首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A combination of δ13C and δ18O analyses with U–Th disequilibrium dating on a stalagmite and groundwater from the deep and extensive Arch Cave network on northeastern Vancouver Island has produced a preliminary 12,200 y paleoclimatic profile. Speleothem depositional rates vary from 6 to 41 mm/ka and are consistent with the “Hendy” test for speleothem deposition under high-humidity equilibrium conditions. Relative to present day conditions, warmer periods are indicated at the end of the Younger Dryas, during the Holocene maximum, a possible Medieval Warming event, with the warmest period represented by a narrow peak at 8000 y BP. Relatively cooler periods are recorded at 3500, 8200, 9300 and 11,500 y BP with indications of minor cooling during the Little Ice Age and indications of relatively dry conditions during the earlier part of the Younger Dryas followed by warmer wetter conditions. The profile shows excellent agreement with other paleoclimatic indicators locally, most notably some partial speleothem records from Vancouver Island and Oregon, and some high-resolution global records such as the Greenland ice cores and speleothems from the Hulu Cave, China.  相似文献   

2.
《Quaternary Science Reviews》2007,26(3-4):279-286
A stable isotope record from a stalagmite collected from Antro del Corchia cave (Apuan Alps, Central Italy), supported by 17 uranium-series ages, indicates enhanced regional rainfall between ca 8.9 and 7.3 kyr cal. BP at the time of sapropel S1 deposition. Within this phase, the highest rainfall occurred between 7.9 and 7.4 kyr cal. BP. Comparison with different marine and lake records, and in particular with the Soreq Cave record (Israel), suggests substantial in-phase occurrence of enhanced rainfall between the Western and Eastern Mediterranean basins. There is no convincing evidence for major climatic change at the time of the “8.2 kyr event”.  相似文献   

3.
《Quaternary Science Reviews》2003,22(15-17):1589-1596
The quantitative reconstruction of climatic parameters from pollen and lake-level data obtained at Saint-Jorioz, Lake Annecy (eastern France), gives evidence for cooler and wetter conditions during the 8.2 ka cold event. A comparison of these regional data with other hydrological records reconstructed in Europe for the same period suggests, as a working hypothesis, that mid-latitudes between ca 50° and 43° underwent wetter conditions in response to the cooling, whereas northern and southern Europe were marked by drier climate, in the latter case leading to an interruption of the sapropel 1 formation in the Mediterranean. A similar hydrological tri-partition of Europe can be observed during other Holocene cooling phases associated with North Atlantic IRD events. Data indicate, that the middle zone characterised by wetter climate conditions could have had a more extended latitudinal amplitude during phases of climate cooling weaker than the 8.2 ka event. The differences in expansion of the wet mid-European zone depending on Holocene climate cooling phases could reflect variations in the strength of the Atlantic Westerly Jet in relation with the thermal gradient between high and low latitudes.  相似文献   

4.
Cucú cave is a small cavity, 1600 m above sea level on the southern slope of Sierra de María (Almería Province, SE Spain), where current mean annual precipitation is < 450 mm. Fossils and palynomorphs contained within a sedimentary sequence, up to 9 m in depth, allow us to consider the prevailing climatic conditions, and the timing of cavern development. The lithological sequence is dominated by clast-supported detrital material with no evidence of alluvial transport. These sediments were formed by freeze-cracking during periglacial conditions, causing further cave enlargement after initial solutional development. The clastic sequence formed during cold climates is covered by a flowstone that was deposited during a period of warmer, wetter conditions. This provides a minimum U–Th isochron age of 40.2 ± 4.5 ka for the timing of periglacial action. Micromammal fossil species indicate a chronology between 140 and 80 ka. Paleoecological data based on the structure of the mammal community indicates that cold conditions prevailed at the time of deposit. In the studied sequence the presence of anthropogenic components has not been documented. The pollen assemblages identified are a common feature of Pleistocene cold stages that are in semi-arid regions.  相似文献   

