首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pyroclastic deposits interpreted as subaqueous ash-flow tuff have been recognized within Archean to Recent marine and lacustrine sequences. Several authors proposed a high-temperature emplacement for some of these tuffs. However, the subaqueous welding of pyroclastic deposits remains controversial.The Visean marine volcaniclastic formations of southern Vosges (France) contain several layers of rhyolitic and rhyodacitic ash-flow tuff. These deposits include, from proximal to distal settings, breccia, lapilli and fine-ash tuff. The breccia and lapilli tuff are partly welded, as indicated by the presence of fiamme, fluidal and axiolitic structures. The lapilli tuff form idealized sections with a lower, coarse and welded unit and an upper, bedded and unwelded fine-ash tuff. Sedimentary structures suggest that the fine-ash tuff units were deposited by turbidity currents. Welded breccias, interbedded in a thick submarine volcanic complex, indicate the close proximity of the volcanic source. The lapilli and fine-ash tuff are interbedded in a thick marine sequence composed of alternating sandstones and shales. Presence of a marine stenohaline fauna and sedimentary structures attest to a marine depositional environment below storm-wave base.In northern Anatolia, thick massive sequences of rhyodacitic crystal tuff are interbedded with the Upper Cretaceous marine turbidites of the Mudurnu basin. Some of these tuffs are welded. As in southern Vosges, partial welding is attested by the presence of fiamme and fluidal structures. The latter are frequent in the fresh vitric matrix. These tuff units contain a high proportion of vitroclasis, and were emplaced by ash flows. Welded tuff units are associated with non-welded crystal tuff, and contain abundant bioclasts which indicate mixing with water during flowage. At the base, basaltic breccia beds are associated with micritic beds containing a marine fauna. The welded and non-welded tuff sequences are interbedded in an alternation of limestones and marls. These limestones are rich in pelagic microfossils.The evidence above strongly suggest that in both examples, tuff beds are partly welded and were emplaced at high temperature by subaqueous ash flows in a permanent marine environment. The sources of the pyroclastic material are unknown in both cases. We propose that the ash flows were produced during submarine fissure eruptions. Such eruptions could produce non-turbulent flows which were insulated by a steam carapace before deposition and welding. The welded ash-flow tuff deposits of southern Vosges and northern Anatolia give strong evidence for existence of subaqueous welding.  相似文献   

2.
A rhyolitic ash-flow tuff in a hydrothermally active area within the Yellowstone caldera was drilled in 1967, and cores were studied to determine the nature and distribution of primary and secondary mineral phases. The rocks have undergone a complex history of crystallization and hydrothermal alteration since their emplacement 600,000 years ago. During cooling from magmatic temperatures, the glassy groundmass underwent either devitrification to alkali feldspar + α-cristobalite ± tridymite or granophyric crystallization to alkali feldspar + quartz. Associated with the zones of granophyric crystallization are prismatic quartz crystals in cavities similar to those termed miarolitic in plutonic rocks. Vapor-phase alkali feldspar, tridymite, magnetite, and sporadic α-cristobalite were deposited in cavities and in void spaces of pumice fragments. Subsequently, some of the vapor-phase alkali feldspar crystals were replaced by microcrystalline quartz, and the vapor-phase minerals were frosted by a coating of saccharoidal quartz.Hydrothermal minerals occur primarily as linings and fillings of cavities and fractures and as altered mafic phenocrysts. Chalcedony is the dominant mineral related to the present hydrothermal regime and occurs as microcrystalline material mixed with various amounts of hematite and goethite. The chalcedony displays intricate layering and was apparently deposited as opal from silica-rich water. Hematite and goethite also replace both mafic phenocrysts and vapor-phase magnetite. Other conspicuous hydrothermal minerals include montmorillonite, pyrite, mordenite, calcite, and fluorite. Clinoptilolite, erionite, illite, kaolinite, and manganese oxides are sporadic. The hydrothermal minerals show little correlation with temperature, but bladed calcite is restricted to a zone of boiling in the tuff and clearly was deposited when CO2 was lost during boiling.Fractures and breccias filled with chalcedony are common throughout Y-5 and may have been produced by rapid disruption of rock caused by sudden decrease of fluid pressure in fractures, most likely a result of fracturing during resurgent doming in this part of the Yellowstone caldera. The chalcedony probably was deposited as opal or β-cristobalite from a pre-existing silica floc that moved rapidly into the fractures and breccias immediately after the sudden pressure drop.  相似文献   

