首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
银洞沟银金矿矿床地质特征及成因探讨   总被引:2,自引:0,他引:2  
雷世和 《地质与勘探》1998,34(4):13-19,33
就构造对该矿的控岩控矿作用和围岩蚀变等进行了探讨,揭示了早期 层次滑脱构造控制了初放源层的形成、韧-脆性推覆型剪切作用控制了含矿石英脉的形成,  相似文献   

2.
形成于燕山期的黑牛洞铜矿分布在江浪变质核杂岩的伸展型韧性剪切带内,变基性火山岩附近矿化和蚀变强烈。伸展型韧性剪切带晚期具有张性或张扭性断裂叠加的构造特征。黑牛洞铜矿似属韧性剪切带型铜矿,其成矿物质具有多来源、成矿作用具有多期次、矿床具有多成因的特点,而最终使其成为富铜矿的重要控矿因素则是燕山期的伸展型韧性剪切作用及其晚期的脆性断裂叠加。建议找矿在伸展型韧性剪切带内,有变基性火山岩发育,矿化、蚀变显示良好,晚期叠加张性或张扭性断裂的有利地段展开。  相似文献   

3.
Orogenic Gold Mineralization in the Qolqoleh Deposit, Northwestern Iran   总被引:1,自引:1,他引:1  
The Qolqoleh gold deposit is located in the northwestern part of the Sanandai‐Sirjan Zone, northwest of Iran. Gold mineralization in the Qolqoleh deposit is almost entirely confined to a series of steeply dipping ductile–brittle shear zones generated during Late Cretaceous–Tertiary continental collision between the Afro‐Arabian and the Iranian microcontinent. The host rocks are Mesozoic volcano‐sedimentary sequences consisting of felsic to mafic metavolcanics, which are metamorphosed to greenschist facies, sericite and chlorite schists. The gold orebodies were found within strong ductile deformation to late brittle deformation. Ore‐controlling structure is NE–SW‐trending oblique thrust with vergence toward south ductile–brittle shear zone. The highly strained host rocks show a combination of mylonitic and cataclastic microstructures, including crystal–plastic deformation and grain size reduction by recrystalization of quartz and mica. The gold orebodies are composed of Au‐bearing highly deformed and altered mylonitic host rocks and cross‐cutting Au‐ and sulfide‐bearing quartz veins. Approximately half of the mineralization is in the form of dissemination in the mylonite and the remainder was clearly emplaced as a result of brittle deformation in quartz–sulfide microfractures, microveins and veins. Only low volumes of gold concentration was introduced during ductile deformation, whereas, during the evident brittle deformation phase, competence contrasts allowed fracturing to focus on the quartz–sericite domain boundaries of the mylonitic foliation, thus permitting the introduction of auriferous fluid to create disseminated and cross‐cutting Au‐quartz veins. According to mineral assemblages and alteration intensity, hydrothermal alteration could be divided into three zones: silicification and sulfidation zone (major ore body); sericite and carbonate alteration zone; and sericite–chlorite alteration zone that may be taken to imply wall‐rock interaction with near neutral fluids (pH 5–6). Silicified and sulfide alteration zone is observed in the inner parts of alteration zones. High gold grades belong to silicified highly deformed mylonitic and ultramylonitic domains and silicified sulfide‐bearing microveins. Based on paragenetic relationships, three main stages of mineralization are recognized in the Qolqoleh gold deposit. Stage I encompasses deposition of large volumes of milky quartz and pyrite. Stage II includes gray and buck quartz, pyrite and minor calcite, sphalerite, subordinate chalcopyrite and gold ores. Stage III consists of comb quartz and calcite, magnetite, sphalerite, chalcopyrite, arsenopyrite, pyrrhotite and gold ores. Studies on regional geology, ore geology and ore‐forming stages have proved that the Qolqoleh deposit was formed in the compression–extension stage during the Late Cretaceous–Tertiary continental collision in a ductile–brittle shear zone, and is characterized by orogenic gold deposits.  相似文献   

