首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 622 毫秒
1.
《Applied Geochemistry》2002,17(3):321-336
Mineralogical, petrographical, and geochemical studies of the weathering profile have been carried out at Omai Au mine, Guyana. The area is underlain by felsic to mafic volcanic and sedimentary rocks of the Barama-Mazaruni Supergroup, part of the Paleoproterozoic greenstone belts of the Guiana Shield. Tropical rainy climate has favoured extensive lateritization processes and formation of a deeply weathered regolith. The top of the weathering profile consists of lateritic gravel or is masked by the Pleistocene continental-deltaic Berbice Formation. Mineralogical composition of regolith consists mainly of kaolinite, goethite and quartz, and subordinately sericite, feldspar, hematite, pyrite, smectite, heavy minerals, and uncommon mineral phases (nacrite, ephesite, corrensite, guyanaite). A specific feature of the weathering profile at Omai is the preservation of fresh hydrothermal pyrite in the saprolith horizon. Chemical changes during the weathering processes depend on various physicochemical and structural parameters. Consequently, the depth should not be the principal criterion for comparison purposes of the geochemical behavior within the weathering profile, but rather an index that measures the degree of supergene alteration that has affected each analyzed sample, independently of the depth of sampling. Thus, the mineralogical index of alteration (MIA) can provide more accurate information about the behavior of major and trace elements in regolith as opposed to unweathered bedrock. It can also aid in establishing a quantitative relationship between intensity of weathering and mobility (leaching or accumulation) of each element in each analyzed sample. At Omai, some major and trace elements that are commonly considered as immobile (ex: TiO2, Zr, etc.) during weathering could become mobile in several rock types and cannot be used to calculate the mass and volume balance. In addition, due to higher “immobile element” ratios, the weathered felsic volcanic rocks plotted in identification diagrams are shifted towards more mafic rock types and a negative adjustment of ∼20 units is necessary for correct classification. In contrast, these elements could aid in defining the material source in sedimentary rocks affected by weathering. Generally, the rare-earth element (REE) patterns of the bedrock are preserved in the saprolith horizon. This can represent a potentially useful tool for geochemical exploration in tropical terrains. Strong negative Ce and Tb anomalies are displayed by weathered pillowed andesites, which are explained by the influence of the water/rock ratio.  相似文献   

2.
《Geochimica et cosmochimica acta》1999,63(23-24):3939-3957
A simple geochemical balance of lateritization processes governing the development of several tens of meters of weathering profiles overlain by ferricretes is estimated on the basis of detailed mineralogical and geochemical data. The lateritic weathering mantle of the “Haut–Mbomou” area in Central Africa is composed of different weathering layers described from the base to the top of vertical profiles as a saprolite, a mottled clay layer, a soft nodular layer, a soft ferricrete, and a ferricrete in which kaolinite, gibbsite, goethite, and hematite occur in various quantities. Incongruent dissolution of kaolinite leads to the formation of gibbsite in the upper saprolite, whereas the hematite does not clearly replace the kaolinite according to an epigene process in the upper ferruginous layers of the profiles. Instead, that kaolinite is also transformed into gibbsite according to an incongruent dissolution under hydrated and reducing conditions induced by a relatively humid climatic pattern. The respective relations of the silica, iron, and aluminum balances and the Al substitution rate of the hematite on the one hand, and of RHG [RHG = 100 (hematite/hematite + goethite)] and the kaolinite on the other hand, to the consumption or the release of protons H+ permit differentiation of aggrading ferruginization and degradation processes operating in the different lateritic weathering profiles. The Al substitution rate of the Fe–oxyhydroxides varies according to the nature of lateritization processes, e.g., saprolitic weathering and aggrading ferruginization vs. degradation. The observations and results indicate that the ferruginization process of the weathering materials of parent rocks is not a simple ongoing process as often thought. This suggests that the actual lateritic weathering mantle of the Haut–Mbomou area may result from different stages of weathering and erosion during climatic changes.  相似文献   

