首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quaternary basalt magmas in the Circum-Pacific belt and island arcs and also in Indonesia change continuously from less alkalic and more siliceous type (tholeiite) on the oceanic side to more alkalic and less siliceous type (alkali olivine basalt) on the continental side. In the northeastern part of the Japanese Islands and in Kamchatka, zones of tholeiite, high-alumina basalt, and alkali olivine basalt are arranged parallel to the Pacific coast in the order just named, whereas in the southwestern part of the Japanese Islands, the Aleutian Islands, northwestern United States, New Zealand, and Indonesia, zones of high-alumina basalt and alkali olivine basalt are arranged parallel to the coast. In the Izu-Mariana, Kurile, South Sandwich and Tonga Islands, where deep oceans are present on both sides of the island arcs, only a zone of tholeiite is represented. Thus the lateral variation of magma type is characteristic of the transitional zone between the oceanic and continental structures. Because the variation is continuous, the physico-chemical process attending basalt magma production should also change continuously from the oceanic to continental mantle. Suggested explanations for the lateral variation assuming a homogeneous mantle are: 1) Close correspondence between the variations of depth of earthquake foci in the mantle and of basalt magma type in the Japanese Islands indicates that different magmas are produced at different depths where the earthquakes are generated by stress release: tholeiite at depths around 100 km, high-alumina basalt at depths around 200 km, and alkali olivine basalt at depths greater than 250 km. 2) Primary olivine tholeiite magma is produced at a uniform level of the mantle (100–150 km), and on the oceanic side of the continental margin, it leaves the source region immediately after its production and forms magma reservoirs at shallow depths, perhaps in the crust, where it undergoes fractionation to produce SiO2-oversaturated tholeiite magma, whereas on the continental side, the primary magma forms reservoirs near the source region and stays there long enough to be fractionated to produce alkali olivine basalt magma, and in the intermediate zone, the primary magma forms reservoirs at intermediate depths where it is fractionated to produce high-alumina basalt magma.  相似文献   

2.
Origin of andesite and its bearing on the Island arc structure   总被引:1,自引:0,他引:1  
The hypothesis that andesite magmas originate from basalt magmas through fractionation is supported for the following reasons: 1) A close association of andesite and dacite with basalt in many volcanoes and a complete gradation in chemistry and mineralogy throughout this suite. 2) Formation of andesite magmas from basalt magmas by differentiation in situ of some intrusive and extrusive bodies. 3) Agreement between the calculated compositions of solid materials to be subtracted from basalt magmas to yield andesite magmas and the observed mineralogy of phenocrysts in these rocks. 4) Higher alkali contents in andesite and dacite associated with high-alumina basalt than in those associated with tholeiite. 5) A complete gradation from the high iron concentration trend of basalt magma fractionation (Skaergaard) to the low or noniron concentration trend (the calc-alkali series) which can be ascribed to the difference of the stage of magnetite crystallization. 6) Similarity between the orogenic rock suite and plateau basalts in the preferential eruption of magmas of middle fractionation stage, givin rise to the great volume of andesite in the orogenic belts and iron-rich basalt in the plateau lavas. Petrological and seismic refraction studies suggest that a great volume of gabbroic materials are present in the lower crust underneath the volcanic belts as a complementary material for the andesite lavas. The island arc structure would develop by repeated eruption of andesite on the surface and by thickening of the oceanic crust underneath the arc due to the addition of gabbroic materials. The suitable portion of the lower crust may be subjected to partial melting to produce granitic magma in the later stage of development of the arc, successively changing it to a part of the adjacent continent.  相似文献   