4.
康古尔金矿具有独特的成矿地质特征,矿床位于石炭系火山岩区大型韧性剪切带的次级构造中.控矿构造表现为脆韧性剪切活动的特点,该脆韧性剪切带在成矿期的活动具有中低温、高应变速率、高差异应力的动力学特征.金矿床的分布受脆韧性剪切带控制,矿体由蚀变千糜岩和糜棱岩化火山岩中矿化富集地段组成,矿体产状平行于糜棱岩面理.矿化产于脆韧性变形强烈部位,脆性变形叠加有利于形成富金矿.  相似文献   

5.
The wedge‐shaped Moornambool Metamorphic Complex is bounded by the Coongee Fault to the east and the Moyston Fault to the west. This complex was juxtaposed between stable Delamerian crust to the west and the eastward migrating deformation that occurred in the western Lachlan Fold Belt during the Ordovician and Silurian. The complex comprises Cambrian turbidites and mafic volcanics and is subdivided into a lower greenschist eastern zone and a higher grade amphibolite facies western zone, with sub‐greenschist rocks occurring on either side of the complex. The boundary between the two zones is defined by steeply dipping L‐S tectonites of the Mt Ararat ductile high‐strain zone. Deformation reflects marked structural thickening that produced garnet‐bearing amphibolites followed by exhumation via ductile shearing and brittle faulting. Pressure‐temperature estimates on garnet‐bearing amphibolites in the western zone suggest metamorphic pressures of ~0.7–0.8 GPa and temperatures of ~540–590°C. Metamorphic grade variations suggest that between 15 and 20 km of vertical offset occurs across the east‐dipping Moyston Fault. Bounding fault structures show evidence for early ductile deformation followed by later brittle deformation/reactivation. Ductile deformation within the complex is initially marked by early bedding‐parallel cleavages. Later deformation produced tight to isoclinal D2 folds and steeply dipping ductile high‐strain zones. The S2 foliation is the dominant fabric in the complex and is shallowly west‐dipping to flat‐lying in the western zone and steeply west‐dipping in the eastern zone. Peak metamorphism is pre‐ to syn‐D2. Later ductile deformation reoriented the S2 foliation, produced S3 crenulation cleavages across both zones and localised S4 fabrics. The transition to brittle deformation is defined by the development of east‐ and west‐dipping reverse faults that produce a neutral vergence and not the predominant east‐vergent transport observed throughout the rest of the western Lachlan Fold Belt. Later north‐dipping thrusts overprint these fault structures. The majority of fault transport along ductile and brittle structures occurred prior to the intrusion of the Early Devonian Ararat Granodiorite. Late west‐ and east‐dipping faults represent the final stages of major brittle deformation: these are post plutonism.  相似文献   

6.
青海滩间山金矿床地质特征和控矿因素分析   总被引:7,自引:5,他引:2  
滩间山金矿床产于中元古界万洞沟群碳质糜棱片岩和华力西晚期侵入岩中。矿床是在热水沉积、区域变质和热变质的预富集基础上,与区域进变质型绿片岩相韧性剪切带的退化演化同步,经历了脆韧性、韧脆性和脆性剪切变形成矿阶段的演化,并遭受华力西晚期侵入岩浆活动相伴的热液成矿作用的叠加改造形成的。不同时期、不同成矿作用的叠加和多种有利因素的结合控制了滩间山金矿床的形成。经生产实践证实,具有形成大型金矿床的多种有利成矿地质条件  相似文献   

7.
托莫尔日特金矿区韧脆性剪切带及其控矿作用   总被引:1,自引:0,他引:1  
矿区位于近NW-NWW向展布的断裂带内,并严格受其控制.控矿断裂带为一条韧-脆性剪切带,其形成主要经历了早期韧性变形、晚期脆性变形及后期改造破坏3个阶段,叠加于早期韧性剪切带之上的晚期脆性破裂带,是矿脉的主要产出位置,成矿与断裂带的韧-脆性转换密切相关.矿体形成于韧-脆性剪切带的转换带附近,后期由于抬升剥蚀而出露地表.矿体分布可能具有"两层楼"式的垂直分带,上部为石英脉型金矿体,品位较高,但规模不大;下部为糜棱岩型金矿体,规模较大,但品位稍低.因此本区以后的找矿工作中应注意挖掘深部糜棱岩型金矿的潜力.  相似文献   

