首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The margin of the Gulf of Cadiz is swept by the deep current formed by the Mediterranean Outflow Water (MOW) flowing from the Mediterranean to the Atlantic. On the northern margin of the Gulf (Algarve Margin, South Portugal), the MOW intensity is low and fine-grained contourite drifts are built up with an alongslope development. From new sedimentological data, this study emphasizes the presence of two types of contourite drifts separated only by a deep submarine canyon incising the slope with a north-south orientation (Portimão Canyon). High-resolution seismic and bathymetry interpretation shows that on the eastern side of the canyon, the MOW forms a thick and large detached drift (Albufeira Drift) prograding toward both north and west, as shown in seismic profiles, with a high sedimentation rate. On this side of the canyon, the MOW intensity is high enough to erode the slope forming a moat channel (Alvarez Cabral). On the western side of Portimão Canyon, the MOW energy is lower, preventing moat channel erosion. Only flat and thin drift develops (Portimão and Lagos Drifts) with slow aggradation and a low sedimentation rate. This difference in drift development is due to the presence of the canyon which generates an important change in hydrodynamic of the MOW, confirmed by temperature-density measurements showing that MOW flows down Portimão Canyon. The canyon is responsible for the deviation of the direction of the MOW as it partly catches the deep-sea current flowing westward (i.e. capture phenomenon). It creates, thus, a decrease of the flow energy, competency and capacity between the east and west sides of the canyon. Through this phenomenon of MOW deep-sea current capture, the canyon constitutes a morphologic feature generating an important change in the contourite deposition pattern.In addition to already known climatic and oceanographic influences, our results show the role of canyons on contourite drift building. This study provides new elements on autocyclic factors influencing the contourite sedimentation, which are important to consider in future sedimentary paleo-reconstruction interpretations.  相似文献   

2.
A series of submarine canyons on the southwest slope of Orphan Basin experienced complex failure at 7–8 cal ka that resulted in the formation of a large variety of mass-transport deposits (MTDs) and sediment gravity flows. Ultra-high-resolution seismic-reflection profiles and multiple sediment cores indicate that evacuation zones and sediment slides characterize the canyon walls, whereas the canyon floors and inner-banks are occupied by cohesive debris-flow deposits, which at the mouths of the canyons on the continental rise form large, coalescing lobes (up to 20 m thick and 50 km long). Erosional channels, extending throughout the length of the study area (<250 km), are observed on the top of the lobes. Piston cores show that the channels are partially filled by poorly sorted muddy sand and gravel, capped by inversely to normally graded gravel and sand. Such deposits are interpreted to originate from multi-phase gravity flows, consisting of a lower part behaving as a cohesionless debris flow and an upper part that was fully turbulent.The Holocene age and the widespread synchronous occurrence of these failures indicate a large magnitude earthquake as their possible triggering mechanism. The large debris-flow deposits on the continental rise originated from large failures on the upper continental slope, involving proglacial sediments. Retrogression of these failures led to the eventual failure of marginal sandy till deposits on the upper slope and outer shelf, which due to their low cohesion disintegrated into multi-phase gravity flows. The evacuation zones and slide deposits on the canyon walls were triggered either by the earthquake, or from erosion of the canyon walls by the debris flows. The slides, debris-flows, and multi-phase gravity flows observed in this study are petrographically different, indicating different sediment sources. This indicates that not all failures lead through flow transformation to the production of a multi-phase gravity flow, but only when the sediment source contains ample coarse-grained material. The spatial segregation of the slide, debris-flow, and multi-phase gravity-flow deposits is attributed to the different mobility of each transport process.  相似文献   

