首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Marche Apennines (Italy) offer an excellent opportunity to constrain the temporal and spatial relationships between drainage network formation and tectonic activity. Using a combination of field data, seismic lines and boreholes we show that the main deformation phase took place during the Messinian when the area, affected by the Messinian sea level drop, emerged and evolved from marine to continental conditions. The results highlight that during the Messinian emersion a drainage network developed contemporaneously with an increase in tectonic activity that could be related to sea level fall and river erosion. The present‐day river system, which is dominated by transverse rivers that cut straight across the tectonic grain, is located in older Messinian palaeovalleys, even though the region was subsequently covered by water until the late Pliocene–early Pleistocene.  相似文献   

2.
The Luan River is the most important water system in north-eastern Hebei Province, China and is located in the transitional zone of the Eastern Yan Mountains, North China Plain and Songliao Plain. The welldeveloped river terraces of its tributary, the Yixun River, provide excellent information for studying neotectonics and climate change. There are seven terraces in the lower reaches of the Yixun River,numbered T7–T1. The optically stimulated luminescence dating results of 23 samples show that t...  相似文献   

3.
International Journal of Earth Sciences - Our research is aimed at estimating the vertical deformation affecting late Quaternary units accumulated into the foreland basin of the Northern Apennines...  相似文献   

4.
Well-preserved Quaternary staircased marine terraces appear on Ras Leona limestone relief. This is a peculiar sector of the Betic-Rif Cordillera, lying in the four-way junction between the Atlantic and the Mediterranean, and Europe and Africa. The age and altitude correlation of the Ras Leona terraces with travertine-covered lateral equivalent terraces fashioned in the neighbouring Beni Younech area, and comparison with those along the Moroccan Atlantic coasts, would suggest that the Ras Leona terraces were mainly formed by eustatic factors. The importance of the eustasy is supported by further comparisons with Spanish and Moroccan Mediterranean terraces and with different marine terraces developed on passive-margin coasts around the world. A tectonic event occurred mainly during the period between the formation of the Maarifian and the Ouljian terraces (i.e., between 370 and 150 ka). The moderate Quaternary tectonic uplift deduced from the marine terraces and its comparison with uplifted marine terraces developed in active subduction setting disagrees with the model of an active eastwards subduction below the Gibraltar tectonic arc.  相似文献   

5.
The San Juan River, located in San Juan Province (Argentina), crosses the Precordillera and other geologic units including the Ullum tectonic valley and the La Laja Zone between latitudes 31°S and 32°S. The San Juan River is antecedent as is suggested by its two perpendicular segments linked by an almost parallel segment to the main structural trend. Along the Precordillera, the San Juan River valley has many different alluvial fans at the river junctions with its tributaries. The Quaternary alluvial fans display surfaces cut in a series of steps which we consider to be alluvial terraces generated by aggradation and repeated incision episodes. The studied sector includes one area with recent major seismic activity (La Laja Zone), another without major seismic activity (Precordillera area), and a subsident area (Ullum area) where a large lake was formed 6500 yr BP. The old San Juan River was captured by the Quebrada de Ullum valley by means of a 25-m incision, which resulted in river-gradient headward erosion. The San Juan River gradient shows some irregularities that, although unrelated to the main structures, are associated with river dynamics, which emphasizes lithologic differences. The main river valley width, the geometry and gradient of each tributary, together with the basement rock lithologies and the size of each local source area are the major factors which control the alluvial terrace generation processes. In the La Laja Zone, where the uppermost terrace is capped by travertine, dating of travertine deposits suggests that the maximum incision rate is 0.9–1 mm/yr related to episodic activity on the La Laja Fault.  相似文献   

6.
The focus of this study is to understand a dramatic avulsion event on the Tisza River. During the Late Pleistocene the river course switched by about 80 km from the east to west of the Great Hungarian Plain (GHP) through the Záhony bend to its present meander belt. The aim of this study is to date this Záhony avulsion: based upon radiocarbon and pollen samples from six cores in the Polgár study area, situated in the west of the GHP at the middle course of the Tisza River. In addition, a grain size composition and heavy mineral analysis has been performed. The results of these analyses reveal a sequence of paleochannels and have been plotted on a high-resolution digital elevation model, illustrating the paleochannel form and age relationships.

