首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The strong control that the endothermic phase change from spinel to perovskite and magnesiowüstite at a depth of 660 km has on mantle convection is discussed. The phase transition determines the morphology and length scales of upflow and downflow structures and, through retardation of sinking slabs, can cause an avalanche phenomenon involving rapid flushing of cold upper mantle material down to the base of the lower mantle. The phase change significantly heats plumes that rise from the lower mantle and penetrate into the upper mantle. The exothermic phase change from olivine to spinel at a depth of 400 km in the mantle mitigates the effects of the dynamically and thermally dominant endothermic phase transition.  相似文献   

2.
The mantle convection model with phase transitions, non-Newtonian viscosity, and internal heat sources is calculated for two-dimensional (2D) Cartesian geometry. The temperature dependence of viscosity is described by the Arrhenius law with a viscosity step of 50 at the boundary between the upper and lower mantle. The viscosity in the model ranges within 4.5 orders of magnitude. The use of the non-Newtonian rheology enabled us to model the processes of softening in the zone of bending and subduction of the oceanic plates. The yield stress in the model is assumed to be 50 MPa. Based on the obtained model, the structure of the mantle flows and the spatial fields of the stresses σxz and σxx in the Earth’s mantle are studied. The model demonstrates a stepwise migration of the subduction zones and reveals the sharp changes in the stress fields depending on the stage of the slab detachment. In contrast to the previous model (Bobrov and Baranov, 2014), the self-consistent appearance of the rigid moving lithospheric plates on the surface is observed. Here, the intense flows in the upper mantle cause the drift and bending of the top segments of the slabs and the displacement of the plumes. It is established that when the upwelling plume intersects the boundary between the lower and upper mantle, it assumes a characteristic two-level structure: in the upper mantle, the ascending jet of the mantle material gets thinner, whereas its velocity increases. This effect is caused by the jump in the viscosity at the boundary and is enhanced by the effect of the endothermic phase boundary which impedes the penetration of the plume material from the lower mantle to the upper mantle. The values and distribution of the shear stresses σxz and superlithostatic horizontal stresses σxx are calculated. In the model area of the subducting slabs the stresses are 60–80 MPa, which is by about an order of magnitude higher than in the other mantle regions. The character of the stress fields in the transition region of the phase boundaries and viscosity step by the plumes and slabs is analyzed. It is established that the viscosity step and endothermic phase boundary at a depth of 660 km induce heterogeneities in the stress fields at the upper/lower mantle boundary. With the assumed model parameters, the exothermic phase transition at 410 km barely affects the stress fields. The slab regions manifest themselves in the stress fields much stronger than the plume regions. This numerically demonstrates that it is the slabs, not the plumes that are the main drivers of the convection. The plumes partly drive the convection and are partly passively involved into the convection stirred by the sinking slabs.  相似文献   

3.
The new post-perovskite phase near the core-mantle boundary has important ramifications on lower mantle dynamics. We have investigated the dynamical impact arising from the interaction of temperature- and depth-dependent viscosity with radiative thermal conductivity, up to a lateral viscosity contrast of 104, on both the ascending and descending flows in the presence of both the endothermic phase change at 670 km depth and an exothermic post-perovskite transition at 2650 km depth. The phase boundaries are approximated as localized zones. We have employed a two-dimensional Cartesian model, using a box with an aspect-ratio of 10, within the framework of the extended Boussinesq approximation. Our results for temperature- and depth-dependent viscosity corroborate the previous results for depth-dependent viscosity in that a sufficiently strong radiative thermal conductivity plays an important role for sustaining superplumes in the lower mantle, once the post-perovskite phase change is brought into play. This aspect is especially emphasized, when the radiative thermal conductivity is restricted only to the post-perovskite phase. These results revealed a greater degree of asymmetry is produced in the vertical flow structures of the mantle by the phase transitions. Mass and heat transfer between the upper and lower mantle will deviate substantially from the traditional whole-mantle convection model. Streamlines revealed that an overall complete communication between the top and lower mantle is difficult to be achieved.  相似文献   