5.
This contribution discusses recent paleoanthropological findings from Huanglong Cave, a Late Pleistocene human fossil site from Yunxi County, Hubei Province, China. Three excavations in the Huanglong Cave from 2004 to 2006 yielded seven human teeth, some stone and bone tools, possible burnt sediment and other evidence possibly related to hominin activities. Based on the presence of extinct faunas (20% of total taxa identified), the deposits dated to the Late Pleistocene. Electron spin resonance (ESR) and uranium-series (U-series) dating analyses on associated teeth and speleothems have resulted in divergent chronometric ages (ESR: 44–34 ka; U-series: 103–79 ka). Analysis indicates: (1) most of the morphological and metric features of the human teeth from Huanglong Cave fall within the range of variation of modern Chinese, but a few characters may still link them to more archaic hominins; (2) some activity-induced abrasion and other tooth use-marks were identified, including pronounced tooth chipping and interproximal grooves on the anterior teeth; (3) the sample of blackened deposit has a high carbon content (over 70%), experienced high temperatures, and likely was of cultural origin and not natural; (4) the mammal fossils represent the “Ailuropoda-Stegodon” faunal unit which lived in southern China throughout the Pleistocene. Synthesizing all of these findings, especially the human teeth that display modern human characteristics, Huanglong Cave will offer some new insights into various issues currently being debated in Late Pleistocene human evolutionary research.  相似文献   

6.
This study forms part of a wider investigation of late Quaternary environments in the Southern Hemisphere. We here review the terrestrial and near-shore proxy data from Australia, Indonesia, Papua New Guinea (PNG), New Zealand and surrounding oceans during 35–10 ka, an interval spanning the lead-up to the Last Glacial Maximum (LGM), the LGM proper (21 ± 2 ka), and the ensuing deglaciation. Sites selected for detailed discussion have a continuous or near continuous sedimentary record for this time interval, a stratigraphically consistent chronology, and one or more sources of proxy climatic data. Tropical Australia, Indonesia and PNG had LGM mean annual temperatures 3–7 °C below present values and summer precipitation reduced by at least 30%, consistent with a weaker summer monsoon and a northward displacement of the Intertropical Convergence Zone. The summer monsoon was re-established in northwest Australia by 14 ka. Precipitation in northeast Australia was reduced to less than 50% of present values until warmer and wetter conditions resumed at 17–16 ka, followed by a second warmer, wetter phase at 15–14 ka. LGM temperatures were up to 8 °C lower than today in mainland southeast Australia and up to 4 °C cooler in Tasmania. Winter rainfall was much reduced throughout much of southern Australia although periodic extreme flood events are evident in the fluvial record. Glacial advances in southeast Australia are dated to 32 ± 2.5, 19.1 ± 1.6 and 16.8 ± 1.4 ka, with periglacial activity concentrated towards 23–16 ka. Deglaciation was rapid in the Snowy Mountains, which were ice-free by 15.8 ka. Minimum effective precipitation in southern Australia was from 14 to 12 ka. In New Zealand the glacial advances date to ~28, 21.5 and 19 ka, with the onset of major cooling at ~28 ka, or well before the LGM. There is no convincing evidence for a Younger Dryas cooling event in or around New Zealand, but there are signs of the Antarctic Cold Reversal in and around New Zealand and off southern Australia. There remain unresolved discrepancies between the climates inferred from pollen and those inferred from the beetle and chironomid fauna at a number of New Zealand sites. One explanation may be that pollen provides a generalised regional climatic signal in contrast to the finer local resolution offered by beetles and chironomids. Sea surface temperatures (SSTs) were up to 5 °C cooler during the LGM with rapid warming after 20 ka to attain present values by 15 ka. The increase in summer monsoonal precipitation at or before 15 ka reflects higher insolation, warmer SSTs and steeper thermal gradients between land and sea. The postglacial increase in winter rainfall in southern Australia is probably related to the southward displacement of the westerlies as SSTs around Antarctica became warmer and the winter pack ice and Antarctic Convergence Zone retreated to the south.  相似文献   