The study suggests that the age of this major avulsion event is significantly older than it was previously supposed. Instead of 10 to 11 ka it is, according to our new data, 16–18 ka, and definitely predates the Last Glacial Maximum (LGM). The river cut into the previous, contiguous surface and formed at least one climatic terrace, then drifted gradually westward as a response to a tilt or the differential subsidence of tectonic origin.  相似文献   


7.
Foreland contraction and hinterland extension in the Southern Apennines orogen of Italy produced a complex spatial and temporal pattern of vertical and horizontal displacement. Remarkably, Late Miocene to mid-Pleistocene foreland migration of the contractional front at ∼16 mm yr−1 was not accompanied by uplift and the frontal thrust belt remained at or below sea level. Only following a mid-Pleistocene reduction in horizontal displacement did the frontal thrust belt and foreland begin uplift at ∼0.5 mm yr−1, a rate that increased to ∼1 mm yr−1 after 125 ka. Although the extensional hinterland experienced net subsidence during formation of the Tyrrhenian basin, an extensional transition zone adjacent to the frontal thrust belt records sustained uplift at ∼0.3 mm yr−1. The interaction of preexisting crustal structure and deep tectonic processes resulted in time-integrated displacement rates suggesting steady-state deformation for periods of 106 years. Displacement rate changes were abrupt and occurred over intervals of 105 years or less.  相似文献   

8.
This work provides new insights to assess the factors controlling carbonate deposition in the siliciclastic fluvial systems of rift basins. Sedimentological and stable‐isotope data of microbialites and associated carbonate facies, along with regional geological information, are shown to reveal the influence of climate and tectonics on the occurrence and attributes of carbonate deposits in these settings. The Vega Formation – a 150 m thick Lower Kimmeridgian siliciclastic fluvial sequence in Asturias Province (northern Spain) – constitutes a candidate for this approach. This unit includes varied facies (stromatolites; rudstones, packstones and wackestones containing oncoids, intraclasts, charophytes and shell bioclasts; marlstones and polygenic calcareous conglomerates) that formed in a low‐gradient fluvial–lacustrine system consisting of shallow, low‐sinuosity oncoid‐bearing channels and pools within marshy areas, with sporadic coarse alluvial deposition. The sedimentological attributes indicate common erosion by channel overflow and rapid lateral changes of subenvironments caused by water‐discharge variations. The carbonate fluvial–lacustrine system developed near uplifted marine Jurassic rocks. The occurrence of the system was conditioned by normal faults (active during the deposition of the unit) that favoured: (i) springs of HCO3–Ca‐rich water from a Rhaetian–Sinemurian carbonate rock aquifer; and (ii) carbonate deposition in areas partially isolated from the adjacent siliciclastic fluvial system. The microbialite δ13C and δ18O values support deposition in a hydrologically open system, fed by ambient‐temperature meteoric water, with riparian vegetation. Three types of lamination in the stromatolites and oncoids reflect distinct morphological types of cyanobacterial communities. The textural pattern of lamination parallels δ13C and δ18O changes, suggesting short‐term cycles of precipitation and temperature. A moderately to strongly contrasted seasonal and/or pluriannual precipitation regime is inferred from the cyclic δ13C pattern of the lamination and from the discontinuous and asymmetrical growth of oncoids. Thus, the isotopic and sedimentological attributes of the carbonate deposits were linked to short‐term climate changes associated with semi‐arid conditions, consistent with the studied climatic zone.  相似文献   

9.
Located at the interface between the temperate westerly and sub-tropical climate systems, South Africa's winter rainfall zone (WRZ) is a key location in understanding Late Quaternary atmospheric circulation dynamics. Inactive eolian deposits in the WRZ, comprising pan-fringing lunette and coastal dunes, were investigated to establish their depositional ages and utility as paleoenvironmental indicators. The resulting optical luminescence chronology reveals episodic lunette accretion at 60,000-45,000 yr, 12,000-13,000 yr, 2800-2600 yr, 1200 yr, and <1000 yr, with coastal dune ages clustering at 4100-4700 yr.Episodes of lunette and coastal dune accretion on the Agulhas Plain are temporally distinct, reflecting differing fundamental controls on their activity. Comparisons to previously published data also reveal that the lunettes differ in age from more ancient coastal eolianites. Lunette deposition is asynchronous between locations, reflecting the topographic and hydrological setting of the individual pans. In near-coastal settings, with limited surface recharge, lunette accretion appears to be at least partially controlled by sea level induced changes in groundwater levels. Those pans with more significant surface recharge (particularly from fluvial systems) may produce less ambiguous paleoenvironmental records, with pan status more strongly reflecting regional hydrological conditions. Lunette orientation is indicative of strong westerly winds during both the Pleistocene and Holocene. Lunette accretion would have been promoted by reduced on-shore moisture transport during the summer months, enhancing rainfall seasonality. Such conditions would have been promoted by increased continentality as the Agulhas Bank was exposed during low sea level stands.  相似文献   