4.
An endothermic phase transition at a depth of 660 km in the mantle partially slows down mantle flows. Many models considering the possibility of temporary layering of flows with separation of convection in the upper and lower mantle have been constructed over the past two decades. The slowing-down effect of the endothermic phase transition is very sensitive to the slope of the phase-equilibrium curve. However, laboratory measurements contain considerable uncertainties admitting both a partial convection layering and only an insignificant slowing down of a part of downgoing mantle flows. In this work, we present results of calculations of mantle flows within a wide range of phase-transition parameter values, determine ranges of one-and two-layer convection, and derive dependences of the amplitude and period of oscillations on phase-transition parameters.  相似文献   

5.
In the PREM seismic model, the boundary between the upper and the lower mantle is accepted at a depth of 670 km, where seismic velocities and density increase. However, until recently there was an obvious inconsistency in this model. The density increases abruptly, and the velocities, in addition to the jumps, have also the subsequent zones of increased gradient. The discontinuity between the upper and the lower mantle is related to the transition of olivine from the ringwoodite phase into the mixture of perovskite and magnesiowustite. However, in the pyrolyte model, the transition zone of the upper mantle consists not wholly of olivine, but partly of olivine (60%) and partly of garnet (40%). The latest data of the garnet measurement at high pressures show that it also experiences phase transition, being converted into magnesium perovskite with the impurity of calcium perovskite. In contrast to the sharp transition in olivine (within a depth interval of only 5 km), the transition in garnet is spread over the interval of depths of 660–710 km. In the widely used PREM and AK135 models, this additional transition corresponds to the zone of the increased gradient in seismic velocities, while in the density distribution it is included in the sharp transition of ringwoodite. Thus, the mineralogy data indicate the need for correction of the PREM and AK135 seismic models: the density jump at a depth of 660 km should be reduced by approximately a factor of two, and a subjacent layer with the increased density gradient should be added at the depth interval of 660–710 km. The phase transition in olivine hampers the mantle flows, although in garnet it accelerates them. Therefore, with an allowance for the smaller jump in density, the decelerating effect of the subducting plates, caused by the phase transition in olivine, decreases, and, furthermore, the effect of their acceleration, caused by the phase transition in garnet, is added. The decrease in the density jump by almost a factor of two will lead to essential changes in the results of the majority of recent works addressing the assessment of the deceleration of convection at the upper/lower mantle discontinuity on the basis of the PREM model.  相似文献   

6.
Viscosity is a fundamental property of the mantle which determines the global geodynamical processes. According to the microscopic theory of defects and laboratory experiments, viscosity exponentially depends on temperature and pressure, with activation energy and activation volume being the parameters. The existing laboratory measurements are conducted with much higher strain rates than in the mantle and have significant uncertainty. The data on postglacial rebound only allow the depth distributions of viscosity to be reconstructed. Therefore, spatial distributions (along the depth and lateral) are as of now determined from the models of mantle convection which are calculated by the numerical solution of the convection equations, together with the viscosity dependences on pressure and temperature (PT-dependences). The PT-dependences of viscosity which are presently used in the numerical modeling of convection give a large scatter in the estimates for the lower mantle, which reaches several orders of magnitude. In this paper, it is shown that it is possible to achieve agreement between the calculated depth distributions of viscosity throughout the entire mantle and the postglacial rebound data. For this purpose, the values of the volume and energy of activation for the upper mantle can be taken from the laboratory experiments, and for the lower mantle, the activation volume should be reduced twice at the 660-km phase transition boundary. Next, the reduction in viscosity by an order of magnitude revealed at the depths below 2000 km by the postglacial rebound data can be accounted for by the presence of heavy hot material at the mantle bottom in the LLSVP zones. The models of viscosity spatial distribution throughout the entire mantle with the lithospheric plates are presented.  相似文献   