3.
High-resolution geophysical surveys (seismic, side-scan sonar) offshore of the Eratini River, a seasonally flowing river in the NW Gulf of Corinth, Greece, revealed a small fan delta with a variety of bottom features (blocky deposits, chutes and sediment instabilities). Considering the relatively small size of this river, however, these features could not be explained as being produced solely by river flow processes. Based on morphological features, the fan delta can be subdivided into a high- and a low-energy area. Sedimentation processes in the fan delta are associated with flood-derived sediment input, hyperpycnal flows which erode the fan surface, mud settling from suspension plumes, shelf sedimentation and sediment failures. The observed blocky deposits are considered to be the result of earthquake-induced mass flows in 1965 and 1995, whereas the chutes would be produced both by erosive mass flows and by hyperpycnal currents. The bulk block sediment volume has probably resulted from the 1965 earthquake. The 1965 evacuation zone and the related chutes were buried by the prograding fan delta. The main causative factor triggering the observed sediment instabilities is considered to be liquefaction, which is caused by (1) frequent earthquake-induced cyclic loading and (2) low sediment shear strengths created by rapid deposition during floods, in both cases associated with high pore-water pressures.  相似文献   

4.
The marine fill of ancient foreland basins is primarily recorded by depositional systems consisting of facies and facies associations deposited by a variety of sediment gravity flows in shallow-marine, slope and basinal settings. Tectonism and climate were apparently the main factors controlling the sediment supply, accommodation and depositional style of these systems. In marginal deltaic systems, sedimentation is dominated by flood-generated hyperpycnal flows that build up impressive accumulations of graded sandstone beds in front of relatively small high-gradient fan-deltas and river deltas. During periods of tectonically forced lowstands of sealevel, these systems may commonly shift basinward to shelfal and slope regions. Instability along the edges of these lowstand deltas and sand-laden hyperpycnal flows generate immature and coarse-grained turbidite systems commonly confined within structural depressions and generally encased in distal delta-front and prodeltaic deposits. Because of the close vertical and lateral stratigraphic relations between deltaic and turbidite-like facies, these marginal systems are herein termed ‘mixed depositional systems’. They are very common in the fill of foreland basins and represent the natural link between deltaic and basinal turbidite sedimentation.Basinal turbidite systems form in deeper water elongate highly subsiding troughs (foredeeps) that developed in front of advancing thrust systems. The impressive volumes of sheet-sandstones that form the fill of these troughs suggest that basinal turbidite systems are likely to form following periods of dramatic tectonic uplift of adjacent orogenic wedges and related high-amplitude tectonically-forced sealevel lowstands. In such deep basinal settings, sediment flux to the sea is dramatically increased by newly formed sediment in fluvial drainage basins and the subaerial and submarine erosion of falling-sealevel deltaic deposits generated during the uplift. Turbidity currents are very likely to be mainly triggered by floods, via hyperpycnal flows and related sediment failures, but can fully develop only in large-scale erosional conduits after a phase of catastrophic acceleration and ensuing bulking produced by bed erosion. This process leads to deepening and widening of the conduits and the formation of large-volume highly efficient bipartite currents whose energy dissipation is substantially reduced by the narrow and elongate basin geometry. These currents can thus carry their sediment load over considerable distances down the basin axis.  相似文献   

5.
Integrating novel and published swath bathymetry (3,980 km2), as well as chirp and high-resolution 2D seismic reflection profiles (2,190 km), this study presents the mapping of 436 pockmarks at water depths varying widely between 370 and 1,020 m on either side of the Strait of Gibraltar. On the Atlantic side in the south-eastern Gulf of Cádiz near the Camarinal Sill, 198 newly discovered pockmarks occur in three well localized and separated fields: on the upper slope (n=14), in the main channel of the Mediterranean outflow water (MOW, n=160), and on the huge contourite levee of the MOW main channel (n=24) near the well-known TASYO field. These pockmarks vary in diameter from 60 to 919 m, and are sub-circular to irregularly elongated or lobate in shape. Their slope angles on average range from 3° to 25°. On the Mediterranean side of the strait on the Ceuta Drift of the western Alborán Basin, where pockmarks were already known to occur, 238 pockmarks were identified and grouped into three interconnected fields, i.e. a northern (n=34), a central (n=61) and a southern field (n=143). In the latter two fields the pockmarks are mainly sub-circular, ranging from 130 to 400 m in diameter with slope angles averaging 1.5° to 15°. In the northern sector, by contrast, they are elongated up to 1,430 m, probably reflecting MOW activity. Based on seismo-stratigraphic interpretation, it is inferred that most pockmarks formed during and shortly after the last glacial sea-level lowstand, as they are related to the final erosional discontinuity sealed by Holocene transgressive deposits. Combining these findings with other existing knowledge, it is proposed that pockmark formation on either side of the Strait of Gibraltar resulted from gas and/or sediment pore-water venting from overpressured shallow gas reservoirs entrapped in coarse-grained contourites of levee deposits and Pleistocene palaeochannel infillings. Venting was either triggered or promoted by hydraulic pumping associated with topographically forced internal waves. This mechanism is analogous to the long-known effect of tidal pumping on the dynamics of unit pockmarks observed along the Norwegian continental margin.  相似文献   