3.
Hydrothermal alteration zones have been investigated by X-ray diffraction, mineralogical–petrographical techniques, and geochemical analysis. Examination of cores and cuttings from two drill sites, obtained from a depth of about 814–1020 m, show that the hydrothermal minerals occuring in the rock include: K-feldspar, albite, chlorite, alunite, kaolinite, smectite, illite, and opaque minerals.In the studied area, silicified, smectite, illite, alunite, and opal zones have been recognized. These alteration mineral assemblages indicate that there are geothermal fluids, which have temperatures of 150–220°C in the reservoir.The distribution of the hydrothermal minerals shows changes in the chemical composition of the hydrothermal fluid, which are probably due not only to interaction with host rock, but also to dilution of the Na–K–Cl-rich hydrothermal fluid of the deep reservoir by cold sea water at shallow levels. Geochemical analyses of the solid and liquid phases indicate that the hydrothermal fluids of the Tuzla geothermal system are in equilibrium with alteration products.The tectonic structure of the studied area is caused by NW–SE and NE–SW directional forces. The volcanic rocks where hydrothermal zones are observed in the studied area are of Lower–Middle Miocene age comprise latite, andesite, dacite, rhyolite-type lavas, tuff, and ignimbrites.  相似文献   

4.
Pore pressure changes in a geothermal reservoir, as a result of injection and/or production of water, result in changes of stress acting on the reservoir rock and, consequently, changes in the mechanical and transport properties of the rock. Bulk modulus and permeability were measured at different pressures and temperatures. An outcropping equivalent of Rotliegend reservoir rock in the North German Basin (Flechtinger sandstone) was used to perform hydrostatic tests and steady state fluid flow tests. Permeability measurements were conducted while cycling confining pressure; the dependence of permeability on stress was determined at a constant downstream pressure of 1 MPa. Also, temperature was increased stepwise from 30 to 140 °C and crack porosity was calculated at different temperatures. Although changes in the volumes of cracks are not significant, the cracks control fluid flow pathways and, consequently, the permeability of the rock. A new model was derived which relates microstructure of porosity, the stress–strain curve, and permeability. Porosity change was described by the first derivative of the stress–strain curve. Permeability evolution was ascribed to crack closure and was related to the second derivative of the stress–strain curve. The porosity and permeability of Flechtinger sandstone were reduced by increasing the effective pressure and decreased after each pressure cycle.  相似文献   

5.
 At Shiotani, SW Japan, rhyolitic welded tuff forms a steep-sided funnel-shaped body, confined by Paleogene granitic rocks to an elliptical area 1–1.5 km across. The Shiotani welded tuff is pervasively welded and foliated concordantly with the contact that dips inward at angles of 70–90°. In contrast, nearby contemporary volcaniclastic deposits are non-welded and gently inclined. Near the contact with the granite, the tuff is plastically deformed and shows lineations that plunge inward at angles of 40–65°. Lithic and crystal clasts in the rheomorphic outer part are rotated in a plane normal to the foliations and parallel to the lineations indicating downward flow of the welded tuff. The geometry and internal structures suggest that the Shiotani welded tuff was emplaced and welded in a funnel-shaped eruption conduit. Upon collapse of a plinian or phreatoplinian eruption column, the majority of the conduit-filling pyroclasts probably fell back en masse into the conduit. Heat and steam from underlying magma and diffusion of interstitial volatiles into the glass perhaps reduced the viscosity of juvenile pyroclasts and facilitated welding in the conduit, especially at deep levels. The hot welded pyroclasts then flowed down the conduit wall during welding compaction and retreat of the magma. These processes resulted in increased welding toward the contacts and welding foliations concordant with the steep wall. Emplacement of nearby correlative volcaniclastic mass-flow deposits in a shelf to upper bathyal environment suggests a possibility that, when active, the Shiotani conduit was under the sea. Welding compaction would occur even under the sea provided that the steam generated in the upper part of the conduit fill prevented water access. Received: 28 February 1996 / Accepted: 5 May 1997  相似文献   