7.
—Recently a high-resolution tomographic model, the P1200, based on P-wave travel times was developed, which allowed for detailed imaging of the top 1200 km of the mantle. This model was used in diverse ways to study mantle viscosity structure and geodynamical processes. In the spatial domain there are lateral variations in the transition zone, suggesting interaction between the lower-mantle plumes and the region from 600 km to 1000 km. Some examples shown here include the continental region underneath Manchuria, Ukraine and South Africa, where horizontal structures lie above or below the 660 km discontinuity. The blockage of upwelling is observed under central Africa and the interaction between the upwelling and the transition zone under the slow Icelandic region appears to be complex. An expansion of the aspherical seismic velocities has been taken out to spherical harmonics of degree 60. For degrees exceeding around 10, the spectra at various depths decay with a power-law like dependence on the degree, with the logarithmic slopes in the asymptotic portion of the spectra containing values between 2 and 2.6. These spectral results may suggest the time-dependent nature of mantle convection. Details of the viscosity structure in the top 1200 km of the mantle have been inferred both from global and regional geoid data and from the high-resolution tomographic model. We have considered only the intermediate degrees (l = 12–25) in the nonlinear inversion with a genetic algorithm approach. Several families of acceptable viscosity profiles are found for both oceanic and global data. The families of solutions for the two data sets have different characteristics. Most of the solutions asociated with the global geoid data show the presence of asthenosphere below the lithosphere. In other families a low viscosity zone between 400 and 600 km depth is found to lie atop a viscosity jump. Other families evidence a viscosity decrease across the 660 km discontinuity. Solutions from oceanic geoid show basically two low viscosity zones one lying right below the lithosphere; the other right under 660-km depth. All of these results bespeak clearly the plausible existence of strong vertical viscosity stratification in the top 1000 km of the mantle. The presence of the second asthenosphere may have important dynamical ramifications on issues pertaining to layered mantle convection. Numerical modelling of mantle convection with two phase transitions and a realistic temperature- and pressure-dependent viscosity demonstrates that a low viscosity region under the endothermic phase transition can indeed be generated self-consistently in time-dependent situations involving a partially layered configuration in an axisymmetric spherical-shell model.  相似文献   

8.
We present the preliminary results of axisymmetric numerical simulations of thermal convection in the mantle with a phase transition boundary at 660 km depth and a viscosity interface at 1000 km depth. The results, obtained for Ra = 2 × 10 6 , are compared with the case when both the phase and the viscosity boundaries are located at the same depth of 660 km.  相似文献   

9.
Experimental study of the phase boundary for the disproportionation of the inverse spinel Mg2SnO4 into its isochemical mixed oxides indicates a slope dP/dT = 40 ± 10bars/°K. This positive slope is consistent with the large entropies of inverse (relative to normal) spinels predicted from high-temperature entropy-molar volume systematics. Thermodynamic data do not support the existence of a distinctly negative slope for the proposed disproportionation of Mg2SiO4 normal spinel. Evidence from X-ray and phase equilibria studies suggests the possibility that Si4+, Mg2+, and Fe2+ share the octahedral sites in silicate spinels under mantle conditions. The consequences of this partial inverse character are a positive slope for the postulated spinel-mixed oxide phase boundary near 650 km depth, removal of a widely accepted constraint on mantle-wide convection, and anomalous elasticity-density behaviour within the transition zone.  相似文献   

10.
Siberian traps are the result of huge basalt eruptions which took place about 250 Ma ago over a vast territory of Siberia. The genesis of Siberian traps is attributed to a mantle plume with a center in the region of Iceland or beneath the central Urals in terms of their present coordinates. The eruption mechanism is associated with delamination—replacement of the mantle lithosphere by the deep magma material. The receiver function analysis of the records from the Norilsk seismic station (NRIL) allows comparing these hypotheses with the factual data on the depth structure of the region of Siberian traps. The S-wave velocity section place the seismic lithosphere/asthenosphere boundary (LAB) at a depth of 155–190 km, commensurate with the data for the other cratons. The mantle lithosphere has a high S-wave velocity characteristic of cratons (4.6–4.8 km/s instead of the typical value 4.5 km/s). The seismic boundary, which is located at a depth around 410 km beneath the continents is depressed by ~10 km in the region of the NRIL station. The phase diagram of olivine/wadsleyite transformation accounts for this depression by a 50–100°С increase in temperature. At the depths of 350–400 km, the S-wave velocity drops due to partial melting. A new reduction in the S-wave velocities is observed at a depth of 460 km. The similar anomalies (deepening of the 410-km seismic boundary and low shear wave velocity at depths of 350–400 and 460–500 km, respectively) were previously revealed in the other regions of the Meso-Cenozoic volcanism. In the case of a differently directed drift of the Siberian lithosphere and underlying mantle at depths down to 500 km, these anomalies are barely accountable. In particular, if the mantle at a depth ranging from 200 to 500 km is fixed, the anomalies should be observed at the original locations where they emerged 250 Ma ago, i.e. thousands of km from the Siberian traps. Our seismic data suggest that despite the low viscosity of the asthenosphere, the mantle drift at depths ranging from 200 to 500 km is correlated with the drift of the Siberian lithospheric plate. Furthermore, the position of the mantle plume beneath the Urals is easier to reconcile with the seismic data than its position beneath Iceland because of the Siberian traps being less remote from the Urals.  相似文献   