10.
The Meuse River crosses the Feldbiss Fault Zone, one of the main border fault zones of the Roer Valley Graben in the southern part of the Netherlands. Uplift of the area south of the Feldbiss Fault Zone forced the Meuse River to incise and, as a result, a flight of terraces was formed. Faults of the Feldbiss Fault Zone have displaced the Middle and Late Pleistocene terrace deposits. In this study, an extensive geomorphological survey was carried out to locate the faults of the Feldbiss Fault Zone and to determine the displacement history of terrace deposits.The Feldbiss Fault Zone is characterized by an average displacement rate of 0.041–0.047 mm a−1 during the Late Pleistocene. Individual faults show an average displacement rate ranging between 0.010 and 0.034 mm a−1. The spatial variation in displacement rates along the individual faults reveals a system of overstepping faults. These normal faults developed by reactivation of Paleozoic strike-slip faults.As fault displacements at the bases of the younger terrace deposits are apparently similar to the tops of the adjacent older terrace, the age of these horizons is the same within thousands of years. This implies that the model of terrace development by rapid fluvial incision followed by slow aggradation does apply for this area.  相似文献   

11.
In this work, we report the results of combined geological, structural, and anisotropy of magnetic susceptibility (AMS) studies carried out on Quaternary deposits in the Picentini Mountains, southern Apennines (Italy). The study concerns four small continental basins, Acerno, Tizzano, Iumaiano, and Piano del Gaudo, related to fluvial–lacustrine depositional environments, ranging in altitude from 600 to 1,200 m a.s.l. and strongly incised during recent time. Stratigraphic and structural analyses, integrated by low- and high-field anisotropy of magnetic susceptibility (AMS), show that the formation of these basins has been controlled by extensional and transtensional tectonics. Most of the AMS sites exhibit a well-defined magnetic foliation parallel to the bedding planes. A well-defined magnetic lineation has also been measured within the foliation planes. In the Iumaiano, Tizzano, and Piano del Gaudo basins, magnetic lineations cluster around NNE–SSW trend and are parallel to the stretching directions inferred by structural analysis of faults and fractures. On the basis of structural, sedimentological, and high-field AMS data, we suggest a tectonic origin for the magnetic lineation, analogously to what has been observed in other weakly deformed sediments from Neogene and Quaternary extensional basins of the Mediterranean region. Our results demonstrate that onset and the evolution of the investigated basins have been mainly controlled since lower Pleistocene by NW–SE normal and transtensional faults. This deformation pattern is consistent with a prevalent NE–SW extensional tectonic regime, still active in southern Apennines, as revealed by seismological and geodetic data.  相似文献   

12.
This paper examines the morphotectonic and structural–geological characteristics of the Quaternary Martana Fault in the Umbria–Marche Apennines fold‐and‐thrust belt. This structure is more than 30 km long and comprises two segments: a N–NNW‐trending longer segment and a 100°N‐trending segment. After developing as a normal fault in Early Pleistocene times, the N–NNW Martana Fault segment experienced a phase of dextral faulting extending from the Early to Middle Pleistocene boundary until around 0.39 Ma, the absolute age of volcanics erupted in correspondence to releasing bends. The establishment of a stress field with a NE–ENE‐trending σ3 axis and NW–NNW σ1 axis in Late Pleistocene to Holocene times resulted in a strong component of sinistral faulting along N–NNW‐trending fault segments and almost pure normal faulting on newly formed NW–SE faults. Fresh fault scarps, the interaction of faulting with drainage systems and displacement of alluvial fan apexes provide evidence of the ongoing activity of this fault. The active left‐lateral kinematic along N–NNW‐trending fault segments is also revealed by the 1.8 m horizontal offset of the E–W‐trending Decumanus road, at the Roman town of Carsulae. We interpret the present‐day kinematics of the Martana Fault as consistent with a model connecting surface structures to the inferred north‐northwest trending lithospheric shear zone marking the western boundary of the Adria Plate. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
14.
This paper summarises the results of combined structural and geomorphological investigations we carried out in two key areas, in order to obtain new data on the structure and evolution of the Tyrrhenian slope of the southern Apennines. Analysis by a stress inversion method [Angelier, J., 1994. Fault slip analysis and paleostress reconstruction. In: Continental Deformation. P.L. Hancock Ed., Pergamon Press, Oxford, 53–100] of fault slip data from Mesozoic to Quaternary formations allowed the reconstruction of states of stress at different time intervals. By integrating these data with those deriving from the stratigraphic and morphotectonic records, chronology and timing of the sequence of the deformation events was obtained.The tectonic history of the region can be related to four deformation events. Structures related to the first event, that was dominated by a strike-slip regime with a NW–SE oriented σ1 and was active since Mid–Late Miocene, do not significantly affect the present day landscape, as they were strongly displaced and overprinted by subsequent deformation events and/or deleted by erosion. The second and third events, that may be considered as the main responsible for the morphostructural signature of the region, are comparable with the stretching phases recognised offshore and considered to be responsible for the opening and widening of the Tyrrhenian basin. In particular, the second event (with an E–W oriented σ3), took place in the Late Miocene/earliest Pliocene and was first dominated by a strike-slip regime, that was also responsible for thrusting and folding. Since Late Pliocene, it was dominated by an extensional regime that created large vertical offsets along N–S to NW–SE trending faults. The third event, that was dominated by extension with a NW–SE oriented σ3, started in the Early Pleistocene and was responsible for formation of the horst-and-graben structure with NE–SW trend that characterises the Tyrrhenian margin of the southern Apennines. The fourth deformation event, which is characterised by an extensional regime with a NE–SW trending σ3, started in the late Middle Pleistocene and is currently active.  相似文献   