6.
Neil C. Mitchell   《Marine Geology》2005,220(1-4):131-151
Channels are relatively common on river-mouth deltas, but the process by which they arise from river sediment discharge is unclear because they can potentially be explained either by negatively buoyant (hyperpycnal) flows produced directly from the river outflow or by flows generated by repeated failure and mobilisation of sediment rapidly deposited at the delta front. Channels eroded through a dump site of dredge spoils are described here from multibeam and older sonar data collected in Commencement Bay, at the mouth of the Puyallup River. Shallow channels on the seaward upper surface of the dump site, away from any flows that could have been produced by delta front failures, suggest that at least some hyperpycnal flows were produced directly from the positively buoyant river outflow up to 200 m from the edge of the river mouth platform. The form of channel bed erosion is revealed by the longitudinal shape of the main eroded channel compared with the adjacent dump site profile. It suggests that the channel evolved by its steep front retreating, rather than by simple vertical entrenchment or diffusive-like evolution of the profile, a geometry interpreted as evidence that repeated failure of the bed occurred in response to shear stress imposed by bottom-travelling flows. Model calculations based on shear strengths back-calculated from the geometry of channel wall failures suggest that, if the main channel were eroded solely by hyperpycnal flows, their generation was remarkably efficient in order to create flows vigorous enough to cause channel bed failure. Besides the sediment concentration and discharge characteristics that have been considered to dictate the ability of rivers to produce hyperpycnal flows, it is suggested that the timing of floods with respect to the tidal cycle should also be important because extreme low tides may be needed to ensure that coarse sediment is transferred vigorously to the edge of river mouth platforms.  相似文献   

7.
Based on new multibeam bathymetric data, seismic-reflection profiles and side-scan sonar images, a great number of submarine failures of various types and sizes was identified along the northern margin of the Ligurian Basin and characterized with 3 distinct end-members concerning their location on the margin, sedimentary processes and possible triggering mechanisms. They include superficial landslides mainly located in the vicinity of the main mountain-supplied rivers and on the inner walls of canyons (typically smaller that 108 m3 in volume: Type 1), deep scars 100?C500 m high along the base of the continental slope (Type 2), and large-scale scars and Mass Transport Deposits (MTDs) affecting the upper part of the slope (Type 3 failures). The MTDs are located in different environmental contexts of the margin, including the deep Var Sedimentary Ridge (VSR) and the upper part of the continental slope in the Gulf of Genova (Finale Slide and Portofino Slide), with volumes of missing sediment reaching up to 1.5 × 109 m3. High sedimentation rates related to hyperpycnal flows, faults and earthquake activity, together with sea-level fluctuations are the main factors invoked to explain the distribution and sizes of these different failure types.  相似文献   

8.
冲绳海槽中部表层沉积物中的放射虫   总被引:7,自引:2,他引:5  
1992年7月“向阳红16号”海洋调查船利用大洋50型抓斗在冲绳海槽中部(25°30’-30°N,125°-129°E)区域内获取表层沉积物样品88个。表层沉积物中的放射虫定量分析结果表明;愈近海槽放射虫的数量及属、种丰度值愈高,西侧槽坡离开槽区越远,放射虫数量及属种越渐少。而东侧槽被放射虫数量则表现了高、低值成点状分布的格局。表层沉积物中两大类放射虫的百分含量分别为泡沫虫约占87%,罩笼虫约占13%。另外根据分析结果,把本区分为3个小的沉积区:陆坡上部沉积区;陆被下部沉积区;海槽底部沉积区。  相似文献   