11.
A new model is proposed for the structure of the Kaapvaal craton lithosphere. Based on chemical thermodynamics methods, profiles of the chemical composition, temperature, density, and S wave velocities are constructed for depths of 100–300 km. A solid-state zone of lower velocities is discovered on the S velocity profile in the depth interval 150–260 km. The temperature profiles are obtained from absolute values of P and S velocities, taking into account phase transformations, anharmonicity, and anelastic effects. The examination of the sensitivity of seismic models to the chemical composition showed that relatively small variations in the composition of South African xenoliths result in lateral temperature variations of ~200°C. Inversion of some seismic profiles (including IASP91) with a fixed bulk composition of garnet peridotites (the primitive mantle material) leads to a temperature inversion at depths of 200–250 km, which is physically meaningless. It is supposed that the temperature inversion can be removed by gradual fertilization of the mantle with depth. In this case, the craton lithosphere should be stratified in chemical composition. The depleted lithosphere composed by garnet peridotites exists to depths of 175–200 km. The lithospheric material at depths of 200–250 km is enriched in basaltoid components (FeO, Al2O3, and CaO) as compared with the material of garnet peridotites but is depleted in the same components as compared with the fertile substance of the underlying primitive mantle. The material composing the craton root at a depth of ~275 km does not differ in its physical and chemical characteristics from the composition of the normal mantle, and this allows one to estimate the thickness of the lithosphere at 275 km. The results of this work are compared with data of seismology, thermal investigations, and thermobarometry.  相似文献   

12.
This paper presents a study on the effects of phase transitions on the mantle convection of Venus in a three-dimensional(3D)spherical shell domain.Our model includes strong depth-and temperature-dependent viscosity and exothermic phase change from olivine to spinel as well as endothermic phase change from spinel to perovskite.From extensive numerical simulations of the effects of Rayleigh number(Ra),and the Clapeyron slopes and depths of phase changes,we found the following:(1)The endothermic phase change prevents mass flow through the interface.Increasing the absolute value of the Clapeyron slopes decreases radial mass flux and normalized radial mass flux at the endothermic phase boundary,and decreases the number of mantle plumes.In other words,mass flow through the phase boundary decreases.The inhibition influence of phase changes increases,as do convective wavelengths.(2)Increasing Ra also increases the convective wavelength and decreases the number of mantle plumes,but it has less influence on the mass exchange.As Ra increases,the convective vigor increases along with the radial mass flux and the mass flow through the phase boundary;however,the normalized mass flux through the phase boundary varies little with Ra,which is different from the conclusion that increasing Ra will greatly increase the inhibition of mass flow through the phase boundary based on two-dimensional(2D)modeling.(3)Increasing the depth of endothermic phase change will slightly decrease the number of mantle plumes,but has little effect on the mass flow through the phase boundary.Consistent with previous studies,our results show that the phase change from spinel to perovskite could inhibit the mass flow through the phase boundary,but they also show that the buildup of hot materials under the endothermic phase boundary in the 3D model could not be so large as to cause strong episodic overturns of mantle materials,which is quite different from previous 2D studies.Our results suggest that it is difficult for phase changes to cause significant magmatism on Venus;in other words,phase changes may not be the primary cause of catastrophic resurfacing on Venus.  相似文献   