3.
The Fe/Mg+Fe) ratios (XFe) of the Quaternary basalts (SiO2 < 53 wt.%) in the Japanese arcs were examined. The XXFe of relatively magnesian basalts decreases from the volcanic front toward the Japan Sea across the arcs. Based on the partition coefficient of Mg-Fe2+ between olivine and liquid, it is suggested that all the basalts near the volcanic front, which are mostly tholeiitic basalts, are significantly fractionated, whereas many basalts near the Japan Sea, which are mostly alkali basalts, are little fractionated. The K2 O content in the primary basalt magmas increases toward the Japan Sea. Combining the XFe and K2 O data, it is suggested that relatively large amounts of tholeiitic magmas are produced near the volcanic front, but they fractionate during their ascent, whereas smaller amounts of alkali basalt magmas are formed near the Japan Sea, but they can ascend with less fractionation. The density of primary tholeiite magma is significantly larger than that of primary alkali basalt magmas. It is most likely that primary tholeiite magmas cannot ascend beyond the upper crust and would fractionate to produce less dense tholeiitic magmas near the volcanic front, whereas primary alkali basalt magmas can ascend through the upper crust without fractionation, as far as buoyancy is the principal ascending force. In the Japanese arcs, the stress field may be less compressional near the Japan Sea than near the volcanic front, so that magmas can ascend more rapidly in the latter region than in the former. These two factors may be responsible for the above mentioned chemical variations of basalt magmas across the arcs. The variation in volume of the Quaternary volcanic rocks across the arcs can be explained by the presence of a melt-rich zone above but nearly parallel to the subducted slab.  相似文献   

4.
Fluorine contents in about 160 representative Quaternary volcanic rocks and 15 hornblende and biotite phenocrysts in a calc-alkali series in Japan have been determined by a selective ion-electrode method. Tholeiites have the lowest contents and the narrowest range (58–145 ppm), while alkali basalts have the highest contentws and the widest range (301–666 ppm), high-alumina basalts have intermediate values (188–292 ppm). F contents in basalts clearly increase from east to west across the Japanese Islands, as do alkalies, P2O5 REE, U, Th and H2O.The volcanic rocks studied are divided into two groups on the basis of F: (1) witt, increasing % SiO2 or advancing fractionation, F contents show either progressive enrichment; or (2) with increasing fractionation, F contents show rather constant values. The former is produced by fractionation of anhydrous phases from basalt to mafic andesite magmas; the tholeiite series of Nasu volcanic zone (outer zone), northeastern, Japan is a typical example. The latter group is derived through separation of amphibole-bearing phases from basaltic magmas at various depths from upper mantle (about 30 km) to upper crust; the alkali series in southwestern Japan and the calc-alkali series of Chokai volcanic zone (inner zone), northeastern Japan, are examples.  相似文献   

5.
Volcanological differences between the old and the recent lavas from Martinique, Lesser Antilles, are presented, showing that two volcanic series exist in this island:

Dash

  • a high-alumina basalt series generally mafic, line-grained, partly pillowed, with clinopyroxene-rich lavas which show iron enrichment tendancies en an A.F.M. plot;
  • a calc-alkaline (slightly potassic) series much more siliceous as a group, porphyric, predominantly sub-aerially erupted with orthopyroxene-rich lavas which show no iron enrichment.
  • The high-alumina basalt series is considered as having originated from a differentiation trend by fractionation of olivine, clinopyroxene and plagioclase. Lavas range from olivine basalt to tridymite-rich dacite. The calc-alkaline series probably derives from the contamination of the first suite but the occurence of hornblende-rich cumulates indicates the process of fractionation takes place too. Lavas range from orthopyroxene andesite and hornblende andesite to quartz-hornblende dacite and quartz-biotite dacite.  相似文献   