6.
The strongly peralkaline Green Tuff, Pantelleria, is an example of a thin, densely welded air-fall tuff which mantles an area of at least 85 km2. Offshore the tuff is correlated with the Y-6 ash layer in the central Mediterranean Sea, and the total volume of the eruption is estimated at 7 km3 D.R.E. New petrological data suggests that the tuff was erupted from a zoned magma chamber containing a cooler, more fractionated upper zone relative to be bulk of the magma. Analysis of the distribution of accessory lithic fragments in terms of existing models of eruption dynamics indicates emplacement by a plinian-type eruption. It is shown that, due to the low viscosity of pantelleritic ejecta, dense welding can occur at moderate tephra accumulation rates and a rate of the order of 1 cm/minute is suggested for the Green Tuff; this yields an estimate for the eruption duration of rather less than one day. It is predicted that welded tuff should be formed during large plinian eruptions of pantelleritic magma, and therefore that welded airfall tuffs should be common in areas of peralkaline volcanism.  相似文献   

7.
During geothermal power production using a borehole doublet consisting of a production and injection well, the reservoir conditions such as permeability k, porosity φ and Skempton coefficient B at the geothermal research site Gross Schoenebeck/Germany will change. Besides a temperature decrease at the injection well and a change of the chemical equilibrium, also the pore pressure p p will vary in a range of approximately 44 MPa ± 10 MPa in our reservoir at ?3850 to ?4258 m depth. This leads to a poroelastic response of the reservoir rocks depending on effective pressure p eff (difference between mean stress and pore pressure), resulting in a change in permeability k, porosity φ and the poroelastic parameter Skempton coefficient B. Hence, we investigated the effective pressure dependency of Flechtinger sandstone, an outcropping equivalent of the reservoir rock via laboratory experiments. The permeability decreased by 21% at an effective pressure range from 3 to 30 MPa, the porosity decreased by 11% (p eff = 6 to 65 MPa) and the Skempton coefficient decreased by 24% (p eff = 4 to 25 MPa). We will show which mechanisms lead to the change of the mentioned hydraulic and poroelastic parameters and the influence of these changes on the productivity of the reservoir. The most significant changes occur at low effective pressures until 15 to 20 MPa. For our in situ reservoir conditions p eff = 43 MPa a change of 10 MPa effective pressure will result in a change in matrix permeability of less than 4% and in matrix porosity of less than 2%. Besides natural fracture systems, fault zones and induced hydraulic fractures, the rock matrix its only one part of geothermal systems. All components can be influenced by pressure, temperature and chemical reactions. Therefore, the determined small poroelastic response of rock matrix does not significantly influence the sustainability of the geothermal reservoir.  相似文献   

8.
Well defined, laterally continuous welded tuff beds from <1 cm to 2 m thick are more common than has previously been recognized. Examples ranging in composition from rhyolitic to basaltic are described from Ordovician volcanic areas in Britain and Norway, and from the Miocene of the Canary Islands. Bedded welded tuffs are most common in areas of alkaline and peralkaline acidic pyroclastics. They generally occur within successions of massive, welded ash-flow tuff, or within non-welded air-fall tuff successions. Sequences consisting entirely of bedded welded tuff range from <1 m up to 75 m thick. Bedded welded tuffs are thought to originate in three ways. Poorly sorted, thick-bedded welded tuffs are interpreted as the deposits of pyroclastic flows, in which case the beds represent either individual flows units or the layers within flow units. Better sorted, thin-bedded welded tuffs are thought to be of air-fall origin. Thirdly, welding may be produced by the effects of an external heat source on non-welded bedded tuffs.  相似文献   

9.
Abstract

This paper presents a method for the geologic assessment of the distribution, shape, and character of heterogeneity for reservoir studies. The goals of a supporting lithological study would ordinarily be (1) to subdivide the test reservoir into gross units each of which has a characteristic lithology significant to the performance of the reservoir, and (2) to describe the physical relationships of these gross units so that workable analogs of the reservoir can be constructed.

To effect these goals from a scrutiny of subsurface core or outcrop samples, a single, or a set of lithological features significant to permeability and porosity must be not only identified but be capable of rapid evaluation so that a significant number of samples can be analyzed. From correlation of lithological features and flow properties, certain reservoir lithotypes can be identified, each of which has a characteristic permeability and porosity. By subdividing representative core samples into these lithotypes and correlating these from well-to-well, the three-dimensional distribution of these lithotypes can guide the construction of reservoir models.