7.
The potential to provide environmental proxies using stable carbon isotopes from modern and archaeological charcoal is explored. Experiments on modern Podocarpus (Yellowwoods) show that δ13C values of stems, branches and charcoal preserve proxy environmental conditions, including rainfall, humidity and temperature. An additional experiment showed that combustion temperature affects the carbon isotope signature of charcoal. Burning at 450 °C to 500 °C depletes δ13C values with respect to the original wood, but the charcoal retains the seasonal and inter-annual isotopic trends recorded during the growth of the tree.The δ13C of Podocarpus charcoal from three levels from the Middle Stone Age site of Sibudu Cave, KwaZulu-Natal, South Africa, was compared with modern analogues from two different environments, Seaton Park (KwaZulu-Natal) and the Baviaans Kloof (Eastern Cape). Other environmental proxies from levels dated from > 70 ka and ~ 48 ka, show that environmental conditions changed from warmer and wetter to colder and drier and finally becoming warmer and drier. The isotope data is consistent with this reconstruction. The results from this series of experiments indicate that it is possible to obtain meaningful palaeoenvironmental information from δ13C values of archaeological charcoal.  相似文献   

8.
《Quaternary Science Reviews》2003,22(8-9):943-947
We present 21 radiocarbon dates on 19 charcoal samples from the sedimentary sequence preserved in Border Cave, South Africa. The background radiocarbon activity for charcoal from the cave was determined to be 0.050±0.018 percent modern carbon, from the analysis of a radiocarbon-dead sample from unit 5WA. Radiocarbon ages for individual samples ranged from 25.2 to >58.2 ka BP.The error-weighted mean ages for successively older strata are 38.5+0.85/−0.95 ka BP for unit 1WA, 50.2+1.1/−1.0 ka BP for units 2BS.LR.A and 2BS.LR.B, 56.5+2.7/−2.0 ka BP for unit 2BS.LR.C and 59.2+3.4/−2.4 ka BP for unit 2WA. This radiocarbon chronology is consistent with independent chronologies derived from electron spin resonance and amino acid racemization dating. The results therefore provide further evidence that radiocarbon dating of charcoal by the ABOX-SC technique can yield reliable radiocarbon ages beyond 40 ka BP. They also imply that Border Cave 5, a modern human mandible, predates >58.2 ka BP and that the Middle Stone Age (Mode 3)—Later Stone Age (Mode 5) transition of Border Cave was largely effected between ∼56.5 and ∼41.6 ka ago.  相似文献   

9.
Information on the ocean/atmosphere state over the period spanning the Last Glacial Maximum – from the Late Pleistocene to the Holocene – provides crucial constraints on the relationship between orbital forcing and global climate change. The Pacific Ocean is particularly important in this respect because of its dominant role in exporting heat and moisture from the tropics to higher latitudes. Through targeting groundwaters in the Mojave Desert, California, we show that noble gas derived temperatures in California averaged 4.2 ± 1.1 °C cooler in the Late Pleistocene (from ~43 to ~12 ka) compared to the Holocene (from ~10 to ~5 ka). Furthermore, the older groundwaters contain higher concentrations of excess air (entrained air bubbles) and have elevated oxygen-18/oxygen-16 ratios (δ18O) – indicators of vigorous aquifer recharge, and greater rainfall amounts and/or more intense precipitation events, respectively. Together, these paleoclimate indicators reveal that cooler and wetter conditions prevailed in the Mojave Desert from ~43 to ~12 ka. We suggest that during the Late Pleistocene, the Pacific ocean/atmosphere state was similar to present-day El Nino-like patterns, and was characterized by prolonged periods of weak trade winds, weak upwelling along the eastern Pacific margin, and increased precipitation in the southwestern U.S.  相似文献   