8.
铧厂沟金矿床区域韧性剪切带特征   总被引:3,自引:0,他引:3  
首次对铧厂沟金矿床区域韧性剪切带进行了较为系统的研究。根据野外地质调查和室内显微构造分析 ,区内发育一条较大区域韧性剪切带 ,无论沿走向还是顺倾向均呈舒缓波状 ,强变形带和弱变形域呈镶嵌形式。区域韧性剪切带经历了右行—左行—右行多期 (次 )活动 ,剪切方位也多次变化 ;早期形成温度约 5 0 0℃ ,以右行剪切为主 ,古应力值大于 0 .0 75GPa。控矿韧脆性剪切带是区域韧性剪切带演化的产物 ,最终形成脆性断裂。区域韧性剪切作用控制矿床、矿带的分布 ,并使部分金从矿源层分溢出来 ,产生第一阶段金的富集。次级韧脆性剪切带 (控矿剪切带 )控制富矿体的分布。因此 ,铧厂沟金矿床可称为韧性剪切带型金矿床。另外 ,中 -下泥盆统三河口群第一岩段第一岩层 (D1 -2 SH1a)部分原岩有明显海底热水同沉积特征 ;在矿床之西万家山—张家山应注意寻找硅化石英粗糜棱岩型金矿石。  相似文献   

9.
剪切带型金矿是一种重要的金矿类型.韧性-超韧性深层次剪切变形是促使Au元素活化分异、形成动力变质含金热液的过程,中浅层次的韧脆性、脆性剪切变形区是Au元素聚集成矿部位.韧脆性剪切带的不同变形层次及其构造岩类型决定了剪切带型金矿床的矿化类型.剪切带型金矿床往往具有成矿时代滞后、空间规模差异、物源指示差异、韧性变形强度与Au元素含量反相关等异常特征.长期演化的造山带附近及边缘是寻找大型剪切带型金矿床的有利地区.  相似文献   

10.
The Dongfengnanshan Cu polymetallic deposit is one representative deposit of the Tianbaoshan ore district in the Yanbian area, northeast(NE) China. There occur two types of ore bodies in this deposit, the stratiform ore bodies and veintype ones, controlled by the Early Permian strata and the Late Hercynian diorite intrusion, respectively. Due to the ambiguous genetic type of the stratiform ore bodies, there has been controversy on the relationship between them and veintype ore bodies. To determine the genetic type of stratiform ore bodies, laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS) in situ trace elements and S–Pb isotope analysis have been carried on the sulfides in the stratiform ore bodies. Compared with that in skarn, Mississippi Valley-type(MVT), and epithermal deposits, sphalerite samples in the stratiform ore bodies of the Dongfengnanshan deposit are significantly enriched in Fe, Mn, and In, while depleted in Ga, Ge, and Cd, which is similar to the sphalerite in volcanic-associated massive sulfide(VMS) deposits. Co/Ni ratio of pyrrhotites in the stratiform ore bodies is similar to that in VMS-type deposits. The concentrations of Zn and Cd of chalcopyrites are similar to those of recrystallized VMS-type deposits. These characteristics also reflect the intermediate ore-forming temperature of the stratiform ore bodies in this deposit. Sulfur isotope compositions of sulfides are similar to those of VMS-type deposits, reflecting that sulfur originated from the Permian Miaoling Formation. Lead isotope compositions indicate mixed-source for lead. Moreover, the comparison of the Dongfengnanshan stratiform ore bodies with some VMStype deposits in China and abroad, on the trace elements and S–Pb isotope characteristics of the sulfides reveals that the stratiform ore bodies of the Dongfengnanshan deposit belong to the VMS-type, and have closely genetic relationship with the early Permian marine volcanic sedimentary rocks.  相似文献   