We have applied this method to core samples from a heterogeneous brine-saturated sandstone reservoir in central Oklahoma to provide an example of such a reservoir study. In this example, the reservoir was subdivided into lithotypes based on a cursory examination of 29 lithological features, five of which could be related to permeability and porosity.  相似文献   

10.
A large caldera cluster consisting of at least four calderas (Omine, Odai, Kumano-North and Kumano calderas) existed in the central–southern part of the Kii Peninsula approximately 14–15 Ma. On the other hand, thick Middle Miocene ash-flow tuffs, referred to as the Muro Ash-flow Tuff and the Sekibutsu Tuff Member, are distributed in the northern part of the Kii Peninsula. Although these tuffs are considered to have erupted from the caldera cluster in the central-southern Kii Peninsula, identifying the source caldera in the cluster has been controversial because of similarities in the petrological characteristics and identical radiometric ages of the volcaniclastic rocks of these calderas. We successfully discriminated the characteristics of the eruptive products of each caldera in the caldera cluster based on the apatite trace-element compositions of the pyroclastic dikes and ash-flow tuffs of the calderas. We also demonstrated that the source caldera of at least the lower main part of the Muro Ash-flow Tuff and the Sekibutsu Tuff Member was the Odai Caldera, which is located in the central Kii Peninsula. Our findings show possible correlations among the pyroclastic conduits and ash-flow tuffs of the caldera-fill and/or outflow deposits, even in cases where they have been densely welded and diagenetically altered. This method is useful for the study of deeply eroded ancient calderas.  相似文献   

11.
砂砾岩储层测井评价研究   总被引:1,自引:0,他引:1  
砂砾岩储层岩性复杂、非均质性强,储层间非渗透性隔层类型多,储层基质孔隙度有时很低,从而使测井资料准确划分有效储层有很大的难度;砂砾岩体储层母岩类型变化大,岩石骨架参数很难确定,电阻率测量受岩石骨架、粘土含量和孔隙结构影响严重,反映储层孔隙流体性质的信息弱,使储层流体性质难以判断,油、气、干层界限的电性特征极不明显.通过核磁共振和井壁微电阻扫描成像测井,可以直观观察到岩石成分和粒径的变化,通过T2谱分布直观显示核磁测量井段的孔径分布,计算出各种类型孔隙度和渗透率参数,为砂砾岩有效划分储层和测井评价提供了可靠的依据.  相似文献   

12.
Meteoric waters from cold springs and streams outside of the 1912 eruptive deposits filling the Valley of Ten Thousand Smokes (VTTS) and in the upper parts of the two major rivers draining the 1912 deposits have similar chemical trends. Thermal springs issue in the mid-valley area along a 300-m lateral section of ash-flow tuff, and range in temperature from 21 to 29.8°C in early summer and from 15 to 17°C in mid-summer. Concentrations of major and minor chemical constituents in the thermal waters are nearly identical regardless of temperature. Waters in the downvalley parts of the rivers draining the 1912 deposits are mainly mixtures of cold meteoric waters and thermal waters of which the mid-valley thermal spring waters are representative. The weathering reactions of cold waters with the 1912 deposits appear to have stabilized and add only subordinate amounts of chemical constituents to the rivers relative to those contributed by the thermal waters. Isotopic data indicate that the mid-valley thermal spring waters are meteoric, but data is inconclusive regarding the heat source. The thermal waters could be either from a shallow part of a hydrothermal system beneath the 1912 vent region or from an incompletely cooled, welded tuff lens deep in the 1912 ash-flow sheet of the upper River Lethe area.Bicarbonate-sulfate waters resulting from interaction of near-surface waters and the cooling 1953–1968 southwest Trident plug issue from thermal springs south of Katmai Pass and near Mageik Creek, although the Mageik Creek spring waters are from a well-established, more deeply circulating hydrothermal system. Katmai caldera lake waters are a result of acid gases from vigorous drowned fumaroles dissolving in lake waters composed of snowmelt and precipitation.  相似文献   