10.
Ancient cave systems in the Northern Calcareous Alps, today located well above the timberline at altitudes of 2400–2500 m, host U-rich speleothems that preserved growth layers on the microscopic scale of presumably annual origin. Two flowstone samples were dated to 2.019 + 0.037/?0.069 Ma and 1.730 + 0.032/?0.068 Ma, respectively, using U–Pb isochron techniques. These ages are corroborated by the Late Pliocene to Early Pleistocene pollen spectrum extracted from one of the samples. We use a multiproxy approach and exploit laminated speleothem sequences to tie high-resolution stable isotope data to a floating lamina-counted chronology. O isotope values of growth intervals when calcite deposition was close to isotopic equilibrium are low compared to modern and Holocene speleothems from other alpine caves and are inconsistent with the current altitudinal setting of the caves. A vegetated but geomorphologically stable alpine catchment (i.e. ~2000 m asl., no (peri)glacial processes) combined with a deep-seated cave (the thickness of the vadose zone might have exceeded 1000 m) is required in order to reconcile the isotopic data with the pollen record and the petrographic evidence. Furthermore, the data can be used to constrain the rate for Quaternary rock-uplift to ≤0.8 mm/annum for this frontal part of the European Alps. Collectively, the data suggest that these speleothems formed both during interglacials (MIS 59 or 61) and interglacial–glacial transitions (MIS 75/74 or 77/76), but the seasonal precipitation pattern was arguably markedly different from today's. Provided that the highly regular microscopic laminae are indeed annual, lamina counts suggest a minimum length of ca 6 ka for interglacials during the earliest Pleistocene.  相似文献   

11.
《Quaternary Science Reviews》2007,26(17-18):2090-2112
The geomorphology and morphostratigraphy of numerous worldwide sites reveal the relative movements of sea level during the peak of the Last Interglaciation (Marine Isotope Stage (MIS) 5e, assumed average duration between 130±2 and 119±2 ka). Because sea level was higher than present, deposits are emergent, exposed, and widespread on many stable coastlines. Correlation with MIS 5e is facilitated by similar morphostratigraphic relationships, a low degree of diagenesis, uranium–thorium (U/Th) ages, and a global set of amino-acid racemization (AAR) data. This study integrates information from a large number of sites from tectonically stable areas including Bermuda, Bahamas, and Western Australia, and some that have experienced minor uplift (∼2.5 m/100 ka), including selected sites from the Mediterranean and Hawaii. Significant fluctuations during the highstand are evident at many MIS 5e sites, revealed from morphological, stratigraphic, and sedimentological evidence. Rounded and flat-topped curves derived only from reef tracts are incomplete and not representative of the entire interglacial story. Despite predictions of much different sea-level histories in Bermuda, the Bahamas, and Western Australia due to glacio- and hydro-isostatic effects, the rocks from these sites reveal a nearly identical record during the Last Interglaciation.The Last Interglacial highstand is characterized by several defined sea-level intervals (SLIs) that include: (SLI#1) post-glacial (MIS 6/5e Termination II) rise to above present before 130 ka; (SLI#2) stability at +2 to +3 m for the initial several thousand years (∼130 to ∼125 ka) during which fringing reefs were established and terrace morphology was imprinted along the coastlines; (SLI#3) a brief fall to near or below present around 125 ka; (SLI#4) a secondary rise to and through ∼+3–4 m (∼124 to ∼122 ka); followed by (SLI#5) a brief period of instability (∼120 ka) characterized by a rapid rise to between +6 to +9 m during which multiple notches and benches were developed; and (SLI#6) an apparently rapid descent of sea level into MIS 5d after 119 ka. U/Th ages are used to confirm the Last Interglacial age of the deposits, but unfortunately, in only two cases was it possible to corroborate the highstand subdivisions using radiometric ages.Sea levels above or at present were relatively stable during much of early MIS 5e and the last 6–7 ka of MIS 1, encouraging a comparison between them. The geological evidence suggests that significant oceanographic and climatic changes occurred thereafter, midway through, and continuing through the end of MIS 5e. Fluctuating sea levels and a catastrophic termination of MIS 5e are linked to the instability of grounded and marine-based ice sheets, with the Greenland (GIS) and West Antarctic (WAIS) ice sheets being the most likely contributors. Late MIS 5e ice volume changes were accompanied by oceanographic reorganization and global ecological shifts, and provide one ominous scenario for a greenhouse world.  相似文献   