11.
新疆东天山康古尔金矿控矿构造特征   总被引:6,自引:1,他引:5  
作者通过构造控矿分析发现,康古尔金矿是受一韧性挤压带控制的中低温岩浆-变质热液型金矿床。成矿作用与控矿韧性挤压带从韧性向脆、韧性变形演化密切相关。本文具体分析了控矿构造类型和构造演化对矿化的控制程序以及矿体定位机制,建立了构造成矿模式指出了找矿方向。   相似文献   

12.
中天山北缘大型右旋走滑韧剪带研究   总被引:22,自引:4,他引:18  
中天山北缘是一个近 EW向的大型右旋走滑韧剪带。宏、微观构造尺度的运动学研究表明 ,该带经历过至少二期韧性变形作用。第一期为从南向北的逆冲推覆韧剪变形 ,时代为中—晚志留世 ,以米什沟剖面为代表 ,对应于早古生代洋壳从北向南俯冲及稍后吐哈陆块朝中天山岛弧的碰撞事件。第二期为沿 EW方向的右旋走滑韧性变形 ,其构造形迹广泛分布于中天山北缘带各个地段 ;北天山石炭纪火山岩已卷入该期构造活动 ,走滑时代为晚石炭世—早二叠世 ,对应于晚石炭世塔里木与西伯利亚两大板块碰撞造山诱发的陆内变形、走滑剪切。走滑带中新生白云母 4 0 Ar/39Ar年龄为 ( 2 69± 5) Ma。剪切面理、拉伸线理、矿物韧剪构造、石英 C轴组构提供了构造运动学证据 ;地层不整合及同位素测年值提供了变形时间证据。二叠纪以后的构造事件也影响到中天山北缘带 ,但只有脆性变形形迹 ,无韧性剪切。最后对本区古生代构造演化进行了讨论  相似文献   

13.
The Zn-Pb-Ag deposit contained in the metasediments of middle Proterozoic age at Dugald River forms one of a number of significant zones of sulphide mineralization within the Eastern Fold Belt of the Mount Isa Inlier. It is characterized by its high Zn + Pb grade, high Zn/(Zn+Pb) ratio and strong structural controls with the present resource standing at 38 million tons averaging 13% Zn, 2.1% Pb and 42 g/t Ag. Microstructural timing relationships and a variety of microscopic ore textures indicate that the deposit resulted from replacement and partial infill of carbonaceous and pyritic host rocks by hydrothermal ore-forming fluids during the D4 deformation event. This genesis is contrary to earlier syngenetic-based interpretations, but accords with the discordant nature and structural controls on emplacement of the mineralization. Key timing criteria include (1) truncation of S2 and/or S3 by the late ore minerals, (2) replacement textures in undeformed mineral paragenesis, (3) slightly preferred dimensional orientation and undulating extinction of quartz and muscovite that are intergrown but which crystallized earlier than sulphide minerals in veins. The presence of these microstructural relationships throughout the deposit and the complete absence of any syngenetic stratiform precursor to zinc-lead-silver mineralization indicates that the zinc, lead and silver at Dugald River were epigenetically introduced rather than just having undergone syngenetic deposition during sedimentation and remobilization during deformation. The regional distribution of the mineralization in a specific stratigraphic zone is most likely due to the partitioning of deformation between different rock types. This caused the weaker lithology to accommodate significantly higher strain than adjacent more competent units, resulting in fracturing and localization of the syntectonic mineralization. Received: 8 September 1995 / Accepted: 12 April 1996  相似文献   

14.
铧厂沟金矿床地质特征及控矿冈素分析   总被引:7,自引:0,他引:7  
铧厂沟金矿床位于勉-略-宁三角地带成矿有利部位。矿区出露中下泥盆统三河口群和中上元古界碧口群。矿床内发育的韧性剪切带经历了右行(韧性)-左行(韧脆性)-右行(脆性)多期(次)活动矿化受透镜状细碧岩控制,分布于韧性剪切带之中。矿体蚀变强烈,新生矿物定向排列,脉体中矿物具亚颗粒、变形纹、变形条带等料内变形特征。同位素地球化学及稀土分析结果表明,基性火山岩是金的矿源层。金矿的形成富集与韧性剪切带多期(次  相似文献   