13.
Satoshi  Hirano  Yoshiaki  Araki  Koji  Kameo  Hiroshi  Kitazato  Hideki  Wada 《Island Arc》2006,15(3):313-327
Abstract   A drilling and coring investigation of the Sagara oil field, central Honshu, Japan, was conducted to contribute to the understanding of hydrocarbon migration processes in a forearc basin. Core samples were analyzed to determine lithology, physical properties (specifically gas permeability) and the characteristics of oil occurrence. Gas permeability values greater than approximately 10−11 m2 constitute the basic precondition for any lithology to serve as a potential fluid conduit or reservoir in the Sagara oil field. Cores recovered from the 200.6-m-deep borehole were primarily composed of alternating siltstone, sandstone and conglomerate, all of which are correlated to the late Miocene Sagara Group. Both sandstone and conglomerate can be classified into two types, carbonate-cemented and poorly to non-cemented, based on matrix material characteristics. Oil stains are generally absent in the former lithology and more common in the latter. Variations in physical properties with respect to gas permeability values are directly related to the presence and character of carbonate cement, with higher permeabilities common in poorly to non-cemented rocks. The relationships between lithology, oil-staining, cementation and permeability indicate that cementation preceded oil infiltration and that cementation processes exerted significant control on the evolution of the reservoir.  相似文献   

14.
Cement content of carbonate in tight sandstone near section is much higher than that of the normal sandstones far away from the fault of well Xia503,in the Huimin sag in Linnan sub-depression.In order to understand the origin and its impact on fault sealing,analyses of the whole-rock minerals,casting thin sections,cathodoluminescence,isotope and physical properties are conducted on cores from well Xia503.It is found that 13C varies from 0.1‰to 0.6‰with the average value of 0.42‰,18O varies from 13.5‰to 12.3‰with the average of 13.1‰,and C–O isotope plotting points are distributed in the low to moderate temperature area of the hydrothermal dolomite.According to the occupied relationship,cathodoluminescence,and C–O isotope feature,the carbonate cementation could be divided into four stages:calcites,dolomite,ankerite,and ferrocalcite.It is discovered that the carbonate cementation is negatively related to reservoir physical property,with the porosity of 4.8%,permeability of 0.37 mD,and displacement pressure of 1.97 MPa in the tight sandstone,which have increased by almost one order of magnitude compared to the porosity of 14.3%,permeability of 3.73 mD,and displacement pressure of 0.27 MPa in the normal sandstone,which is far away from the fault.Regardless of the lithology of the counterpart wall of the fault,only the displacement pressure difference caused by carbonate cementation between the tight sandstone and the normal sandstone could seal 41 m high oil column.  相似文献   

15.
Consideration of published anisotropy of magnetic susceptibility (AMS) studies on welded ignimbrites suggests that AMS fabrics are controlled by groundmass microlites distributed within the existing tuff fabric, the sum result of directional fabrics imposed by primary flow lineation, welding, and (if relevant) rheomorphism. AMS is a more sensitive indicator of fabric elements within welded tuffs than conventional methods, and usually yields primary flow azimuth estimates. Detailed study of a single densely welded tuff sample demonstrates that the overall AMS fabric is insensitive to the relative abundances of fiamme, matrix and lithics within individual drilled cores. AMS determinations on a welded-tuff dyke occurring in a choked vent in the Trans-Pecos Texas volcanic field reveals a consistent fabric with a prolate element imbricated with respect to one wall of the dyke, while total magnetic susceptibility and density exhibit axially symmetric variations across the dyke width. The dyke is interpreted to have formed as a result of agglutination of the erupting mixture on a portion of the conduit wall as it failed and slid into the conduit, followed by residual squeezing between the failed block and in situ wallrock. Irrespective of the precise mechanism, widespread occurrence of both welded-tuff dykes and point-welded, aggregate pumices in pyroclastic deposits may imply that lining of conduit walls by agglutionation during explosive volcanic eruptions is a common process.  相似文献   