    6.
    In a belt of Quaternary volcanism within the Mojave Desert, California, lavas of alkali-olivine basalt have been extruded from many centers. Also three small volcanoes erupted alkaline lavas similar to basanite, except that the zeolites phillipsite and chabazite crystallized in the groundmass instead of the usual feldspathoid. These zeolite-bearing lavas, more alkaline than the olivine basalts, brought many peridotitic nodules to the surface. Two of the volcanoes built cones 500 to 600 feet high and extruded several short lava flows. The third volcano is smaller and mostly covered by younger alluvium. All three cones are composed of cinders, bombs and blocks, and lava spatter. The lava spatter strengthened the cones, making it possible for one or two flows to pour over the rims. Short flows also issued from fissures cutting the flanks of the cones. The two larger volcanoes each concluded with a flow that began issuing from a fissure that enlarged until one side of the cone was rafted away. Even these final flows are small. The basanitic lavas have an average composition ofSiO 2>=44.5;TiO 2=3.4;Al 2 O 3=14.5;Fe 2 O 3=5.0;FeO=7.3;MnO=0.2;MgO=7.4;CaO=9.0;Na 2 O=4.1;K 2 O=2.3;P 2 O 3=1.1;CO 2=0.1; andH 2 O=1.0. The lavas are very fine-grained and hypocrystalline with microphenocrysts of olivine (Fo 85). The groundmass consists of olivine (Fo 70), plagioclase (An 4:), titanaugite, titanmagnetite, ilmenite, glass (less than 10%), and the zeolites-phillipsite and chabazite. The zeolites occur in small irregular patches only in the nearly holocrystalline centers of the flows. The basanites contain abundant peridotitic nodules, xenoliths of partially fused granite, and xenocrysts (possibly cognate) of titanaugite and kaersutite. The minerals in the inclusions, except for olivine and clinopyroxene, have all reacted with the alkaline melt. In several flows the nodule enstatite has been partially replaced by titaniferous clinopyroxene; this reaction drew so much lime and silica from the surrounding melt that zeolite formed a halo around the reaction rim. Three chemical analyses show about 15% normative nepheline, even though there is no modal nepheline. The feldspathoid is represented instead by the undersaturated zeolites phillipsite and chabazite. A high water content in the magma probably accounts for the occurrence of zeolite. The peridotite nodules do not occur in the nearby, less alkaline lavas, and they appear to be cognate. The separation of olivine and enstatite under high pressures can produce the basanite liquid from the same magma that yields the alkali-olivine basalt liquids by olivine crystallization under low pressures.  相似文献   

    7.
    Greenrocks are very common in the Tananao Schist of eastern Taiwan where the known fossils are of Permian in age. Fourty-four greenrock samples were chemically analysed and their magma types studied. The chemical composition of the greenrocks have marked variation common in volcanic rock series. The greater parts of the greenrocks belong to basalt and a smaller portion to basaltic andesite (SiO2 53 %–58 %). They are probably isochemical with their original igneous rocks except for volatile components. No striking Fe-enrichment exists in a MgO-ΣFeO-(Na2O=K2O) diagram. Based on (Na2O=K2O)-Al2O3-SiO2 diagrams afterKuno (1960), the parent magma of the rocks mostly belong to the high-alumina basalt series and only a few to alkali olivine basalt series. The high-alumina basalt can be looked upon as having an incipient trend for the calc-alkaline or the hypersthene series ofKuno (1959). The average K/Rb ratio of 460, the average TiO2 percentage of 1.5 %, and low K2O of around 0.5 % seem to warrant a conclusion that the basaltic rocks were poured out in the upper Paleozoic eugeosyncline on an embryonic continental crust. Considering the rock association of amphibolite plus serpentine (dismembered ophiolite), meta-graywacke, metachert, crystalline limestone, metaarkose, and metabasites in the Tananao Schist, the most probable site for the eugeosyncline may been an extensional trough near the fragmented paleo-Asiatic margin.  相似文献   