15.
通过对青海省乌兰县托莫尔日特金矿区韧-脆性剪切带变形特征、成矿物质与热液来源及运移条件分析,提出了该区构造控矿演化的四阶段模式。该模式认为,早期的韧性剪切变形导致了成矿物质的由深部向浅部、由韧性剪切带外部向韧性剪切带内部的活化迁移,成矿热液在韧性剪切带上部(即韧脆性转换带附近)得以大量聚集。韧性变形后期温压条件降低,韧性变形转化为脆性变形,地表大气降水沿贯通性较强的脆性破裂带大量下渗,到达韧-脆性转换带附近,与该处积聚的成矿热液充分混合,热液性质发生改变,在相对张性或较薄弱的构造有利部位大量沉淀。由于断裂带的周期性活动,成矿物质得到多次沉淀而不断富集,最终形成金矿体。矿体形成后的构造隆升及剥蚀作用,使韧-脆性剪切带出露地表,金矿床也随之出露到近地表处。因此在矿区石英脉型金矿体的下部,可能会存在糜棱岩型金矿体,但品位可能会有所下降。  相似文献   

16.
The Mary Kathleen U‐REE orebody of the Proterozoic Mt Isa Block was the product of chemical and physical interaction between regional metamorphic/hydrothermal fluids and preexisting calcic skarns. The deposit provides excellent examples of mechanical control on ore localisation and of the complexity of ores in rocks with protracted thermal histories. Host skarns were produced by contact metasomatism around the 1740 Ma Burstall Granite, whereas the allanite‐uraninite ore formed under amphibolite‐facies conditions, late during the D2 phase of the ca 1550–1500 Ma Isan orogeny. Observations of ore geometry are consistent with previous geochronologic data demonstrating a large time gap between skarn formation and ore genesis. Numerical modelling of coupled deformation and fluid flow suggests that veins at the core of ore shoots may have formed as tensile or shear fractures during coupling of the competent skarn host with the late‐D2 Mary Kathleen Shear Zone, allowing a change of orientation of ore shoots with distance from the shear zone. Mineral chemistry and petrographic observations suggest the possible role of a redox control on chemical localisation of ore by conversion of Fe2+‐rich clinopyroxene‐rich skarn host to Fe3+‐rich secondary garnet ‘skarn’ and uraninite‐allanite ore. Alternately, fluid pressure drops as a consequence of fracturing of the host skarn may have triggered fluid unmixing, or fluid mixing, leading to ore precipitation. Available data do not allow clear definition of the ultimate source of the U and REE, nor of the specific chemical ore‐forming mechanism. However, regional constraints, previous Sm–Nd modelling, and our numerical models suggest a combination from proximal skarn hosts and from distal sources accessed by flow of metamorphic and/or late tectonic igneous‐derived fluids. The deposit has some similarities with ironstone‐hosted Cu–Au ± U deposits found in the nearby Cloncurry Belt.  相似文献   

17.
金山金矿构造控矿特征及其模拟实验   总被引:2,自引:0,他引:2  
在前人工作的基础上,研究金山金矿构造控制产出部位,控制金山金矿蚀变糜棱岩金矿和石英脉金矿体及矿石类型,控制金山金矿微量元素、稀土元素、同位素及流体包裹体等地球化学特征;运用中国科学院地球化学研究所矿床地球化学国家重点实验室中的构造地球化学(构造成矿)高温高压实验条件进行构造控矿模拟实验,模拟高温高压条件下,岩石、矿石的变形实验,构造控制成矿物质活化、迁移聚集以及构造控制金山金矿载金矿物成矿元素变化的模拟实验和多期多次构造应力作用下成矿物质活化、迁移模拟实验。实验结果表明:构造活动的热动力作用下,不仅使岩石、矿石产生韧性剪切变形和脆性变形,并可看出韧性变形在前,脆性变形在后,并叠加在韧性变形之上,构造作用能使成矿物质活化、迁移并聚集在襁皱虚脱部位,层间破碎带及裂隙交汇部位;多期多次构造应力实验不仅使变形、破裂加剧,并使成矿物质叠加富集。实验结果与金山金矿成矿十分近似,这不仅为研究金山金矿成矿和分布规律提供实验资料和依据,也为矿区进一步找矿提供有益信息。  相似文献   