16.
Seventeen K/Ar dates were obtained on illitic clays within Valles caldera (1.13 Ma) to investigate the impact of hydrothermal alteration on Quaternary to Precambrian intracaldera and pre-caldera rocks in a large, long-lived hydrothermal system ( 1.0 Ma to present). Clay samples came from scientific core hole VC-2B (295°C at 1762 m) which was spudded in the Sulphur Springs thermal area and drilled into the boundary between the central resurgent dome and the western ring-fracture zone. Six illitic clays within Quaternary caldera-fill debris flow, tuffaceous sediment, and ash-flow tuff (48 to 587 m depth) yield ages from 0.35 to 1.09 Ma. Illite from Miocene pre-caldera sandstone (765 m) gives an age of 6.74 Ma. Two dates on illite from sandstones in Permian red beds (1008 and 1187 m) are 4.33 and 4.07 Ma, respectively. Surprisingly, three dates on illites from altered andesite pebbles within the red beds (1010–1014 m) are 0.95 to 1.06 Ma. Four illite dates on variably altered Precambrian quartz monzonite (1615–1762 m) range from 2.90 to 276 Ma.Post-Valles age illite is not correlated with alteration style (argillic to propylitic). Rather, post-Valles ages are uniformly obtained from illites in highly fractured, intensely altered, caldera-fill rocks and the Permian volcanic clasts. Generally, finer clay fractions from identical samples yield younger ages. Plots of 40Ar/36Ar versus 40K/36Ar and 40Ar* versus 40K for the illites in caldera-fill rocks lie close to a 1-Ma isochron. Most illite dates older than Valles caldera are difficult to interpret because they correspond to the ages of pre-Valles volcanic and hydrothermal episodes in the Jemez volcanic field ( 13 Ma). In addition, older dates may be caused by co-mingling of different illites during sample preparation, or by inherited argon or lost argon in illites from rocks with potentially complex hydrothermal histories. However, the range of ages obtained from illites in Permian sands and pebbles and from Precambrian crystalline rocks indicates that Valles hydrothermal activity is overwhelming illite produced by earlier geologic events.  相似文献   

17.
The Rotliegend of the North German basin is the target reservoir of an interdisciplinary investigation program to develop a technology for the generation of geothermal electricity from low-enthalpy reservoirs. An in situ downhole laboratory was established in the 4.3 km deep well Groβ Schönebeck with the purpose of developing appropriate stimulation methods to increase permeability of deep aquifers by enhancing or creating secondary porosity and flow paths. The goal is to learn how to enhance the inflow performance of a well from a variety of rock types in low permeable geothermal reservoirs. A change in effective stress due to fluid pressure was observed to be one of the key parameters influencing flow properties both downhole and in laboratory experiments on reservoir rocks. Fluid pressure variation was induced using proppant-gel-frac techniques as well as waterfrac techniques in several different new experiments in the borehole. A pressure step test indicates generation and extension of multiple fractures with closure pressures between 6 and 8.4 MPa above formation pressure. In a 24-hour production test 859 m3 water was produced from depth indicating an increase of productivity in comparison with former tests. Different depth sections and transmissibility values were observed in the borehole depending on fluid pressure. In addition, laboratory experiments were performed on core samples from the sandstone reservoir under uniaxial strain conditions, i.e., no lateral strain, constant axial load. The experiments on the borehole and the laboratory scale were realized on the same rock types under comparable stress conditions with similar pore pressure variations. Nevertheless, stress dependences of permeability are not easy to compare from scale to scale. Laboratory investigations reflect permeability variations due to microstructural heterogeneities and the behavior in the borehole is dominated by the generation of connections to large-scale structural patterns.  相似文献   

18.
the single ignimbrite cooling unit E (average thickness, 28 m; volume, ca. 30 km3) forms the uppermost member of the Miocene Upper Mogán Formation on Gran Canaria. It is strongly chemically zoned from basal, first-erupted comendite (peralkaline rhyolite) to late-erupted trachyte, and, apart from an upper trachytic zone, it is densely welded. E was emplaced onto a surface inclined ca. 2–5° from the source caldera. Detailed mapping of key sections, up to 300 m long, exposed in barranco walls, ca. 10 km from the caldera margin, reveals structures that are interpreted to have been produced by rheomorphic deformation of the ignimbrite along shear zones. The shear zones formed within the lower-viscosity comenditic tuff. Extensional structures include mega-boudinage and decapitated sequences and compression resulted in sequence repitition by overthrusting. Mechanisms traditionally thought to be important during rheomorphic deformation of welded tuffs (compaction, lateral creep, folding, vertical density-driven diapirism) cannot account for these features, which reflect lateral (post-compactional) rheomorphic movement locally in excess of 800 m. We suggest the following sequence of events: emplacement of the several flow units; compaction, with little lateral movement; rheomorphic deformation. During and after compaction, layers of secondary porosity developed within the comenditic tuff, possibly where upward escape of gas was prevented by overlying, relatively impermeable layers of densely compacted ignimbrite. These structurally weak layers of high porosity subsequently acted as shear zones.  相似文献   