3.
徐则民 《地学前缘》2009,16(3):364-373
发育于斜坡非饱和带的结晶岩与碎屑岩腐岩多夹于残坡积土层和风化岩带之间,保留有裂隙及层理等构造,但质地松软。腐岩结构体与母岩色差显著,保留原岩结构和构造特征,矿物成分以次生粘土矿物、次生石英及褐铁矿最为常见。腐岩次生微孔隙发育,具有低密度、高孔隙度、高渗透率、高容水度及高持水度特征。腐岩发育是通过低渗透岩石结构体风化前锋的渐进性扩展实现的,非饱和带高湿度空气形成的凝结水和降水入渗形成的非饱和渗流是该过程的核心动力。气态水分子能够扩散到低渗透岩石结构体表面内侧一定宽度范围内的孔隙系统之中凝结为液态水并溶蚀造岩矿物。雨季入渗降水在结构体表面形成的薄膜水流通过分子扩散机制接受其内侧结构体粒间溶液中的溶出组分并将其携入饱水带,同时恢复粒间溶液的侵蚀动力。当上述过程循环到一定程度时,结构面内侧便形成一定厚度的腐岩壳。腐岩壳在雨季直接吸收、贮存流经其表面的液态渗入水,在核心石外侧形成富水结构层并在旱季向包气带或其内侧的风化前锋提供水汽。随着时间推移,腐岩壳越来越厚,核心石最终消失;当某一范围内的岩石结构体全部演变为腐岩结构体时,该范围内的岩体也就完成了向腐岩体的转变。  相似文献   

4.
Chemical, mineralogical, and petrographic data from the Los Pijiguaos bauxite deposit, together with the water chemistry of the streams draining the area, were used to study the problem of lateritic bauxite formation at this location. The Los Pijiguaos bauxite, located at the northwestern edge of the Guayana Shield in Venezuela, is a lateritic bauxite developed on a Precambrian Rapakivi Granite Batholith, the Parguaza Granite. This deposit is situated on a planation surface at elevations between 600 and 700 m; it is believed to have originated during an erosional event that took place during Late Cretaceous-early Tertiary times.The weathering profile is composed of an upper bauxite zone, followed by a saprolite, and merging gradually to the fresh granite. The upper bauxitic zone contains gibbsite, quartz, hematite, and goethite. The saprolite contains kaolinite, quartz, and goethite and is characterized by a relict granitic texture that indicates little bulk volume change associated with the weathering process. The upper bauxitic zone has lost any textural resemblance with the parent granite, consistent with extensive volume loss.Bauxite and saprolite are separated by a transition zone where gibbsite and kaolinite coexist. Textures indicating the replacement of kaolinite by gibbsite point to the dynamic nature of the weathering profile, characterized by advancing reaction fronts.The chemical composition of the deposit defines trends that can be traced back to the composition of the parent granite and shows enrichment of Al2O3, Fe2O3, and TiO2, and depletion of SiO2, relative to the parent granite. The uppermost part of the profile is characterized by a further enrichment of Fe2O3 with respect to the other components of the bauxite. Important volume and mass losses in the bauxite have also been calculated, based on chemical composition and density measurements. The calculated losses are consistent with the textural observations in the bauxite.The chemical composition of the waters of streams draining the area shows strong seasonal patterns, consistent with the seasonal nature of the local climate (one dry and one rainy season per year, both about six months long). The balance between dissolved and suspended loads in these streams indicates that the magnitudes of chemical and physical denudation are similar, leading to approximately constant thicknesses of the weathering profiles. These observations are consistent with model calculations based on current climatic conditions and suggest that the bauxitization process is still active.  相似文献   