    8.
    The homologues temperature of a crystalline material is defined as T/T_m, where T is temperature and T_m is the melting(solidus) temperature in Kelvin. It has been widely used to compare the creep strength of crystalline materials. The melting temperature of olivine system,(Mg,Fe)_2SiO_4, decreases with increasing iron content and water content, and increases with confining pressure. At high pressure, phase transition will lead to a sharp change in the melting curve of olivine. After calibrating previous melting experiments on fayalite(Fe_2SiO_4), the triple point of fayalite-Fe_2SiO_4 spinel-liquid is determined to be at 6.4 GPa and 1793 K. Using the generalized means, the solidus and liquidus of dry olivine are described as a function of iron content and pressure up to 6.4 GPa. The change of T/T_m of olivine with depth allows us to compare the strength of the upper mantle with different thermal states and olivine composition. The transition from semi-brittle to ductile deformation in the upper mantle occurs at a depth where T/T_m of olivine equals 0.5. The lithospheric mantle beneath cratons shows much smaller T/T_m of olivine than orogens and extensional basins until the lithosphere-asthenosphere boundary where T/T_m 0.66, suggesting a stronger lithosphere beneath cratons. In addition, T/T_m is used to analyze deformation experiments on olivine. The results indicate that the effect of water on fabric transitions in olivine is closely related with pressure. The hydrogen-weakening effect and its relationship with T/T_m of olivine need further investigation. Below 6.4 GPa(200 km), T/T_m of olivine controls the transition of dislocation glide from [100] slip to [001] slip. Under the strain rate of 10~(-12)–10~(-15) s~(-1) and low stress in the upper mantle, the [100](010) slip system(A-type fabric) becomes dominant when T/T_m 0.55–0.60. When T/T_m 0.55–0.60, [001] slip is easier and low T/T_m favors the operation of [001](100) slip system(C-type fabric). This is consistent with the widely observed A-type olivine fabric in naturally deformed peridotites, and the C-type olivine fabric in peridotites that experienced deep subduction in ultrahigh-pressure metamorphic terranes. However, the B-type fabric will develop under high stress and relatively low T/T_m. Therefore, the homologues temperature of olivine established a bridge to extrapolate deformation experiments to rheology of the upper mantle. Seismic anisotropy of the upper mantle beneath cratons should be simulated using a four-layer model with the relic A-type fabric in the upper lithospheric mantle, the B-type fabric in the middle layer, the newly formed A- or B-type fabric near the lithosphere-asthenosphere boundary, and the asthenosphere dominated by diffusion creep below the Lehmann discontinuity. Knowledge about transition mechanisms of olivine fabrics is critical for tracing the water distribution and mantle flow from seismic anisotropy.  相似文献   

    9.
    Two rock samples with different structures and materials were deformed under a biaxial loading system, and multipoint strain measurements were performed for each sample. The distribution of strain anomalies during the deformation and the instability process were analyzed by using C v value put forward by WANG Xiao-qing and CHEN Xue-zhong, et al, a parameter to describe the heterogeneous distribution of earthquake precursors, so as to examine the method of C v value and to explore its physical meaning experimentally. The result shows that the change of C v value is correlated to the change of deformation characteristics and is an effective parameter to describe the heterogeneity of precursor distribution. C v value increases firstly and then decreases before the instability, and the instability occurs when C v value decreases to the level before increasing. This indicates that C v value may be a useful parameter for earthquake prediction.  相似文献   

    10.
    A semiempirical mathematical model of iron and manganese migration from bottom sediments into the water mass of water bodies has been proposed based on some basic regularities in the geochemistry of those elements. The entry of dissolved forms of iron and manganese under aeration conditions is assumed negligible. When dissolved-oxygen concentration is <0.5 mg/L, the elements start releasing from bottom sediments, their release rate reaching its maximum under anoxic conditions. The fluxes of dissolved iron and manganese (Me) from bottom sediments into the water mass (J Me) are governed by the gradients of their concentrations in diffusion water sublayer adjacent to sediment surface and having an average thickness of h = 0.025 cm: \({J_{Me}} = - {D_{Me}}\frac{{{C_{Me\left( {ss} \right)}} - {C_{Me\left( w \right)}}}}{h}\) (D Me ≈ 1 × 10–9 m2/s is molecular diffusion coefficient of component Me in solution; C Me(ss) and C Me(w) ≈ 0 are Me concentrations on sediment surface, i.e., on the bottom boundary of the diffusion water sublayer, and in the water mass, i.e., on the upper boundary of the diffusion water sublayer). The value of depends on water saturation with dissolved oxygen (\({\eta _{{O_2}}}\)) in accordance with the empiric relationship \({C_{Me\left( {ss} \right)}} = \frac{{C_{_{Me\left( {ss} \right)}}^{\max }}}{{1 + k{\eta _{{O_2}}}}}\) (k is a constant factor equal to 300 for iron and 100 for manganese; C Me(ss) max is the maximal concentration of Me on the bottom boundary of the diffusion water sublayer with C Fe(ss) max ≈ 200 μM (11 mg/L), and C Mn(ss) max ≈ 100 μM (5.5 mg/L).  相似文献   