13.
Geochemical data indicate that two major reservoirs 1–2 Ga in age are present in the mantle. The upper mantle, feeding mid-ocean ridges, is depleted in chemical elements carried away into the continental crust. The lower mantle, feeding hotspot plumes, is close in composition to primordial matter. The 660-km depth of an endothermic phase transition in olivine has been considered over the last two decades as a possible boundary between the reservoirs. In this period, many models of mantle convection were constructed that used values of the phase transition parameters, which led to temporal (up to 1 Gyr long) convection layerings and periodic avalanche-induced mantle intermixing events. However, laboratory measurements with new improved instrumentation give other values of the phase transition parameters that require a revision of the majority of the existence of large-scale avalanches in the Earth’s history becomes disputable. The paper is devoted to comprehensive study of the phase transition effect on the structure of mantle flows with different values of phase transition parameters and Rayleigh numbers; in particular, the mass transfer through the phase boundary is calculated for different regimes of steady-state convection.  相似文献   

14.
We document strong seismic scattering from around the top of the mantle Transition Zone in all available high resolution explosion seismic profiles from Siberia and North America. This seismic reflectivity from around the 410 km discontinuity indicates the presence of pronounced heterogeneity in the depth interval between 320 and 450 km in the Earth’s mantle. We model the seismic observations by heterogeneity in the form of random seismic scatterers with typical scale lengths of kilometre size (10-40 km by 2-10 km) in a 100-140 km thick depth interval. The observed heterogeneity may be explained by changes in the depths to the α-β-γ spinel transformations caused by an unexpectedly high iron content at the top of the mantle Transition Zone. The phase transformation of pyroxenes into the garnet mineral majorite probably also contributes to the reflectivity, mainly below a depth of 400 km, whereas we find it unlikely that the presence of water or partial melt is the main cause of the observed strong seismic reflectivity. Subducted oceanic slabs that equilibrated at the top of the Transition Zone may also contribute to the observed reflectivity. If this is the main cause of the reflectivity, a substantial amount of young oceanic lithosphere has been subducted under Siberia and North America during their geologic evolution. Subducted slabs may have initiated metamorphic reactions in the original mantle rocks.  相似文献   

15.
P-wave arrival times of both regional and teleseismic earthquakes were inverted to obtain mantle structures of East Asia.No fast(slab) velocity anomalies was not find beneath the 660-km discontinuity through tomography besides a stagnant slab within the transition zone.Slow P-wave velocity anomalies are present at depths of 100-250 km below the active volcanic arc and East Asia.The western end of the flat stagnant slab is about 1 500 km west to active trench and may also be correlated with prominent surface topographic break in eastern China.We suggested that active mantle convection might be operating within this horizontally expanded "mantle wedge" above both the active subducting slabs and the stagnant flat slabs beneath much of the North China plain.Both the widespread Cenozoic volcanism and associated extensional basins in East Asia could be the manifestation of this vigorous upper mantle convection.Cold or thermal anomalies associated with the stagnant slabs above the 660-km discontinuity have not only caused a broad depression of the boundary due to its negative Clapeyron slope but also effectively shielded the asthenosphere and continental lithosphere above from any possible influence of mantle plumes in the lower mantle.  相似文献   

16.
A two dimensional velocity model of the upper mantle has been compiled from a long-range seismic profile crossing the West Siberian young plate and the old Siberian platform. It revealed considerable horizontal and vertical heterogeneity of the mantle. A sharp seismic boundary at a depth of 400 km outlines the high-velocity gradient transition zone, its base lying at a depth of 650 km. Several layers with different velocities, velocity gradients and wave attenuation are distinguished in the upper mantle. They likewise differ in their inner structure. For instance, the uppermost 50–70 km of the mantle are divided into blocks with velocities from 7.9–8.1 to 8.4–8.6 km s?1.Comparison of the travel-time curves for the Siberian long-range profile with those compiled from seismological data for Europe distinguished large-scale upper mantle inhomogeneities of the Eurasian continent and allowed for the correlation of tectonic features and geophysical fields. The velocity heterogeneity of the uppermost 50–100 km of the mantle correlates with the platform age and heat flow, i.e., the young plates of Western Europe and Western Siberia have slightly lower velocities and higher heat flows than the ancient East European and Siberian platforms. At greater depths (150–250 km) the upper mantle velocities increase from the ocean to the inner parts of the continent. The structure of the transition zone differs significantly beneath Western Europe and the other parts of Eurasia. The sharp boundary at a depth of 400 km, traced throughout the whole continent as the boundary reflecting intensive waves, transforms beneath Western Europe into a gradient zone. This transition zone feature correlates with positions of the North Atlantic-west Europe geoid and heat-flow anomalies.  相似文献   