19.
The Christmas Mountains caldera complex developed approximately 42 Ma ago over an elliptical (8×5 km) laccolithic dome that formed during emplacement of the caldera magma body. Rocks of the caldera complex consist of tuffs, lavas, and volcaniclastic deposits, divided into five sequences. Three of the sequences contain major ash-flow tuffs whose eruption led to collapse of four calderas, all 1–1.5 km in diameter, over the dome. The oldest caldera-related rocks are sparsely porphyritic, rhyolitic, air-fall and ash-flow tuffs that record formation and collapse of a Plinian-type eruption column. Eruption of these tuffs induced collapse of a wedge along the western margin of the dome. A second, more abundantly porphyritic tuff led to collapse of a second caldera that partly overlapped the first. The last major eruptions were abundantly porphyritic, peralkaline quartz-trachyte ash-flow tuffs that ponded within two calderas over the crest of the dome. The tuffs are interbedded with coarse breccias that resulted from failure of the caldera walls. The Christmas Mountains caldera complex and two similar structures in Trans-Pecos Texas constitute a newly recognized caldera type, here termed a laccocaldera. They differ from more conventional calderas by having developed over thin laccolithic magma chambers rather than more deep-seated bodies, by their extreme precaldera doming and by their small size. However, they are similar to other calderas in having initial Plinian-type air-fall eruption followed by column collapse and ash-flow generation, multiple cycles of eruption, contemporaneous eruption and collapse, apparent pistonlike subsidence of the calderas, and compositional zoning within the magma chamber. Laccocalderas could occur else-where, particularly in alkalic magma belts in areas of undeformed sedimentary rocks.  相似文献   

20.
Peralkaline silicic welded ash-flow tuffs differ characteristically in a number of properties from most calc-alkaline welded tuffs, due to their generally lower viscosity and higher temperatures. For example, individual cooling units are relatively small (less than 30 m thick, less than 5 km3 in volume); rocks can be thoroughly welded and crystallized to feldspar, quartz, and mafic minerals; several primary deformational structures (e.g. lineations, stretching of pumice, folds, ramp structures) indicate late stage laminar creep, resulting from the low yield strength of the nearly homogeneous glass of very low viscosity. Theoretical considerations also suggest that peralkaline melts are of low viscosity and high temperature, as inferred from,e.g., their chemical composition (high iron- and alkali-, and low alumina-concentrations). The low viscosity may also be due to trapping of volatiles. Absence or paucity of OH-bearing phenocryst phases, paucity of pyroclastic rocks, other than ash flow tuffs, formed from highly explosive eruptions, and apparently high crystallization temperatures, indicate that peralkaline silicic magmas are comparatively dry. The common occurrence of peralkaline ash-flow tuffs may be due to an increased water content of the magmas, resulting also in amphibole phenocrysts in some welded tuffs, or to specific volcanotectonic conditions. Ash flows of peralkaline composition move as particularly dense particulate flows. This type of flowage and the very rapid welding of the low viscosity glass lead to a high degree of homogenization of the fine glass shards. This in turn inhibits complete degassing of the collapsing ash flow. Semiclosed systems result where gas overpressures can develop and where volatiles play an important role by fluxing crystallization and transporting dissolved matter. Several types of vesicles can form under these conditions: (a) Spherical vesicles within collapsed ash and pumice particles formed after deposition of the ash flow. (b) Round or irregular vesicles transsecting pyroclastic particles, vesicle sheets, and large cavities, several m in diameter, may form in a largely homogenized ash-flow tuff beneath tightly welded layers. (c) Lensoid cavities formed during granophyric crystallization of large pumice particles. Small ash particles of peralkaline composition may assume spherical shapes due to their low viscosity and in some cases, expansion of bubbles. They form during transport and are preserved under low load pressure in the top part of cooling units. Globule lavas and most froth flows are interpreted as welded ash-flow tuffs, some of their unusual features being due to their peralkaline composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号