    11.
    Four-hundred and twenty-one analyses of quartz-normative, peralkaline, extrusive rocks have been collected from the literature and from unpublished sources and are used to examine chemical variation in this group of rocks. Comparisons are particularly made between the full body of data and the variations recorded in the non-hydrated obsidians alone byMacdonald andBailey (1973). It is argued that the compositions of the magmas which formed these obsidians and those which subsequently crystallised were similar as regards the major oxides SiO2, Al2O3, FeO + Fe2O3, Na2O and K2O. Marked variations in the abundances of the minor oxides CaO and TiO2 are shown to be a result of geographical location. Small but significant differences in the distribution of Al and Fe as a function of normative quartz can be recognised between various pantelleritic suites. A new classificatory scheme is proposed, based on the iron (as FeO) and Al2O3 contents. This is simpler than previously employed normative classifications, is more applicable to crystalline rocks, and, happily, in 95 % of cases gives the same rock name as the normative system.  相似文献   

    12.
    Effects of temporally correlated infiltration on water flow in an unsaturated–saturated system were investigated. Both white noise and exponentially correlated infiltration processes were considered. The moment equations of the pressure head (ψ) were solved numerically to obtain the variance and autocorrelation functions of ψ at 14 observation points. Monte Carlo simulations were conducted to verify the numerical results and to estimate the power spectrum of ψ (S ψψ ). It was found that as the water flows through the system, the variance of the ψ (\( \sigma_{\psi }^{2} \)) were damped by the system: the deeper in the system, the smaller the \( \sigma_{\psi }^{2} \), and the larger the correlation timescale of the infiltration process (λ I ), the larger the \( \sigma_{\psi }^{2} \). The unsaturated–saturated system gradually filters out the short-term fluctuations of ψ and the damping effect is most significant in the upper part of the system. The fluctuations of ψ is non-stationary at early time and becomes stationary as time progresses: the larger the value of λ I , the longer the non-stationary period. The correlation timescale of the ψ (λ ψ ) increases with depth and approaches a constant value at depth: the larger the value of λ I , the larger the value of λ ψ . The results of the estimated S ψψ is consistent with those of the variance and autocorrelation function.  相似文献   

    13.
    Spinel-lherzolite xenoliths have been found in olivine tholeiite near Andover in the Tasmanian Tertiary volcanic province. They show a high-pressure mineralogy of predominant olivine (Mg90), with aluminous enstatite (Mg90) and lesser aluminous diopside and chrome-bearing spinel, and resemble lherzolite xenoliths commonly found in undersaturated lavas. Such xenoliths are unusual in tholeiitic basalts and the occurrence directly attests to a mantle origin for at least some tholeiitic magmas.The lherzolites are accompanied by doleritic and pyroxenitic xenoliths and by olivine, orthopyroxene, clinopyroxene and plagioclase xenocrysts. If near-liquidus phases are represented amongst the xenocrysts, then the magnesian number of the host basalt and its xenocryst assemblage provisionally suggest a magma derived by more than 15–20% partial melting of mantle peridotite, before commencing xenocryst crystallisation at pressures between 8–13 kbar.With this new record, lherzolite-bearing lavas in Tasmania now cover an extremely wide compositional range, extending from highly undersaturated olivine melilitite to olivine tholeiite. They also include a considerable number of fractionated alkaline rocks that are only sparsely reported in the literature as lherzolite hosts. This latter group contains representatives of a previously suggested but unestablished alkaline fractionation series based on olivine nephelinite, viz. calcic olivine nephelinite → sodic olivine nephelinite → potassi-sodic olivine nephelinite → mafic nepheline benmoreite → mafic phonolite.Lherzolite and megacryst-bearing lavas are relatively more abundant in peripheral parts to the main basalt sequences in Tasmania. This suggests that they developed in fringing zones of less intense mantle melting which enhanced stagnation and fractionation of magmas within the mantle before eruption. Calculated crustal thicknesses under these areas suggest that the magmas were generated at pressures exceeding 6–11 kbar, with the Andover tholeiitic magma exceeding 9 kbar.  相似文献   