17.
The method of detection of P-to-SV converted waves from distant earthquakes (Vinnik, 1977) was applied to sets of long-period records from a few seismograph stations in Europe and the west of North America. The results obtained suggest that the converted phases related to the major boundaries in the mantle can be reliably detected and the depths of conversion evaluated with an accuracy of a few kilometres. The depth of the olivine-spinel transition is close to 400 km and no difference between the estimates for the north of Europe and the west of North America is found. The depth of the boundary separating the upper and lower mantle is close to 640 km, which is 30 km less than in the recent Earth-reference models. Fine S velocity stratification of this transition changes laterally from a high-gradient layer 50 km thick, terminated at the bottom by a sharp discontinuity, to a gradient layer 100 km or more thick without the discontinuity. A striking anomaly of the mantle transition zone is found in the Rio Grande rift area where a well pronounced boundary is found at 510 km depth.  相似文献   

18.
The top of the olivine-spinel phase change in subducted oceanic lithosphere can be located by the travel times of seismic waves which have propagated through the slab. P-wave travel-time residuals from deep earthquakes in the Tonga island are observed at Australian seismic stations are grouped according to the depth of the earthquake. The change in mean residual with a change in earthquake depth is related to the velocity contrast between slab and normal mantle at that depth. The curve mean residual versus earthquake depth displays a region of markedly increased slope between earthquake depths of about 250 and 350 km. The most probable explanation of this observation is an elevation by 100 km of the olivine-spinel phase change within the relatively cooler slab. No evidence was found for vertical displacements within the slab of any deeper phase changes.A temperature contrast between slab and normal mantle of about 1,000°C at 250 km depth is implied. This finding confirms current thermal models for subducted lithosphere but is inconsistent with the global intraplate stress field unless only a few percent of the negative buoyancy force at subduction zones is transmitted to the surface plates.  相似文献   

19.
A two-dimensional numerical convection model in cartesian geometry is used to study the influence of trench migration on the ability of subducted slabs to penetrate an endothermic phase boundary at 660 km depth. The transient subduction history of an oceanic plate is modelled by imposing plate and trench motion at the surface. The viscosity depends on temperature and depth. A variety of styles of slab behaviour is found, depending predominantly on the trench velocity. When trench retreat is faster than 2–4 cm/a, the descending slab flattens above the phase boundary. At slower rates it penetrates straight into the lower mantle, although flattening in the transition zone may occur later, leading to a complex slab morphology. The slab can buckle, independent of whether it penetrates or not, especially when there is a localised increase in viscosity at the phase boundary. Flattened slabs are only temporarily arrested in the transition zone and sink ultimately into the lower mantle. The results offer a framework for understanding the variety in slab geometry revealed by seismic tomography.  相似文献   

20.
本文利用宽频流动台阵记录的远震波形资料和接收函数波动方程叠后偏移方法,获得了华北克拉通东北部边界及其邻近地区的地壳和地幔转换带的间断面结构图像.结果显示研究区域的地壳厚度存在显著的横向变化:以南北重力梯度带为界,西北部的兴蒙造山带地壳较厚(~40 km),东南部的燕山带、松辽盆地和辽东台隆地壳明显较薄(30~35 km).这有可能反映,研究区南北重力梯度带两侧地壳在中-新生代区域构造伸展过程中经历了不同程度的改造和减薄.地幔转换带成像结果显示,研究区410 km和660 km间断面结构存在横向差异.经度121°E-122°E之间,上地幔底部出现双重间断面,深度分别为660 km和690 km.经度122.5°E以东(北黄海地区),410 km间断面有5~20 km幅度的下沉,660 km间断面有5~15 km幅度的抬升;该地区地幔转换带厚度相对全球平均偏薄10~20 km,指示着该地区较热的上地幔底部温度环境.我们认为太平洋俯冲板块可能停滞在研究区119°E-122°E经度范围的地幔转换带中,但未延伸至118°E以西;而俯冲板块在124°E以东可能局部穿透了上地幔底部而进入下地幔,同时引起小尺度的地幔对流,导致北黄海地区下地幔物质的上涌.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号