5.
The plagioclase of the kaolinised granite of Tirschenreuth is decomposed quantitatively and the biotite almost quantitatively, on the contrary potassium feldspar and mucovite of the parent rock remained unaffected by kaolinisation. The quantity of produced kaolinite is equivalent to the quantity of decomposed plagioclase and biotite. The rare elements Pb, Cu, Cr, Ni, P, and Ti from the kaolinised minerals are adsorbed quantitatively by the kaolin. All other elements are diminished, no element has been added to the kaolin from other sources than from parent rock material. The selective decomposition of plagioclase and biotite in the kaolin-feldspar deposit of Tirschenreuth and the association of rare elements in the kaolin are explainable by weathering processes only. Kaolins from Hirschau-Sehnaittenbach are characterised by extremely high concentrations of the rare elements Ba, Sr, Pb, Cu, and P. The association of rare elements of the kaolin has been originated from the decomposed potassium feldspar of the kaolinised arcoses. The rare elements Pb, Cu, Cr, and P are adsorbed quantitatively by the kaolin. The other elements are diminished, Ba and Sr inclusive and in spite of their high absolute concentrations. The composition of the arcoses of Hirschau-Schnaittenbach prior to kaolinisation is calculated to 56% of quartz and 44% of potassium feldspar by means of the quantities of the elements Pb and Cu analysed in the feldspar and in the kaolin. The kaolin of Hirschau-Schnaittenbach has originated by weathering of the potassium feldspar of the Triassic arcoses. The kaolinisation is of Triassic age because kaolins of the Hirschau-Schnaittenbach type were redeposited near Ehenfeld in the Cenomanian. Kaolin deposits of hydrothermal origin are characterised by a zonal structure and are associated by ores. They are different in geological behaviour and mineral association from kaolin deposits which originated by weathering of feldspathic rocks like the deposits of Tirschenreuth and Hirschau-Schnaittenbach (Upper Palatinate, Bavaria).  相似文献   

6.
《Applied Geochemistry》2000,15(2):245-263
Since the 80's, studies have shown that Au is mobile in supergene lateritic surficial conditions. They are based either on petrological, thermodynamic studies, or experimental works. In contrast, few studies have been done on the mobility of the Pt group elements (PGE). Moreover, at the present time, no study has addressed the differential mobility of Au, Ag and Pd from natural alloys in the supergene environment. The aim of this study is to understand the supergene behavior, in lateritic conditions, of Au–Ag–Pd alloys of the Au ore locally called Jacutinga at the Maquiné Mine, Iron Quadrangle, Minas Gerais state, Brazil.The field work shows that the host rock is a “Lake Superior type” banded iron formation (BIF) and that the Au mineralization originates from sulfide-barren hydrothermal processes. Primary Ag–Pd-bearing Au has developed as xenomorphous particles between hematite and quartz grains. The petrological study indicates that the most weathered primary Au particles with rounded shapes and pitted surfaces were found, under the duricrust, within the upper friable saprolite. This layer, however is not the most weathered part of the lateritic mantle, but it is where the quartz dissolution resulting porosity is the most developed. The distribution of Au contents in the weathered rocks are controlled by the initial hydrothermal primary pattern. No physical dispersion has been found. Most of the particles are residual and very weakly weathered. This characterizes early stages of Au particle weathering in agreement with the relatively low weathering gradient of the host itabiritic formations that leads essentially to the development of isostructural saprolite lateritic mantle. Limited dissolution of primary Au particles issued from the friable saprolite induces Pd–Ag depleted rims compared to primary Au particle Pd–Ag contents.In addition, limited very short distance in situ dissolution/reprecipitation processes have been found at depth within the primary mineralization, as illustrated by tiny supergene, almost pure, Au particles. The supergene mobility order Pd>Ag>Au as reflecting early weathering stages of Au–Ag–Pd alloys under lateritic conditions is proposed.  相似文献   

7.
江西龙南花岗岩稀土风化壳中粘土矿物的研究   总被引:8,自引:0,他引:8       下载免费PDF全文
本区燕山早期花岗岩发育的风化壳中的粘土矿物以高岭石和埃洛石(7Å)为主;蒙脱石、三水铝石及其它为新查明矿物。据粘土矿物组合特征,自风化剖面深部到地表分为三个带:含蒙脱石带,高岭石和埃洛石(7Å)带,含三水铝石带。本文探讨了矿物在风化过程中的生成演化顺序,并进行了热力学的解释。据各带粘土物质的阳离子交换量与稀土含量变化的不一致关系认为,稀土在C带中的富集是化学风化的结果,与粘土矿物组合无关。  相似文献   

