 cal year BP. Of these, the most severe event occurred between about 2050 and 1850 cal year BP, during which time Lake Edward stood about 15 m below its present level. Numerous additional droughts of less intensity and/or duration are present in the Lake Edward record, some of which may be correlated to other lacustrine climate records from equatorial East Africa. These events are superimposed on a long-term trend of increasingly arid conditions from 5400 to about 2000 cal year BP, followed by a shift toward wetter climates that may have resulted from an intensification of the winter Indian monsoon. Although the causes of decade- to century-scale climate variability in the East African tropics remain obscure, time-series spectral analysis suggests no direct linkage between solar output and regional rainfall. Rather, significant periods of ∼725, ∼125, 63–72, 31–25, and 19–16 years suggest a tight linkage between the Indian Ocean and African rainfall, and could result from coupled ocean-atmosphere variability inherent to the tropical monsoon system.  相似文献   

16.
Grain-size distributions and detrital minerals were investigated for modern dust and for lacustrine sediment in Lake Barkol region, northwest China. Characteristics of the modern dust and lacustrine sediments, principle component analysis, and changes of quartz contents all suggest grain size 45–138 μm in the core sediment is the dust sensitive component. It indicates that high dust flux climate occurred at mid-Holocene (5.5–4.5 cal ka BP), corresponding to the high dust flux record in northwest Pacific and the drought interval of deserts in northwest China during the mid-Holocene. The strong dust activity is in contradiction with the climatic optimum recorded by the lacustrine evidence in Xinjiang. Different responses of the dust source region and watershed to the regional climate may have led to the inconsistency between dust and climate records during the mid-Holocene in arid central Asia.  相似文献   

17.
Millennial to submillennial marine oscillations that are linked with the North Atlantic's Heinrich events and Dansgaard–Oeschger cycles have been reported recently from the Alboran Sea, revealing a close ocean-atmosphere coupling in the Mediterranean region. We present a high-resolution record of lithogenic fraction variability along IMAGES Core MD 95-2043 from the Alboran Sea that we use to infer fluctuations of fluvial and eolian inputs to the core site during periods of rapid climate change, between 28,000 and 48,000 cal yr B.P. Comparison with geochemical and pollen records from the same core enables end-member compositions to be determined and to document fluctuations of fluvial and eolian inputs on millennial and faster timescales. Our data document increases in northward Saharan dust transports during periods of strengthened atmospheric circulation in high northern latitudes. From this we derive two atmospheric scenarios which are linked with the intensity of meridional atmospheric pressure gradients in the North Atlantic region.  相似文献   

18.
We review the post-glacial climate variability along the East Antarctic coastline using terrestrial and shallow marine geological records and compare these reconstructions with data from elsewhere. Nearly all East Antarctic records show a near-synchronous Early Holocene climate optimum (11.5–9 ka BP), coinciding with the deglaciation of currently ice-free regions and the optimum recorded in Antarctic ice and marine sediment cores. Shallow marine and coastal terrestrial climate anomalies appear to be out of phase after the Early Holocene warm period, and show complex regional patterns, but an overall trend of cooling in the terrestrial records. A Mid to Late Holocene warm period is present in many East Antarctic lake and shallow coastal marine records. Although there are some differences in the regional timing of this warm period, it typically occurs somewhere between 4.7 and 1 ka BP, which overlaps with a similar optimum found in Antarctic Peninsula terrestrial records. The differences in the timing of these sometimes abrupt warm events in different records and regions points to a number of mechanisms that we have yet to identify. Nearly all records show a neoglacial cooling from 2 ka BP onwards. There is no evidence along the East Antarctic coastline for an equivalent to the Northern Hemisphere Medieval Warm Period and there is only weak circumstantial evidence in a few places for a cool event crudely equivalent in time to the Northern Hemisphere's Little Ice Age. There is a need for well-dated, high resolution climate records in coastal East Antarctica and particularly in Terre Adélie, Dronning Maud Land and Enderby Land to fully understand the regional climate anomalies, the disparity between marine and terrestrial records, and to determine the significance of the heterogeneous temperature trends being measured in the Antarctic today.  相似文献   

19.
Late Pleistocene variations in rainfall in subtropical southern African are estimated from sediments preserved in the Pretoria Saltpan, a 200000 year-old closed-basin crater lake on the interior plateau of South Africa. We show that South African summer rainfall covaried with changes in southern hemisphere summer insolation resulting from orbital precession. As predicted by orbital precession geometry (Berger, 1978), this South African record is out of phase with North African palaeomonsoon indices (Street and Grove, 1979; Rossignol-Strick, 1983; McIntyre et al., 1989); the amplitude of the rainfall response to insolation forcing agrees with climate model estimates (Prell and Kutzbach, 1987). These results document the importance of direct orbital insolation forcing on both subtropical North and South African climate as well as the predicted antiphase sensitivity to precessional insolation forcing.  相似文献   

20.
Comparison of marine, lacustrine, and terrestrial records from twenty-four sites suggests the existence of a ‘Younger Dryas’-type climate oscillation just prior to the Oxygen Isotope Stage 6/5e boundary. These records include results from biostratigraphic, pedostratigraphic, and speleothem studies, as well as analyses of stable isotope compositions of marine records and ice cores. The climate oscillation is named after the warm Zeifen Interstadial and the cold Kattegat Stadial. The Zeifen Interstadial may be related to a major meltwater pulse in the Baffin Bay-Labrador Sea-Norwegian Sea region. The climate oscillation is presumably in part a result of a variation in ocean circulation, especially in the strength of the North Atlantic Drift, but changes in the atmospheric circulation also played an important role. The geographically widespread distribution of the oscillation suggests that the two-step deglaciation influenced both the northern and southern hemispheres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号