9.
The Gulf of Cadiz: an unstable giant contouritic levee   总被引:1,自引:0,他引:1  
Recent multibeam bathymetry and acoustic imagery data provide a new understanding of the sedimentary system located in the Gulf of Cadiz which is under the influence of a strong current, the Mediterranean Outflow Water (MOW). When it comes out from the Strait of Gibraltar, the MOW is either channelled along major or secondary channels, or spills over a sedimentary levee. Frequent earthquakes and the constant current shearing generate widespread sediment deformation and instability of contourite deposits. Secondary channels can form by retrogression following an initial failure. At their mouth, sediment accumulates in the form of small sandy contourite lobes. These observations suggest that the Gulf of Cadiz system shares many similarities with channel–levee complexes formed by turbidity current activity. The main difference is that, in the Gulf of Cadiz, the main process is a strongly flowing saline current which locally interacts with gravity processes.  相似文献   

10.
Sabine Schmidt   《Marine Chemistry》2006,100(3-4):289
Over the last decade 234Th has become increasingly used to study particle transport in the ocean on a timescale of weeks. The application of 234Th is mainly focused on the determination of particle and associated carbon fluxes from oceanic surface water. However, 234Th is also suitable for investigating particle dynamic from the upper ocean down to interface sediments, as illustrated by the present work which reports unexpected behavior of 234Th in intermediate waters associated with the Mediterranean Outflow Water (MOW). Concentration profiles of dissolved 238U and 228Ra, and dissolved and particulate 234Th and 228Th were measured in the Mediterranean Outflow Water (MOW) near the Gibraltar Straits and at two sites (36°30′N–15°35′W, Nicole; 36°27′N–10°35′W, Yseult) which had hydrographic characteristics of Meddies, i.e. MOW that propagates as eddies in the Northeastern Atlantic at intermediate depths.There are marked differences in the distribution of thorium between MOW and the surrounding Atlantic waters. At the youngest Meddy Nicole salinity maximum at 1000 m depth, 234Th(total) : 238U and 228Th(total) : 228Ra activity ratios are significantly lower than radioactive equilibrium, indicating an unusual deficit of short half-life thorium nuclides. This implies an export of thorium, presumably on particles, from intermediate Meddy Nicole waters. This process is supported by an increase of particulate thorium fluxes measured in sediment traps deployed for two weeks above and within Meddy Nicole. In contrast, offshore Meddy Yseult has more typical profiles of both thorium nuclides that are nearly in equilibrium with their parents. These results indicate that at intermediate depths, the presence of MOW affects the exchange of reactive elements between particles and dissolved forms and enhances the downward flux of particles from intermediate waters in the Northeast Atlantic.  相似文献   

11.
Using bathymetry and reflection seismic profiles this study reveals the nature of the modern ponded Fangliao Fan within a framework of sediment infilling of an intra-slope basin on a tectonically active margin off southwestern Taiwan. The Fangliao Fan begins at the mouth of Fangliao Canyon at a water depth of 900 m and terminates down-slope at the escarpment of a linear ridge north of the Kaoping Slope Valley at a water depth of about 1,100 m, sediment gravity flows being prevented from farther down-slope transport due to ponding against this bathymetric high. The fan appears as a distinct basinward-opening triangular depocenter confined by ridges on both sides and the NW–SE trending ridge aligned normal to the elongation of the fan. These topographic ridges were formed by mud-diapiric intrusions. The external form of the ponded Fangliao Fan is characterized by a fan-valley fill pattern that has a concave cross-sectional morphology, in contrast to typical mounded fans deposited on slope-basin plains having a smooth topography. Sediment episodically funneled through the Fangliao Canyon from upslope areas and derived from the flanks of the mud-diapiric ridges are mainly transported by mass movement before being re-dispersed by unconfined channels to infill the intra-slope basin, thereby building up channelized fan complexes with poorly developed levees. The sediment flows from the mouth of Fangliao Canyon flow down-slope along the west flank of the Fangliao Ridge. In the process, a feeder channel has been eroded into the seafloor along which sediment is transported to the distal parts of the fan. Sediment west of the feeder channel is mainly redistributed by mass movement and/or fan channels to fill up the irregular topographic low in the slope. Due to a very low sediment supply, Fangliao Fan represents a starved ponded slope fan. As such it provides insights into the processes by which ponded fans develop and can therefore serve as an analog for similar fans developed on topographically complex slopes elsewhere. The morpho-structural features of the Fangliao Fan resulted from the interplay between sediment supply, uplift of the mud-diapiric ridge, mass movements, and alternating incision and deposition.  相似文献   

