首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The restricted environment of the Black Sea is particularly sensitive to climatic and oceanographic fluctuations, owing to its connection with the Mediterranean Sea via the narrow Bosphorus Strait. The exact mechanism and timing of the most recent connection between these water bodies is controversial with debate on the post-glacial history of the Black Sea being dependent on radiocarbon dating for numerical ages. Here we present new 23 accelerator mass spectrometer (AMS) radiocarbon ages on peat and bivalve molluscs, supported by the first amino acid racemization (AAR) dating of bivalve molluscs (n = 66) in the Black Sea. These data indicate infilling of the Black Sea during the early Holocene from an initial depth 107 m below sea-level, and 72 m below that of the Bosphorus Sill. These data combined with a review of previous radiocarbon ages has enabled a unique perspective on the post-glacial Black Sea. A sea-level curve based on conventional and AMS radiocarbon ages on peat and AMS-based ages on Dreissena sp. shells indicate the water-level in the earlier lake phase continued, until the early Holocene, to be lower than the Bosphorus Sill after the Younger Dryas ended. However, the absence of AMS-dated mollusc ages from the shelves of this basin older than the Younger Dryas is suggestive of sub-aerial exposure of the shelves, and comparatively lower water-levels when the Younger Dryas began. Thus post-glacial outflow from the Black Sea occurred through a lowered or open Bosphorus seaway. Basin-wide radiocarbon ages on peat indicate a prompt increase in water-level from that of the pre-existing and unconnected palaeo-lake during the earliest Holocene (9600–9200 cal a BP). Mass colonisation of the Black Sea by Mediterranean taxa did not occur until salinity had risen sufficiently, a process which took 1000 a or more from the initial transgressive event. This gradual change in salinity contrasts with the prompt transgression which would have taken ~400 a to occur.  相似文献   

2.
Younger Dryas事件与北黄海泥炭层的形成   总被引:1,自引:0,他引:1  
形成于海平面变化处于停滞阶段和湿润气候条件下的泥炭层是古环境变化信息的重要载体。对北黄海4个含泥炭层的沉积剖面进行研究后发现,其均集中在渤海海峡入口处,水深变化在50~54m。泥炭层的AMS14C年龄在10650~1010014 CaBP,与发生在11000~1000014 CaBP间的末次冰消气候回冷事件——Younger Dryas(YD)事件在年代上非常吻合,表明北黄海泥炭层的形成可能与YD事件的全球效应密切相关,可作为YD事件在北黄海陆架响应的一个重要证据。泥炭层在北黄海的集中出现说明,冰后期的海平面上升过程中在YD事件期间存在停滞阶段,这一时期海面已经达到渤海海峡外侧,并可能在此徘徊了近千年。此外,泥炭层的大量出现和孢粉记录表明YD事件发生期间约为10600~1020014 CaBP,此时北黄海可能处在寒冷而湿润的环境。这一发现与全球范围内大部分YD事件的海陆记录存在明显差异,说明不同地区对YD事件的响应存在差异,不能简单地利用单一的干冷模式来分析YD事件在区域上的响应特征和过程。  相似文献   

3.
Core SA03-1 from the southern Adriatic Sea (EC-Eurostrataform project) provides new information about climate changes and palaeocirculation in the Adriatic region during the last deglaciation. The results of an integrated study based on pollen and foraminifera records of the part of the core spanning the late Pleistocene–early Holocene transition (including the late Younger Dryas, the Preboreal and the beginning of the Boreal) are presented. The major vegetation changes and the short-term oscillations occurred during the early Holocene warming in the southern Adriatic basin on the basis of a high-resolution pollen record are documented. Vegetation changes are correlated to short-term oscillations detected in the foraminifera record during the same interval. The two independent terrestrial and marine proxies indicate at least three short-term cold and dry oscillations occurring at 11.2–11, 10.8–10.4 and 10 cal ka BP, according to the age–depth model adopted in this study. Finally, adopting an event-stratigraphy approach, the comparison of these results with two western Mediterranean records of Preboreal short-term oscillations suggest the occurrence of synchronous bio-events in the Mediterranean basin.  相似文献   