8.
《Applied Geochemistry》2002,17(7):885-902
An ancient saprolite has developed on the Palaeoproterozoic granulite, granite gneiss and amphibolite bedrock of the Vuotso–Tankavaara area of central Finnish Lapland. The present day climatic regime in Finnish Lapland lies within the northern boreal zone and so the saprolite there can be regarded as fossil. Cores of saprolite were collected from 4 sections (42 samples) and analyzed chemically and mineralogically. In the study area, progressive weathering of the rocks has been marked by gradual enrichment in Al, Fe and Ti; and depletion of Na, K and Ca. The higher concentration of Fe(III) and water and reduced Na and Ca in weathered bedrock in the 4 sections are indicative of oxidation, hydration and leaching processes involved during weathering. The primary minerals in the saprolite are plagioclase feldspar, K-feldspar, quartz, garnet (almandine) and hornblende; the common secondary minerals are kaolinite, halloysite, and vermiculite in addition to minor amounts of sericite. Intense weathering is indicated by: (1) the presence of kaolinite and halloysite in 4 sections of different bedrock types, and (2) the comparatively lower SiO2/Al2O3 (wt.%) ratio (2.30) of weathered granulites (3 sections) as compared to fresh granulite (4.33) and that of weathered amphibolite (2.68) as compared to fresh amphibolite (3.56). In general, kaolinite and halloysite have formed through the weathering of feldspars, garnet, and biotite. Vermiculite is the most probable alteration product of biotite. The formation of kaolinite and halloysite in Finnish Lapland indicates wetter and warmer climatic conditions during the time of their formation than at present. The possible time for formation of the saprolite is early Cretaceous–early Tertiary into Middle Miocene.  相似文献   

9.
The study of biogeochemical and hydrological cycles in small experimental watersheds on silicate rocks, common for the Temperate Zone, has not yet been widely applied to the tropics, especially humid areas. This paper presents an updated database for a six-year period for the small experimental watershed of the Mengong brook in the humid tropics (Nsimi, South Cameroon). This watershed is developed on Precambrian granitoids (North Congo shield) and consists of two convexo-concave lateritic hills surrounding a large flat swamp covered by hydromorphic soils rich in upward organic matter. Mineralogical and geochemical investigations were carried out in the protolith, the saprolite, the hillside lateritic soils, and the swamp hydromorphic soils. Biomass chemical analyses were done for the representative species of the swamp vegetation. The groundwater was analysed from the parent rock/saprolite weathering front to the upper fringe in the hillside and swamp system. The chemistry of the wet atmospheric and throughfall deposits and the Mengong waters was monitored.In the Nsimi watershed the carbon transfer occurs primarily in an organic form and essentially as colloids produced by the slow biodegradation of the swamp organic matter. These organic colloids contribute significantly to the mobilization and transfer of Fe, Al, Zr, Ti, and Th in the uppermost first meter of the swamp regolith. When the organic colloid content is low (i.e., in the hillside groundwater), Th and Zr concentrations are extremely low (<3 pmol/L, ICP-MS detection limits). Strongly insoluble secondary thorianite (ThO2) and primary zircon (ZrSiO4) crystals control their mobilization, respectively. This finding thus justifies the potential use of both these elements as inert elements for isoelement mass balance calculations pertaining to the hillside regolith.Chloride can not be used as a conservative tracer of hydrological processes and chemical weathering in this watershed. Biogenic recycling significantly influences the low-Cl input fluxes. Sodium is a good tracer of chemical weathering in the watershed. The sodium solute flux corrected from cyclic salt input was used to assess the chemical weathering rate. Even though low (2.8 mm/kyr), the chemical weathering rate predominates over the mechanical weathering rate (1.9 mm/kyr). Compared to the Rio Icacos watershed, the most studied tropical site, the chemical weathering fluxes of silica and sodium in the Mengong are 16 and 40 times lower, respectively. This is not only related to the protective role of the regolith, thick in both cases, but also to differences in the hydrological functioning. This is to be taken into account in the calculations of the carbon cycle balance for large surfaces like that of the tropical forest ecosystems on a stable shield at the global level.  相似文献   