12.
为研究围填海工程对海湾水动力环境的影响,本文基于二维数值模型MIKE21,建立了东山湾附近海域的潮流模型。对比观测数据发现,大潮期间的最高、最低潮位模拟误差在6 cm以内,小潮期间的误差相对较大;流速和流向的模拟误差在9%左右,最大误差出现在转流时刻;总体来看,模拟结果与观测数据吻合良好。在此模型基础上,研究了东山湾围填海前、后潮流动力、水体半交换时间和纳潮量等水动力要素的变化。结果表明:围填海后大范围的涨落流态与围填海前保持一致,大体上仍然呈现S-N走向,涨潮流偏N向,落潮流偏S向,往复流特征较为明显;从局部流场来看,涨落潮流场发生了一定的变化,围填海区域南、北两侧的流矢变化较为明显,涨潮流矢由偏N向改为偏E向,而落潮流矢由偏S向改为偏W向,同时受到围填海区域岸线的遮蔽效应,围填海南、北两侧水域的流速也有一定减弱,而西侧的流速则有一定增强;围填海实施前的水体半交换时间为220.5 h,实施后时间为239.4 h;纳潮量变化为-2.5%左右。研究表明,围填海工程对东山湾水动力环境的影响主要集中在工程区域附近,其对泥沙冲淤、生态环境等的影响将在后续研究中进一步探讨。  相似文献   

13.
In order to understand the hydrodynamic parameters that control the fluvial sediment dynamics on an intertidal mudflat located in a sheltered zone in the upper part (fluvial part) of the macrotidal Seine estuary (France), a two-year field study of high-frequency field measurements was carried out. The bed-level evolution of the mudflat surface was measured from the semi-diurnal period to annual time scales using a high-resolution altimeter. The data showed that the sedimentary patterns on the mudflat were mainly controlled by river flows and tides. During high river flows in winter, sedimentation dominated; suspended particulate matter concentrations were higher, submersion was constant and at semi-diurnal scale, sedimentation duration was more important than erosion due to an asymmetrical tide. By contrast during low river flows in summer, erosion dominated mainly as a result of immersion/emersion of tidal flats during semi-diurnal cycle. From this annual sedimentation–erosion cycle we identify a temporary storage of 10–30% of the fine-grained (<63 μm) river-borne particles on mudflats in the upper section of the fluvial Seine estuary during high river flows.River-related sediment fluxes were estimated from the measurement of fine-grained sedimentation zones in the fluvial part of the estuary. The erosion/sedimentation processes were perennial, and the amounts of contributing sediments were directly related to the solid river load. Our results indicate that mudflats in the fluvial part of the Seine estuary play an important role in the downstream transfer of fine-grained suspended particulate matter (SPM) towards the turbidity maximum and the Rouen docks particularly during low river flows, when roughly 30–50% of the SPM originates from the eroded intertidal flats.  相似文献   