4.
Isotopic and pollen results from a marl lake (White Lake) in the Mid-Atlantic region of USA indicate the coupling of climate and vegetation changes. Oxygen isotopes of calcite from this site show multiple oscillations at millennial and centennial scales, including the Younger Dryas with 3‰ negative shifts in δ18O at 12.4-11.4 ka (1 ka = 1000 cal yr BP) and three cold events of magnitude 1-2‰ shifts during the Bølling-Allerød warm period (BOA) at 14.3-12.4 ka. Pollen data from the same core show nearly synchronous, close correspondence with isotope-inferred climate shifts, indicating rapid forest response to deglacial climate oscillations in southern New England. A plateau-like BOA is similar to other records around the North Atlantic Ocean.  相似文献   

5.
Dawson  A.G.  Smith  D.E.  Dawson  S.  Brooks  C.L.  Foster  I.D.L.  Tooley  M.J. 《Geologie en Mijnbouw》1998,77(3-4):225-232
The geomorphic and sedimentological evidence for former sea-level changes in the exposed coastline of western Jura shows a clear coastal response to past changes in climate. In particular the rapid and high-magnitude climate changes associated with the onset and termination of the Younger Dryas appear to have been accompanied by major changes in coastal response. In western Jura, the temperate climate of the Lateglacial Interstadial was associated with beach-ridge deposition, with the earlier part of this period being associated with larger ridges than the latter. By contrast, the cold climate during the Younger Dryas appears to have been dominated by frost processes, sea-ice development and rapid rates of coastal erosion of bedrock. Cold-climate shore erosion of bedrock appears to have ended suddenly at the close of the Younger Dryas.  相似文献   

6.
High-temporal resolution analysis of pollen records from Lake Maliq (Albania) provides quantitative estimates of monthly temperature and precipitation changes since the last deglaciation. The climate parameters were estimated using the best modern analogue technique with an updated modern pollen-climate database composed of 2748 surface samples. The record shows two main cooling phases in the Maliq area (the Oldest and Younger Dryas) and a cooling event around 8200 years, which suggests that the forcing factors driving climate variations in the North Atlantic area since the Last Glacial period also extended their influence into the Mediterranean area. The Oldest and Younger Dryas are also characterized by an arid climate and a change in the seasonality of precipitation: the summer precipitation tends to be greater during the cooling phases than during the temperate periods. The Holocene climate is relatively stable and the values of each parameter reach their modern levels, except for an arid event between 8300 and 8100 cal BP.  相似文献   

7.
Variability of atmospheric 14C content often complicates radiocarbon-based chronologies; however, specific features such as periods of constant 14C age or steep changes in radiocarbon ages can be useful stratigraphic markers. The Younger Dryas event in the Northern Hemisphere is one of those periods, showing conspicuous 14C wiggles. Although the origin of those variations is not fully understood, we can make practical use of them and determine: (i) whether the Younger Dryas was global in extent; if so, (ii) were the initial cooling and the final warming synchronous worldwide; and (iii) what are the implications of these similarities/differences? Here we report high-resolution AMS 14C chronologies from the mid-latitudes of South America that pinpoint a cool episode between 11,400 and 10,20014C yr B.P. The onset of the final cool episode of the Late Glacial in the southern mid-latitudes, i.e., the Huelmo/Mascardi Cold Reversal, preceded the onset of the Younger Dryas cold event by ∼550 calendar years. Both events ended during a radiocarbon-age plateau at ∼10,20014C yr B.P. Thus, the Huelmo/Mascardi Cold Reversal encompasses the Younger Dryas, as well as a couple of short-term cool/warm oscillations that immediately preceded its onset in the North Atlantic region.  相似文献   