18.
Orogenic, lode gold mineralisation in the South Eastern Desert of Egypt is related to quartz veins spatially and temporally associated with conjugate NW- and NE-trending brittle–ductile shear zones. These structures are assumed to be linked to a regional transpression deformation which occurred late in the tectonic evolution of the area. In the Betam deposit, gold is confined to quartz(±carbonate) veins cutting through tectonised metagabbro and metasedimentary rocks in the vicinity of small granite intrusions. The ore bodies contain ubiquitous pyrite and arsenopyrite, in addition to minor disseminated chalcopyrite, pyrrhotite, galena, tetrahedrite and rare gold/electrum. New ore microscopy and electron microprobe studies indicate that most free-milling Au is intimately associated with the late-paragenetic galena–tetrahedrite–chalcopyrite assemblage. An early Fe–As sulphide assemblage, however, shows minor traces of refractory gold. New mineralogical and geochemical data are used to better constrain on possible element dispersions for exploration uses. This study indicates that parameters that most consistently define primary dispersion of gold in the mine area include pervasive silicification, sericite and carbonate alteration. The trace element data of gold lodes reflect a systematic dispersion of gold and certain base metals. Low-cost, extensive exploration programs may use elevated concentrations of Ag, Sb, Cu and Pb as tracers for Au ore zones in the Betam mine area and surroundings.  相似文献   

19.
The sediment-hosted Zn---Pb---Ag deposit at Dugald River is situated 87 km northeast of Mount Isa, NW Queensland. It is a mid-scale base metal accumulation restricted to a black slate sequence of low metamorphic grade. The orebody is tabular and consists of fine- to medium-grained sulphides with a dominant mineralogy of sphalerite, pyrrhotite, pyrite, galena, quartz and muscovite. Three different ore types have been recognized based on mineralization textures; laminated, banded and brecciated. The present reserve stands at 38 million tons of ore averaging 13.0% Zn, 2.1% Pb and 42 g/t Ag. A structural investigation has revealed that six stages of deformation have affected the metasediments in the Dugald River area. The first four (D1, D2, D3 and D4) are characterized by the extensive development of folds and associated axial plane cleavage. They were all generated in a ductile regime and are of considerable significance for the structural evolution of this region as well as for the emplacement and localization of the sulphide mineralization. D5 provides a transition towards brittle deformation developing strong kink folds with subhorizontal axial planes. D6 was a brittle event, producing E-W-trending open folds and major NE and NW strike-slip faults crosscutting all the pre-existing structural elements plus segmenting the orebody. Correlation between the development of deformation and the formation of mineralization can be observed from macro- to microscales. Relationships of mineralization with folds and cleavage indicate a post-D2 (dominant deformation event) and probably syn-D4 deformation timing for the Zn---Pb---Ag mineralization at Dugald River, as suggested by the ubiquitous truncations of D2 fabrics by ore mineral assemblages throughout the deposit.  相似文献   

20.
In the Precambrian rocks west and southwest of the Mount Isa Fault three significant fold generations are recognized. Within individual successions, units containing an early phase of deformation are juxtaposed by a late fault against a sequence that does not share these earlier events.

Many of the large‐scale structures in the Judenan Beds are first‐generation folds, whereas west of the Judenan Beds the area is dominated by second‐generation folds. These two sets of folds are tentatively correlated and are referred to as the Judenan Folds. An earlier set of pre‐Judenan folding is only found in the units west of the Judenan Beds. One phase of the Sybella Granite is also associated with the Judenan folding. Later small‐scale folds associated with a crenulation cleavage are, however, of little regional importance and are commonly found only in zones of highly deformed rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号