14.
Numerical experiments in an idealized river mouth are conducted using a three-dimensional hydrodynamics model (EFDC model) to examine the impacts of suspended sediment concentration (SSC), settling velocity of sediment and tidal mixing on the formation and maintenance of estuarine hyperpycnal flows. The standard experiment presents an illustrative view of hyperpycnal flows that carry high-concentrated sediment and low-salinity water in the bottom layer (>1.0 m in thickness) along the subaqueous slope. The structure and intra-tidal variation of the simulated hyperpycnal flows are quite similar to those previously observed off the Huanghe (Yellow River) mouth. Results from the three control experiments show that SSC of river effluents is the most important parameter to the formation of hyperpycnal flows. High SSC will increase the bulk density of river effluents and thus offset the density difference between freshwater and seawater. Low SSC of river effluents will produce a surface river plume, as commonly observed in most large estuaries. Both the settling velocity of sediment particles and the tidal mixing play an important role in maintaining the hyperpycnal flows. Increasing settling velocity enhances the deposition of sediment from the hyperpycnal layer and thus accelerates the attenuation of hyperpycnal flows, whereas increasing tidal mixing destroys the stratification of water column and therefore makes the hyperpycnal flows less evident. Our results from numerical experiments are of importance to understand the initiation and maintenance of hyperpycnal flows in estuaries and provide a reference to the rapidly decaying hyperpycnal flows off the Huanghe river mouth due to climatic and anthropogenic forcing over the past several decades.  相似文献   

15.
In OMEX-II-II, 9 cruises gathered optical data, principally by transmissometer. The distribution of optical turbidity caused by concentration of particulate matter (PMC) in the water column over the northern Iberian margin shows several features related to hydrography. It is concluded that a signal of PMC seen in Mediterranean Water (MW) found north of 42°N is not carried from its source at the Gibraltar Sill and Gulf of Cadiz because it is shown, using intermediate stations, that this turbid plume decays, mainly by fall out but also partly by mixing, to very low levels around southern Portugal. PMC maxima sometimes seen in MW on the northern Iberian margin are thus most likely to result from intermittent local resuspension by MW interacting with slope sediments. The highest turbidity is found over the upper slope and is the result of (i) shelf edge resuspension and off-shelf flow of turbid plumes, mainly between 100 and 300 m depth, and (ii) resuspension under the slope current aided by internal waves, in the depth range 500–800 m where the density gradient between ENACW and MW is maximal. Below the MW, flows are generally slow, and turbidity is low. The bottom nepheloid layer in deep water is also weak with PMC values <100 mg m-3. The focus of resuspension activity on the upper slope means that the region is an efficient exporter to the ocean of sediment that either escapes from the shelf or sinks to the bed from surface production. This accounts for upper slope sediments recorded in other studies as sandy or in places as rocky bottom.  相似文献   

16.
Multibeam bathymetry, high (sleeve airguns) and very high resolution (parametric system-TOPAS-) seismic records were used to define the morphosedimentary features and investigate the depositional architecture of the Cantabrian continental margin. The outer shelf (down to 180–245 m water depth) displays an intensively eroded seafloor surface that truncates consolidated ancient folded and fractured deposits. Recent deposits are only locally present as lowstand shelf-margin deposits and a transparent drape with bedforms. The continental slope is affected by sedimentary processes that have combined to create the morphosedimentary features seen today. The upper (down to 2000 m water depth) and lower (down to 3700–4600 m water depth) slopes are mostly subject to different types of slope failures, such as slides, mass-transport deposits (a mix of slumping and mass-flows), and turbidity currents. The upper slope is also subject to the action of bottom currents (the Mediterranean Water — MW) that interact with the Le Danois Bank favouring the reworking of the sediment and the sculpting of a contourite system. The continental rise is a bypass region of debris flows and turbidity currents where a complex channel-lobe transition zone (CLTZ) of the Cap Ferret Fan develops.The recent architecture depositional model is complex and results from the remaining structural template and the great variability of interconnected sedimentary systems and processes. This margin can be considered as starved due to the great sediment evacuation over a relatively steep entire depositional profile. Sediment is eroded mostly from the Cantabrian and also the Pyrenees mountains (source) and transported by small stream/river mountains to the sea. It bypasses the continental shelf and when sediment arrives at the slope it is transported through a major submarine drainage system (large submarine valleys and mass-movement processes) down to the continental rise and adjacent Biscay Abyssal Plain (sink). Factors controlling this architecture are tectonism and sediment source/dispersal, which are closely interrelated, whereas sea-level changes and oceanography have played a minor role (on a long-term scale).  相似文献   