15.
The geometry of several thrust-related folds in the Central Apennines of Italy results from a switch in deformation regime, from extension to contraction. This switch in tectonic regime occurred during the deposition of syn-orogenic sediments, and the emplacement and migration of the thrust belt–foredeep system towards the foreland in Neogene time. The styles of positive tectonic inversion result from normal faults that were steepened, rotated and truncated by thrusts, with local development of minor folds due to buttressing. Normal fault-controlled escarpments are also locally preserved in the forelimbs and backlimbs of thrust-related anticlines. The location and amplitudes of contractional structures across the belt reflects the distribution of pre-thrusting normal faults within precursor syn-orogenic basins, a result that may improve our understanding of the evolution of Apennine, as well as other thrust belt–foredeep systems.  相似文献   

16.
丁准泰 《江苏地质》2019,43(1):38-43
眉山阶地第四系剖面地处番禺断隆区的边缘,毗邻狮子洋断陷区,是珠江三角洲第一次海侵所到达的区域,附近的断裂包括文冲断裂、化龙—黄阁断裂、新会—市桥断裂等三角洲内典型断裂。发育于网纹红土基座上的堆积阶地,自下而上大致分为杂色砂层、白色砂层、淤泥质层3层,构成一个完整的从动水环境到静水环境的沉积旋回。野外调查及14C测年和光释光(OSL)测年结果表明,眉山第四系剖面年龄约在70~30 ka B.P.之间,相当于深海O同位素4—2阶段。结合前人的研究资料,认为阶地面与沉降区的下旋回原本在同一高度,但自晚更新世以来,在断块差异升降中被错开,垂直距离在20 m以上,直观地指示了断隆区与断陷区的运动特征。  相似文献   

17.
In order to provide new data on the neotectonics and geodynamic properties of western Syria, studies of marine terraces have been carried out. The most attention was paid to the lower terraces in the range of 3–5 to 30–35 m above sea level, because they have more complete distributions along the shore. The lower terraces were examined along the coastal area from Tartus to Latakia, and along the carbonate cliff on Arwad Island. Seven 230Th/U dates for these terraces are in the range of 85–130 ka, suggesting the age interval of the last interglacial (MIS 5). New dates on the lower terraces provide a basis for stratigraphical and geomorphological interpretation as well as neotectonic reconstruction. According to the geomorphological data and lithological composition of those terraces, two main uplifted blocks can be established. One coincides with the Latakia block, and another corresponds to the western margin of the Banias volcanic plateau. These blocks are divided by a subsided structure corresponding to the Nahr el Kebir graben. The amplitude of neotectonic uplifting in the Latakia and Banias blocks reaches 15–20 m for the Late Pleistocene.  相似文献   

18.
In foreland thrust belts, abrupt lateral changes in tectonic style, structural–stratigraphic features, and topography usually occur across cross-strike faults. The Central Apennines of Italy offer an exceptional scenario of lateral variations in tectonic setting. Here, the Sangro Volturno oblique thrust ramp (SVOTR) represents the outer thrust front of the Pliocene–Quaternary foreland thrust system, confining southward the axial culmination of the orogen that occurs in the Central Apennines. We present an interpretation of the Pliocene–Quaternary evolution of this cross-strike fault through an integrated dataset including structural-geological mapping and subsurface onshore seismic reflection profiles. The interpretation of the structural framework is augmented by the analysis of low-temperature thermochronometers from 32 new sites extending across the subsurface transverse structure. As evidenced by seismic line interpretation, the localization and development of the SVOTR have been influenced by inherited extensional faults within a positive inversion tectonics context. The regional distribution of the maximum paleotemperature values across the SVOTR constrains the original extent of the allochthonous thrust sheet over all its hanging-wall and footwall blocks. The Pliocene–Quaternary thrusting and inversion of SVOTR caused the strong hanging-wall uplift, which brought to the complete erosion of the allochthonous units and the exhumation of the Adria units. The integrated analysis of low-temperature thermochronometers and structural evidence as applied in the study case can define the role of major cross-strike discontinuities in foreland thrust belts, by constraining and verifying their tectonics inversion significance and the amount of related exhumation.  相似文献   