12.
Proglacial lake sediments at Goting in the Higher Central Himalaya were analyzed to reconstruct the summer monsoon variability during the Last Glacial to early Holocene. Sedimentary structures, high resolution mineral magnetic and geochemical data suggest that the lacustrine environment experienced fluctuating monsoonal conditions. Optically stimulated luminescence (OSL) dating indicates that the lake sedimentation occurred before 25 ka and continued after 13 ka. During this period, Goting basin witnessed moderate to strengthened monsoon conditions around 25 ka, 23.5 ka–22.5 ka, 22 ka–18 ka, 17 ka–16.5 ka and after14.5–13 ka. The Last Glacial phase ended with the deposition of outwash gravel dated at ~11 ka indicating glacial retreat and the onset of Holocene condition. Additionally, centennial scale fluctuations between 16.5 ka and 12.7 ka in the magnetic and geochemical data are seen.A close correspondence at the millennial scale between our data and that of continental and marine records from the Indian sub-continent suggests that Goting basin responded to periods of strengthened monsoon during the Last Glacial to early Holocene. We attribute the millennial scale monsoon variability to climatic instability in higher northern latitudes. However, centennial scale abrupt changes are attributed to the result of albedo changes on the Himalaya and Tibetan plateau.  相似文献   

13.
《Quaternary Science Reviews》2007,26(22-24):2924-2936
The Last Glacial–Interglacial cycle is represented usually by several cuts and fills, which have formed 2–3 terrace steps from the Last Cold Stage and by two or more fills of Lateglacial–Holocene age. Their number depends on the size of the river valley and the position in the longitudinal profile. The sequence of changes reflects shorter stadial–interstadial climatic fluctuations. Generally, aggradation dominates during the cooler phases of the Vistulian and during the Interpleniglacial. The most distinct erosional phases occurred during the change from a more oceanic to a more continental climate before the maximum extension of the ice sheet (25–20 ka BP) and during the Upper Pleniglacial–Lateglacial transition (15–13 ka BP). The second phase coincides with the rapid downcutting in the lower course of the main Vistula valley, which had been blocked earlier by the Scandinavian ice sheet. In the Holocene aggradation prevailed, accelerated by anthropogenic soil erosion. It was only in the mountain foreland that shorter-lived hydrological changes resulted in well expressed several cuts and fills.  相似文献   

14.
Evidence from Liang Bua, a limestone cave on the island of Flores in East Indonesia, provides a unique opportunity to explore the long term relationship between hominins and their environment. Occupation deposits at the site span ~95 ka and contain abundant stone artefacts, well preserved faunal remains and evidence for an endemic species of hominin: Homo floresiensis. Work at the site included detailed geomorphological and environmental analysis, which has enabled comparisons to be drawn between changes in the occupational intensity in the cave, using stone tool and faunal counts, and changes in the environmental conditions, using the characteristics of the sedimentary layers in the cave and speleothem records. These comparisons demonstrate that H. floresiensis endured rapidly fluctuating environmental conditions over the last ~100 ka, which influenced the geomorphological processes in the cave and their occupational conditions. The intensity of occupation in the cave changed significantly between 95 and 17 ka, with peaks in occupation occurring at 100–95, 74–61 and 18–17 ka. These correlate with episodes of channel formation and erosion in the cave, which in turn correspond with high rainfall, thick soils and high bio-productivity outside. In contrast, periods of low occupational intensity correlate with reduced channel activity and pooling associated with drier periods from 94 to 75 and 36 to 19 ka. This apparent link between intensity of hominin use of the cave and the general conditions outside relates to the expansion and contraction of the rainforest and the ability of H. floresiensis to adapt to habitat changes. This interpretation implies that these diminutive hominins were able to survive abrupt and prolonged environmental changes by changing their favoured occupation sites. These data provide the basis for a model of human–environment interactions on the island of Flores. With the addition of extra data from other sites on Flores, this model will provide a greater understanding of H. floresiensis as a unique human species.  相似文献   

15.
Botanical macrofossil analysis of a more than 9000 years old, radiocarbon dated peat sequence of a moss peat bank from South Georgia, shows a clear evolution in the vegetation. Seven ecological phases could be distinguished and they can be interpreted in terms of climate development during the Holocene. Until 2200 years ago, Warnstorfia fontinaliopsis was the dominant moss species pointing to a wet environment. Lower numbers of this species in association with the presence of drier species are assumed to indicate drier periods, such as occurring between ca 6000–5200 and 4400–3400 cal yr BP. The most prominent and definitive vegetation change took place around 2200 cal yr BP. A Polytrichum–Chorisodontium moss peat bank was formed, which is still growing there today. The forcing mechanism for this vegetation change is thought to be a temperature decrease, rather than a precipitation decrease. This conclusion is mainly based on the fact that, today, moss peat banks have their optimal occurrence range in the maritime Antarctic, a region were the mean annual temperature is ca 4 °C lower than on South Georgia. The remarkable change in the moss bank vegetation at 2200 cal yr BP raises the question whether this moment was only a short climatic deterioration, or a definitive change to a cooler and wetter climate after a Holocene climatic optimum period.  相似文献   