10.
The architecture of the Critical Zone, including mobile regolith thickness and depth to the weathering front, is first order controlled by advance of a weathering front at depth and transport of sediment at the surface. Differences in conditions imposed by slope aspect in the Gordon Gulch catchment of the Boulder Creek Critical Zone Observatory present a natural experiment to explore these interactions. The weathering front is deeper and saprolite more decayed on north-facing than on south-facing slopes. Simple numerical models of weathering front advance, mobile regolith production, and regolith transport are used to test how weathering and erosion rates interact in the evolution of weathered profiles. As the processes which attempt are being made to mimic are directly tied to climate variables such as mean annual temperature, the role of Quaternary climate variation in governing the evolution of Critical Zone architecture can be explored with greater confidence.  相似文献   

11.
The kaolin deposits at Melthonnakkal and Pallipuram mines form part of the Warkalli Formation belonging to the Tertiary sequence in southern Kerala and occur at the boundary between the Tertiary sequence and Precambrian granulite facies metapelites (khondalites). The sedimentary clays are composed mainly of kaolinite, quartz and gibbsite. XRD and SEM studies have revealed that kaolinite is well-crystallized variety and the platy crystals are scarcely broken in the sedimentary clays. These sedimentary kaolins are considered to have been formed by intense tropical weathering of the khondalites, and subsequently transported and deposited with high organic input into lakes near the weathering crust over the basement rock. Besides, the surficial parts of the sedimentary deposits are extensively lateritized with the formation of goethite and hematite by Quaternary tropical weathering processes.  相似文献   

12.
The South Ushkoty eluvial kaolin deposit discovered and explored by the authors is situated 20 km away from the railway in the Dombarov district of the Orenburg region. The deposit is localized in the axial zone of the East Ural Uplift. Leucogranites of the Upper Ushkoty Pluton serve as bedrocks. The deposit comprises five lodes, among which the largest deposit has a reserve of 40 Mt. The lodes are erosion remnants of the well-developed linear-areal weathering zone related to the fragments of Mesozoic peneplain at the hypsometric level not lower than 360 m. Variation of the kaolin zone thickness, the entire weathering zone, and the deposit morphology is largely governed by the nearly meridional and northeastern faults. Two productive zones—the normal kaolin (kaolinite + quartz) zone and the alkaline kaolin (kaolinite + quartz + potassium feldspar and/or muscovite) zones—are recognized in the weathering profile of leucogranites of the Upper Ushkoty Pluton. The alkaline kaolin is of commercial significance as a complex raw material if the potassium oxide content is above 3.5%. The composition and properties of the concentrated kaolin meet the requirements of its traditional consumers (fine ceramic works, paper mills, and others). The discovery of the South Ushkoty deposit confirmed the previous forecast on considerable prospects of the Orsk Transural region for kaolin. We hope that this discovery will stimulate the further investigation and assessment of resources in the Mugodzhary kaolin-bearing subprovince.  相似文献   

13.
Understanding the relationship between subsurface flow paths on hillslopes and chemical weathering of bedrock is fundamental to understanding the timing and mechanisms that weather bedrock to saprolite. The link between chemical weathering of bedrock and contact time with reactive water along flow paths motivates this study. Water drives the chemical alteration of rock into saprolite, yet connected porosity generally declines with depth into the weathered profile. Saprolite formation, therefore, reflects coupled weathering and permeability development over time. This study uses numerical modeling and soil-moisture monitoring to explore the hydrology of the unsaturated zone and the influence of fracture density, hillslope gradient, and permeability contrasts within the saprolite development horizon on saprolite development.  相似文献   

14.
A well-developed regolith is preserved beneath early Proterozoic (Aphebian) rocks of the Otish and Mistassini Groups in Central Quebec, Canada. The regolith is covered by fluviatile clastic rocks (Otish Group) in the north, and by a thick sequence of stromatolitic and sandy dolomite (Mistassini Group) in the south.Where preserved beneath clastic rocks, the regolith exhibits the structures and textures of its crystalline parent rocks (tonalite, gneiss and amphibolite), despite the alteration of feldspars to clay minerals and the partial oxidation of biotite. A later event recrystallized the clay minerals to muscovite, while conserving the original outline of the feldspars. Beneath the dolomite, the regolith was largely replaced by dolomite, but retains many original textures. Dolomite replaced first the clay minerals, then quartz and unaltered feldspars and finally biotite. Repeated crustifications of dolomite with intervals of chert and minor anthraxolite surround unaltered blocks of crystalline rock within the regolith profile and similar complex veins fill many master joints. These veins are identical in composition to vug fillings throughout the overlying carbonate formations. Clasts of partly dolomitized regolith included in non-dolomitic sands filling channels and scours dug deep into the profile, suggest that dolomitization commenced very early, possibly related to a sabkha environment developed during the transgression.  相似文献   