17.
Three mooring arrays were deployed in the Palamós Canyon axis with sediment traps, current meters and turbidimeters installed near the bottom and in intermediate waters. Frequent sharp and fast turbidity peaks along with current speed increases were recorded, particularly at 1200 m depth in spring and summer. During these events, near-bottom water turbidity increased by up to more than one order of magnitude, current velocity by two to four times and horizontal sediment fluxes by one to three orders of magnitude. When these events occurred, 9–11 days integrated downward particle fluxes collected by the near-bottom sediment trap increased by two to three times. These events were identified as sediment gravity flows triggered by trawling activities along the northern canyon wall. Sediment eroded by the trawling nets at 400–750 m depth on this wall seems to be channeled through a gully and transported downslope towards the canyon axis, where the 1200 m mooring was located. The sediment gravity flows recorded at the 1200 m site were not detected at deeper instrumented sites along the canyon axis, suggesting that they affect local areas of the canyon without traveling long distances downcanyon. These observations indicate that trawling can generate frequent sediment gravity flows and increase sediment fluxes locally in submarine canyons. Furthermore, in addition to the various natural processes currently causing sediment gravity flows and other sediment transport events, human activities such as trawling must be taken into account in modern submarine canyon sediment dynamics studies.  相似文献   

18.
Topographic control on the nascent Mediterranean outflow   总被引:1,自引:1,他引:0  
Data collected during a 12-day cruise in July 2009 served to examine the structure of the nascent Mediterranean Outflow Water (MOW) immediately west of the Espartel Sill, the westernmost sill in the Strait of Gibraltar. The MOW is characterized by high salinities (>37.0 and reaching 38.3) and high velocities (exceeding 1?m s?1 at 100?m above the seafloor), and follows a submerged valley along a 30?km stretch, the natural western extension of the strait. It is approx. 150?m thick and 10?km wide, and experiences a substantial drop from 420 to 530?m over a distance of some 3?km between two relatively flat regions. Measurements indicate that the nascent MOW behaves as a gravity current with nearly maximal traveling speed; if this condition is maintained, then the maximum MOW velocity would decrease slowly with distance from the Espartel Sill, remaining significantly high until the gravity current excess density is only a small fraction of its original value. The sharp pycnocline between the Mediterranean and the overlying North Atlantic Central waters is dynamically unstable, particularly where the flow interacts with the 100?m decrease in bottom depth. Here, subcritical gradient Richardson numbers coincide with the development of large interfacial undulations and billows. The very energetic downslope flow is likely responsible for the development of a narrow V-shaped channel downstream of the seafloor drop along the axis of the submerged valley, this probably being the very first erosional scour produced by the nascent MOW. The coincidence of subcritical gradient Richardson numbers with relatively high turbidity values above the channel flanks suggests it may be undergoing upstream erosion.  相似文献   

19.
为探讨外航道回淤特征,采用二维波浪潮流泥沙数学模型,模拟研究了莱州湾东部航道回淤情况并探讨了其影响因素,以期对航道泥沙输运研究提供借鉴。研究表明,正常天气下,水流跨越航道,流速减小、挟沙能力下降导致的悬沙落淤是航道淤积的主要原因,但淤积量有限。大风浪是造成航道淤积的主要动力因素,其淤积泥沙主要来源于海底侵蚀来沙,河流来沙和沿岸输沙对航道淤积的贡献不大。从水深地形、泥沙来源、底质类型、水文动力条件等方面分析,航道发生骤淤的可能性较小。  相似文献   

20.
The Cretaceous north Pyrenean interplate basin developed in conjunction with the opening of the Bay of Biscay with the deposition of large amounts of carbonates on its margins. Major failures of linear segments of the shelf and slope generated autosuspended mass flows; some of these flows differentiated orevolved into megaturbidites that are up to 63 m thick and 95 km long. A study of the evolutionary mass flow-megaturbidites also has application to petroleum geology because it can help to detail the anatomy of a basin and its related distribution of sedimentary bodies and paleoenvironments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号