    14.
    An analysis by difference technique yields estimates of H2O in basaltic and andesitic glasses, which are sufficiently accurate (± 1.4 percent absolute) to be useful. Glass inclusions trapped in large olivine crystals from tephra-rich eruptions have 1 to 5 percent H2O. The highest H2O contents are found in basaltic inclusions in magnesium rich olivines from Mount Shasta, California. Andesitic inclusions have less H2O. It seems probable that tephra-rich high-alumina magmas evolve in a vapor saturated environment at fairly shallow depths (few kilometers). This depth appears to be less for Medicine Lake Highlands than for Mount Shasta. Vapor saturation probably inhibits the rise of magma, thus the initial vapor content of a magma may govern its stagnation level. Volatile-rich parental magmas like Mount Shasta basalt probably tend to stagnate at deeper levels, crystallize early amphibole and produce comparatively calcic differentiates.  相似文献   

    15.
    Chemical properties of magmatic emanation can be estimated roughly by i) volatiles from rocks by heating at various temperatures, ii) volcanic emanations, iii) residual magmatic emanations, iv) calculation from chemical equilibrium between volatile matters and magmas. Magmatic emanation is assumed to consist all of the volatile matters in magmas such asH 2 O, HCl, HF, SO 2 H 2 S, H 2,CO 2,N 2 and others (halides, etc.) at about 1200°C, although various kinds of magmatic emanations can be formed at different conditions. Magmatic emanation separated from magmas will change their chemical properties by many factors such as changes of temperature and pressure (displacement of chemical equilibrium), and reactions with other substances and it will differentiate into volcanic gases, volcanic waters, volcanic sublimates, and hydrothermal deposits (hot spring deposits). At temperatures above the critical point of water, separation of solid phase (sublimates), liquid phase, and displacement of chemical equilibrium may take place, and gaseous phase will gradually change their chemical properties as will be seen at many fumaroles. Chloride, hydrogen, andSO 2 contents will gradually decrease along with lowering temperature. Once aqueous liquid phase appears below the critical point of water, all the soluble materials may dissolve into this hydrothermal solution. Consequently, the gaseous phase at this stage must have usually a little hydrogen chloride as is observed at many fumaroles. Aqueous solutions must be of acidic nature by dissolution of acid forming components, and by hydrolysis (Chloride type). When a self-reduction-oxidation reaction of sulfurous acid takes place, an aqueous solution of sulfate type will be formed. At this stage, solid phases consist of the remained sublimates which are difficultly soluble in aqueous solution, and deposits formed by reaction in the hydrothermal solutions. The gaseous phases below the boiling point of water, have usually a little water, and consist mainly ofCO 2 type,H 2 S type,N 2 type, and mixed type owing to elimination or addition of components by reactions with waters or wall rocks according to their geological conditions. Aqueous solutions which was of acidic nature must be changed into alkaline solutions by reaction with wall rocks for a long time. When the oxidation of sulfur compounds takes place, an aqueous solution of sulfate type will be formed. Hydrogen sulfide type of water will be formed by reaction of sulfides with acid waters or absorption of hydrogen sulfide. Carbonate type of water will be formed whenCO 2 is absorbed. Solid phases at this stage consist usually of hydrothermal deposits except for that at solfatara or mofette. The course of differentiation of magmatic emanation could take place in more complicated ways than that of magmatic differentiation.  相似文献   

    16.
    The synorogenic intrusive activity of the eastern part of the Seiland province evolved from tholeiitic basalt low in K and Ti, through high-K calc-alkaline magmas and possible transitional basalt, to alkaline olivine basalt and picrite; finally, highly differentiated alkaline magmas and carbonatites were emplaced. For intrusive rocks with equivalent SiO2 contents, K2O, K2O + Na2O and K2O/Na2O increased with time, and the degree of iron enrichment in basaltic suites dimished. The western part of the province shows no equivalent evolution, tholeiitic magmas being emplaced at the same time as calc-alkaline magmas to the east.The magmatism is believed to have stemmed from a diapiric complex established in the mantle above a Benioff zone dipping to the east beneath the deforming Andean-type margin of the Baltic plate. Tectonic shortening of the continental edge and rearward movement of the underthrust plate relative to the asthenosphere resulted in migration of the plate junction, steepening of the seismic zone, and increasing depth to the magmagenetic region.  相似文献   