16.
Relatively few radiometrically dated records are available for the central Mediterranean spanning the marine oxygen isotope stage 6–5 (MIS 6–5) transition and the first part of the Last Interglacial. Two flowstone cores from Tana che Urla Cave (TCU, central Italy), constrained by 19 U/Th ages, preserve an interval of continuous speleothem deposition between ca. 159 and 121 ka. A multiproxy record (δ18O, δ13C, growth rate and petrographic changes) obtained from this flowstone preserves significant regional-scale hydrological changes through the glacial/interglacial transition and multi-centennial variability (interpreted as alternations between wetter and drier periods) within both glacial and interglacial stages. The glacial stage shows a wetter period between ca. 154 and 152 ka, while the early to middle Last Interglacial period shows several drying events at ca. 129, 126 and 122 ka, which can be placed in the wider context of climatic instability emerging from North Atlantic marine and NW European terrestrial records. The TCU record also provides important insights into the evolution of local environmental conditions (i.e. soil development) in response to regional and global-scale climate events.  相似文献   

17.
《Quaternary Science Reviews》2007,26(9-10):1369-1383
Paleoenvironmental records in Europe describing paleofires extending back to the Last Interglacial have so far been unavailable. Here, we present paleofire results from the combined petrographic and automated image analysis of microcharcoal particles preserved in marine core MD95-2042 retrieved off southwestern Iberia and covering the last climatic cycle. The variability of microcharcoal concentrations reveals that the variability of fire emissions is mainly imprinted by the 23 000 yr precessional cycle. A focus on the Last Glacial Period further shows that paleofires follow the variability of Dansgaard–Oeschger oscillation and Heinrich events and, therefore, parallel the variability of atmospheric temperatures over Greenland detected in ice cores. There is no evidence for fire increase related to human activity. The variability of fire emission by-products for the Last Glacial Period is interpreted in terms of changes in biomass availability. Low fire activity is associated with periods of drought which saw the development of semi-desert vegetation that characterised stadial periods. Fire activity increased during wetter interstadials, related to the development of open Mediterranean forests with more woody fuel availability.  相似文献   

18.
The sediments of Lago Grande di Monticchio, southern Italy, extend continuously from the present back to the penultimate glacial stage and have an independent lamination-based chronology of high precision and accuracy. Results are presented here from a detailed palynological investigation of that part of the sediment sequence that extends from the last millennia of the penultimate glacial stage to the first stadial following the Last Interglacial (LI). Quantitative palaeovegetation and palaeoclimate reconstructions made from the palynological data are also presented. The onset of the LI is dated to 127.20 ka BP, a date that is consistent with other recent estimates; the duration of the LI is estimated to have been 17.70 ka. The palaeovegetation record indicates a transition period of 3.35 ka at the end of the penultimate glacial stage prior to the onset of the LI; no Younger Dryas-like oscillation is recorded, although the transition was interrupted by a brief event, lasting ca 250 years, during which pollen of woody taxa was reduced in abundance. Steppe vegetation dominated during the latter part of the penultimate full-glacial stage, but was replaced progressively by wooded steppe during the transition. Although the development of forest cover marked the onset of the LI, the forests were relatively open or discontinuous during the first 2.65 ka, closing progressively thereafter and generally dominating between 123.00 and 109.50 ka BP. The end of the LI is dated to 109.50 ka BP, after which date forest cover became discontinuous and wooded steppe or steppe dominated during the 1.90 ka of the subsequent stadial. As might be expected, given the location of the lake, the composition of the LI forests differs markedly from those recorded from northern Europe, as well as from those recorded at other localities in southern Europe. The palaeoclimate reconstructions reveal complex changes in seasonality, the maximum coldest month mean temperatures being between 125.70 ka BP and 123.00 ka BP, whereas maxima for both annual temperature sum and the ratio of actual to potential evapotranspiration were between 120.60 ka BP and 115.80 ka BP. Reconstructed zonal mean values for all three climatic variables in the zones in which they peak exceed values at the locality today. Comparison with other palaeovegetation records of the LI from Europe reveals that forest cover generally opened up north of the Alpine region probably ca 115 ka BP, coinciding with a marked decrease in sea surface temperatures in the Nordic Seas; this probably corresponds to a marked shift in forest composition at Lago Grande di Monticchio at 115.80 ka BP with an associated reconstructed decrease of ca 5 °C in coldest month mean temperature. Nonetheless, forest continued to dominate at Lago Grande di Monticchio until 109.50 ka BP. Such comparisons also reveal considerable complexity in the geographical and altitudinal patterns of change in palaeovegetation during the LI; such complexity is to be expected given the parallel complexity of Holocene changes. Systematic comparisons between reconstructions of palaeoclimate are hampered by a lack of consistency in approach and in the variables reconstructed. Further insight into this complexity of palaeoclimate development during the LI requires a synthesis of the available data and application of a consistent reconstruction approach that also provides robust estimates of the uncertainty in the reconstructed values.  相似文献   