15.
The recently discovered lateritic nickel ore deposit on the summit area of the Tagaung Taung contains about 40 million DMT nickel-saprolite ore with approximately 2% Ni. The serpentinite massif is covered with a thick weathering mantle consisting of saprolite, limonite, and an allochthonous lateritic surface layer. The thickness, nickel content, and physical properties of the ore are very variable. The main minerals in the nickel saprolite ore are nickeliferous serpentine and smectite. Microprobe analyses show a strong depletion of Mg with increasing nickel content in the serpentine minerals; smectite generally contains less nickel than serpentine. Chemical analyses of samples from more than 100 drill holes are used to calculate the mean chemical compositions, mean accumulation factors, and gain and loss of major and trace elements for the various layers. This permits a quantitative approach to be made to the genetic history of the weathering mantle. Gain and loss determinations on the basis of constant chromium content and of constant volume give nearly identical results for the saprolite layer. Calculations on the basis of Ni/Cr ratios indicate that three-quarters of a former 20-m-thick limonite layer has been eroded away. Only the lower part of the original limonite layer with a relatively high SiO2 content is preserved. The kaolinite- and illite-rich surface layer is a mixture of limonite and weathered clayey material, which was probably derived from adjacent rocks. Part of the autochthonous weathering section is contaminated with infiltrated allochthonous surface material. It is not possible that colluvial-alluvial deposition of clayey material from nonultramafic rocks could have taken place under the present geomorphic regime. Thus, lateritization of the serpentinite and deposition of siallitic material must have occurred before exposure of the Tagaung Taung in its present form.  相似文献   

16.
Strong negative cerium anomalies are developed in the saprolite zone of two serpentinite lateritic profiles in the Mada region of the Kongo–Nkamouma massif in the Lomié ultramafic complex (South-East Cameroon).The total lanthanide contents increase strongly from the parent rock (1.328 ppm) to the weathered materials (ranging from 74.32 to 742.18 ppm); the highest value is observed in the black nodules from the western weathering profile and the lowest one in the top of the clayey surface soil from the same profile. The lanthanide contents, except cerium, are highest in the saprolite and decrease along the profile. The light REE contents are very high compared to those of the heavy REE (LREE/HREE ranging from 3.21 to 44.37). The lanthanides normalized with respect to the parent rock reveal: (i) strong negative Ce anomalies with [Ce/Ce1] ranging from 0.006 to 0.680 in the saprolite zone; (ii) strong positive Ce anomalies with [Ce/Ce1] ranging from 1.23 to 23.96 from the top of the saprolite to the clayey surface horizon; (iii) positive Eu anomalies with [Eu/Eu1] ranging from 2.09 to 2.41 in all the weathered materials.Mass balance evaluation shows that, except cerium, lanthanides have been highly accumulated in the saprolite zone and moderately concentrated in the upper part of both profiles. Cerium has been highly accumulated in the nodules of the West Mada profile. The presence of negative Ce anomalies is confirmed by its low degree of accumulation whereas the positive ones are related to its high degree of accumulation.  相似文献   

17.
以光薄片观察、粉晶X射线衍射分析等多种方法为手段,对靖西县三合铝土矿的硬水铝石和三水铝石的矿物特征进行研究,并探讨其成因机制.分析发现矿石主要由铝矿物、粘土矿物、铁矿物、钛矿物和石英等组成,这些矿物主要以细小微粒或单矿物集合体赋存于矿体中.其中硬水铝石和三水铝石是最主要的铝矿物.硬水铝石主要存在于沉积型铝土矿和堆积型铝土矿矿石中,三水铝石与硬水铝石伴生,主要赋存于堆积铝土矿矿层红土中.研究认为本区三水铝石主要为表生条件下,含铝母岩经红土化风化作用形成,硬水铝石主要为三水铝石经变质作用脱水形成,形成硬水铝石的三水铝石是地质历史上含铝母岩红土化作用形成的.  相似文献   

18.