    17.
    Solutions of P-SV equations of motion in a homogeneous transversely isotropic elastic layer contain a factor exp(±ν j z), where z is the vertical coordinate and j?=?1, 2. For computing Rayleigh wave dispersion in a multi-layered half space, ν j is computed at each layer. For a given phase velocity (c), ν j becomes complex depending on the transversely isotropic parameters. When ν j is complex, classical Rayleigh waves do not exist and generalised Rayleigh waves propagate along a path inclined to the interface. We use transversely isotropic parameters as α H , β V , ξ, ? and η and find their limits beyond which ν j becomes complex. It is seen that ν j depends on ? and η, but does not depend on ξ. The complex ν j occurs when ? is small and η is large. For a given c/β V , the region of complex ν j in a ? -η plane increases with the increase of α H /β V . Further, for a given α H /β V , the complex region of ν j increases significantly with the decrease of c/β V . This study is useful to compute dispersion parameters of Rayleigh waves in a layered medium.  相似文献   

    18.
    We study the frictional and viscous effects on earthquake nucleation, especially for the nucleation phase, based on a one-degree-of-freedom spring-slider model with friction and viscosity. The frictional and viscous effects are specified by the characteristic displacement, U c, and viscosity coefficient, η, respectively. Simulation results show that friction and viscosity can both lengthen the natural period of the system and viscosity increases the duration time of motion of the slider. Higher viscosity causes a smaller amplitude of lower velocity motion than lower viscosity. A change of either U c (under large η) or η (under large U c) from a large value (U ch for U c and η h for η) to a small one (U cl for U c and η l for η) in two stages during sliding can result in a clear nucleation phase prior to the P-wave. The differences δU c = U ch ? U cl and δη = η h ? η l are two important factors in producing a nucleation phase. The difference between the nucleation phase and the P-wave increases with either δU c or δη. Like seismic observations, the peak amplitude of P-wave, which is associated with the earthquake magnitude, is independent upon the duration time of nucleation phase. A mechanism specified with a change of either η or U c from a larger value to a smaller one due to temporal variations in pore fluid pressure and temperature in the fault zone based on radiation efficiency is proposed to explain the simulation results and observations.  相似文献   

    19.
    Thermal waters contain small amounts of dissolved sulfides which in places precipitate at or near the earth’s surface. Knowledge of the physical chemistry of hydrothermal solutions is needed at elevated temperatures and pressures. Therefore, solubilities of the epithermal minerals cinnabar, stibnite, quartz, and orpiment in aqueousNa 2 S solutions was determined from 25–250° C, 1–2000 bars, and at severalNa 2 S concentrations. All the minerals are appreciably soluble inNa 2 S solutions. Pressure increase decreases solubilities of metallic sulfides but slightly increases quartz solubility. Temperature increase causes increased solubility at temperatures above 150° C, but at lower temperatures, cinnabar, orpiment and quartz show solubility decreases with increasing temperatures. Quartz and cinnabar are mutually soluble, but in the presence of stibnite only a small amount of cinnabar dissolves. The second ionization constant ofH 2 S as calculated from the solubility data ranges from 10?16,21 at 0°C to 10?12,59 at 250°C. TheK 2 ofH 2 S is lower according to this study than any reported before, and the variation with temperature is several orders of magnitude greater than had been predicted.  相似文献   

    20.
    Cushion is a layer of granular materials between the raft and the ground. The shear behavior of the interface between the cushion and the raft may influence the seismic performance of the superstructure. In order to quantify such influences, horizontal shear tests on the interfaces between different cushion materials and concrete raft under monotonic and cyclic loading were carried out. The vertical pressure P_v, material type and cushion thickness h_c were taken as variables. Conclusions include: 1) under monotonic loading, P_v is the most significant factor; the shear resistance P_(hmax) increases as P_v increases, but the normalized factor of resistance μ_n has an opposite tendency; 2) for the materials used in this study, μ_n varies from 0.40 to 0.70, the interface friction angle δ_s varies from 20° to 35°, while u_(max) varies from 3 mm to 15 mm; 3) under cyclic loading, the interface behavior can be abstracted as a "three-segment" back-bone curve, the main parameters include μ_n, the displacement u_1 and stiffness K_1 of the elastic stage, the displacement u_2 and stiffness K_2 of the plastic stage; 4) by observation and statistical analysis, the significance of different factors, together with values of K_1, K_2 and μ_n have been obtained.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号