19.
Late Pleistocene paleoclimatic variability on the northeastern Qinghai–Tibetan Plateau (NE QTP) was reconstructed using a chronology based on AMS 14C and 230Th dating results and a stable oxygen isotopic record. These are derived from lake carbonates in a 102-m-long Qarhan sediment core (ISL1A) collected from the eastern Qaidam Basin. Previous research indicates that the δ18O values of lacustrine carbonates are mainly controlled by the isotopic composition of lake water, which in turn is a function of regional P/E balance and the proportion of precipitation that is monsoon-derived on the NE QTP. Modern isotopic observations indicate that the δ18O values of lake carbonates in hyper-arid Qaidam Basin are more positive during the warm and wet period. Due to strong evaporation and continental effect in this basin, the positive δ18O values in the arid region indicate drier climatic conditions. Based on this interpretation and the δ18O record of fine-grained lake carbonates and dating results in ISL1A, the results imply that drier climatic conditions in the Qarhan region occurred in three intervals, around 90–80 ka, 52–38 ka and 10–9 ka, which could correspond to late MIS 5, middle MIS 3 and early Holocene, respectively. These three phases were almost coincided with low lake level periods of Gahai, Toson and Qinghai Lakes (to the east of Qarhan Lake) influenced by ASM on the orbital timescales. Meanwhile, there was an episode of relatively high δ18O value during late MIS 3, suggesting that relatively dry climatic condition in this period, rather than “a uniform Qarhan mega-paleolake” spanning the ∼44 to 22 ka period. These results insight into the understanding of “the Greatest Lake Period” on the QTP.  相似文献   

20.
《Quaternary Science Reviews》2003,22(5-7):555-567
Petrographical and geochemical parameters of stalagmites from the B7 cave in Iserlohn–Letmathe (Northern Rhenish Massif, NW Germany) record Late- and postglacial climate changes (temperature and/or precipitation). Fabrics and microfacies of the stalagmite profiles lead to a differentiation of four hierarchies of rhythms. Clastic layers in the stalagmites are caused by flooding events and are time markers. Twenty-four TIMS Th/U-age-dates provide a time calibration of stalagmite growth phases. One stalagmite reveals an early growth period between 17.6 and 16.7 ka BP. Between 9.6 and 5.5 ka BP (Atlantic episode of the Holocene) the growth rate of the stalagmites was higher than before and after this time, with dominant light-porous microfacial laminae and high δ18O and δ13C values representing partly kinetic fractionation effects. This part of the Holocene is interpreted as a mainly warm episode with frequent interruptions of dripping. Within the past 4 ka the profiles with predominant dark compact facies reveal low isotopic values which may be interpreted as a temperature proxy record. The stalagmite records resemble records from an Irish stalagmite. Correlation with the Δ14C record from European tree rings suggests that colder periods in the North Atlantic were accompanied by drier winters in central Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号