Most of the granitic residuals of the Wheat Belt of southwestern Western Australia are bornhardts, with some nubbins developed at the western margin and occasional poorly developed castellated forms. Their origin and age can be deduced from their structure and their relationship to a weathered (lateritic) land surface and various palaeochannels. The bornhardts are massive and most stand lower than local palaeosurface remnants. They are best interpreted as having formed by differential fracture density controlled weathering beneath the weathered land surface in pre‐Eocene times. They were exposed by the stripping of the regolith beginning in the Eocene. Many are clearly stepped, indicating that their exposure took place not all at once, but episodically. A few bornhardts stand higher than the weathered land surface. They pre‐date the Eocene and the stepped morphology preserved on some suggests that their crests are much older.  相似文献   

19.
The eastern region of the Amazon is home to the most important kaolin bauxite producing district in Brazil, referred to as the Paragominas-Capim kaolin bauxite district, which has a reserve of at least 1.0 billion tons of high-quality kaolin used in the paper coating industry. The kaolin deposits are closely related to sedimentary rocks of the Parnaíba basin and their lateritic cover. Two large deposits are already being mined: IRCC (Ipixuna) and PPSA (Paragominas). The geology of the IRCC mine is comprised of the kaolin-bearing lower unit (truncated mature laterite succession derived from the Ipixuna/Itapecuru formation) and the upper unit (immature lateritized Barreiras formation). The lower kaolin unit is characterized by a sandy facies at the bottom and a soft (ore) with flint facies at the top. It is formed by kaolinite, quartz, some iron oxi-hydroxides, mica and several accessories and heavy minerals. The <2 μm kaolinite crystallites only correspond to 41.3–58.3% of the soft kaolin, and large booklets of 15–300 μm are common. The degree of structure order of kaolinite decreases towards the flint kaolin. The chemical composition of the soft kaolin is similar to the theoretical chemical composition of kaolinite, with low iron content, and can be well correlated to most kaolin deposits in the region. The distribution pattern of chemical elements from sandy to flint kaolin (lower unit) suggests a lateritic evolution and erosive truncation. This is quite distinct from the upper unit, which has a mineralogical and chemical pathway relating it to a complete immature lateritic profile. The geological evolution of the IRCC kaolin is similar to that of other deposits in the eastern Amazon region, being comprised of: parent rocks formed in an estuarine marine and fluvio-laccustrine environment during the early Cretaceous; establishment of mature lateritization with the formation of kaolin in the Eocene; marine transgression and regression – (Pirabas and Barreiras formation) with kaolin profile erosion and forward movement of deferruginization and flintization during the Miocene after partial mangrove covering; and immature lateritization – partial kaolin ferruginization during the Pleistocene.  相似文献   

20.
Identifying evidence of oxidative weathering in the geological record is essential to trace the evolution of Earth's atmosphere oxygenation. Metamorphosed residues of lateritic weathering have been identified as two rock types in the 2.1‐Ga‐old Cercadinho Formation, Piracicaba Group, Quadrilátero Ferrífero of Minas Gerais. One is tourmaline–hematite–sillimanite–kyanite quartzite; the other is rutile–tourmaline–hematite–muscovite phyllite. Both rocks have abundant tourmaline with δ11B values between about ?17‰ and ?13‰. The Cercadinho tourmaline is roughly parallel to the povondraite–“oxy‐dravite” join of meta‐evaporitic tourmaline, in its more aluminous segment, offset to higher contents of iron. These compositional and isotopic characteristics of the Cercadinho tourmaline indicate that continental evaporitic brines interacted with aluminium‐ and iron‐rich residues of lateritic weathering. The abundance of disseminated tourmaline, a mineral poorly reported from palaeosols worldwide, implies a boron‐rich brine overprint on the lateritic profile before the onset of metamorphism, reflecting a climatic change from humid to arid conditions in a continental setting. The recognition of lateritic weathering in the Cercadinho Formation contributes to the amount of evidence for increased levels of atmospheric oxygen between 2.22 and 2.06 Ga ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号