19.
Climatic and tectonic controls on the relative abundance of solutes in streams draining the New Zealand Southern Alps were investigated by analyzing the elemental and Sr isotope geochemistry of stream waters, bedload sediment, and hydrothermal calcite veins. The average relative molar abundance of major cations and Si in all stream waters follows the order Ca2+ (50%) > Si (22%) > Na+ (17%) > Mg2+ (6%) > K+ (5%). For major anions, the relative molar abundance is HCO3 (89%) > SO42− (7%) > Cl (4%). Weathering reactions involving plagioclase and volumetrically small amounts of hydrothermal calcite define the ionic chemistry of stream waters, but nearly all streams have a carbonate-dominated Ca2+ and HCO3 mass-balance. Stream water Ca/Sr and 87Sr/86Sr ratios vary from 0.173 to 0.439 μmol/nmol and from 0.7078 to 0.7114, respectively. Consistent with the ionic budget, these ratios lie solely within the range of values measured for bedload carbonate (Ca/Sr = 0.178 to 0.886 μmol/nmol; 87Sr/86Sr = 0.7081 to 0.7118) and hydrothermal calcite veins (Ca/Sr = 0.491 to 3.33 μmol/nmol; 87Sr/86Sr = 0.7076 to 0.7097).Streams draining regions in the Southern Alps with high rates of physical erosion induced by rapid tectonic uplift and an extremely wet climate contain ∼10% more Ca2+ and ∼30% more Sr2+ from carbonate weathering compared to streams draining regions in drier, more stable landscapes. Similarly, streams draining glaciated watersheds contain ∼25% more Sr2+ from carbonate weathering compared to streams draining non-glaciated watersheds. The highest abundance of carbonate-derived solutes in the most physically active regions of the Southern Alps is attributed to the tectonic exhumation and mechanical denudation of metamorphic bedrock, which contains trace amounts of calcite estimated to weather ∼350 times faster than plagioclase in this environment. In contrast, regions in the Southern Alps experiencing lower rates of uplift and erosion have a greater abundance of silicate- versus carbonate-derived cations. These findings highlight a strong coupling between physical controls on landscape development and sources of solutes to stream waters. Using the Southern Alps as a model for assessing the role of active tectonics in geochemical cycles, this study suggests that rapid mountain uplift results in an enhanced influence of carbonate weathering on the dissolved ion composition delivered to seawater.  相似文献   

20.
This study aims at the recent activity and development of an active wrench fault, the Touhuanping Fault in northwestern Taiwan. Northwestern Taiwan has been proposed in a current situation between the mature to waning collision in terms of tectonic evolution. The main drainage in this area, the Chungkang River, flows close to the trace of the fault mentioned above. We examined various types of deformation of fluvial terraces along the Chungkang River as a key to understanding the nature and rate of the late Quaternary tectonics. The E–W trending Touhuanping Fault has long been mapped as a geological boundary fault, but its recent activity was suspected. Field survey revealed that its late Quaternary activity is recorded in the offset fluvial terraces. Our result shows dextral slip and vertical offset with upthrown side on the south, and activated at least twice since the emergence of terrace 4 (older terrace 3 with OSL date of ca. 80 ka). Total amount of offset recorded in the Touhuanping terrace sequence is 15 m for dextral and 10 m for vertical offset. Estimated recurrence time of earthquake rupture may be a few tens of thousand years. Uplift on the upthrown side of the Touhuanping Fault also resulted in the formation of drowned valleys which were graded to terrace 4. Other deformation features, such as back-tilting, westward warping, and a range-facing straight scarp, were also identified. A second-order anticline roughly parallel to the Touhuanping Fault is suggested to be the origin of the northward tilting on terrace 3; it could have resulted from a flower structure on the Touhuanping Fault at shallow depth. This may demonstrate that the buried segment of the Touhuanping Fault has also been active since 80 ka. In the northern study area, the westward warping at terrace 2 probably represents late Quaternary activity of another NE–SW trending Hsincheng Fault.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号