8.
Ground-water discharge (GWD) deposits form in arid environments as water tables rise and approach or breach the ground surface during periods of enhanced effective precipitation. Where preserved, these deposits contain information on the timing and elevation of past ground-water fluctuations. Here we report on the investigation of a series of GWD deposits that are exposed in discontinuous outcrops along a ~150-km stretch of the San Pedro Valley in southeastern Arizona, near the boundary of the Sonoran and Chihuahuan Deserts. Chronologic, isotopic, geochemical, faunal assemblage (ostracodes and gastropods), and sedimentological evidence collectively suggest that the elevation of the regional water table in the valley rose in response to a change in climate ~50 ka ago and remained relatively high for the next ~35 ka before falling during the Bølling–Allerød warm period, rebounding briefly during the Younger Dryas cold event, and falling again at the onset of the Holocene. The timing of these hydrologic changes coincides closely with variations in δ18O values of calcite from a nearby speleothem to the west and changes in lake levels at pluvial Lake Cochise to the east. Thus, in southeastern Arizona, the assumption that changes in climate are reflected in all aspects of the hydrologic cycle of a region simultaneously is validated. The timing of these changes also broadly coincides with variations in the GISP2 δ18O record, which supports the hypothesis that atmospheric teleconnections existed between the North Atlantic and the deserts of the American Southwest during the late Pleistocene.  相似文献   

9.
A 7.6-m core recovered from Lough Inchiquin, western Ireland provides evidence for rapid and long-term climate change from the Late Glacial period to the Mid-Holocene. We determined percentage of carbonate, total organic matter, mineralogy, and δ18Ocalcite values to provide the first high-resolution record of climate variability for this period in Ireland. Following deglaciation, rapid climate amelioration preceded large increases in GISP2 δ18Oice values by ∼2300 yr. The Oldest Dryas (15,100 to 14,500 cal yr B.P.) Late Glacial event is documented in this record as a decrease in δ18Ocalcite values. Brief warming at ∼12,700 cal yr B.P. was followed by characteristic Younger Dryas cold and dry climate conditions. A rapid increase in δ18Ocalcite values at ∼10,500 cal yr B.P. marked the onset of Boreal warming in western Ireland. The 8200 cal yr B.P. event is represented by a brief cooling in our record. Prior to general warming, a larger and previously undescribed climate anomaly between 7300 and 6700 cal yr B.P. is characterized by low δ18Ocalcite values with high-frequency variability.  相似文献   

10.
Pollen, chironomid, and ostracode records from a lake located at alpine treeline provide regional paleoclimate reconstructions from the southwest Yukon Territory, Canada. The pollen spectra indicate herbaceous tundra existed on the landscape from 13.6–11 ka followed by birch shrub tundra until 10 ka. Although Picea pollen dominated the assemblages after 10 ka, low pollen accumulation rates and Picea percentages indicate minimal treeline movement through the Holocene. Chironomid accumulation rates provide evidence of millennial-scale climate variability, and the chironomid community responded to rapid climate changes. Ostracodes were found in the late glacial and early Holocene, but disappeared due to chemical changes of the lake associated with changes in vegetation on the landscape. Inferred mean July air temperature, total annual precipitation, and water depth indicate a long-term cooling with increasing moisture from the late glacial through the Holocene. During the Younger Dryas (12.9–11.2 ka), cold and dry conditions prevailed. The early and mid-Holocene were warm and dry, with cool, wet conditions after 4 ka, and warm, dry conditions since the end of the Little Ice Age.  相似文献   

11.
Radiocarbon-dated sediment cores from the Champlain Valley (northeastern USA) contain stratigraphic and micropaleontologic evidence for multiple, high-magnitude, freshwater discharges from North American proglacial lakes to the North Atlantic. Of particular interest are two large, closely spaced outflows that entered the North Atlantic Ocean via the St. Lawrence estuary about 13,200–12,900 cal yr BP, near the beginning of the Younger Dryas cold event. We estimate from varve chronology, sedimentation rates and proglacial lake volumes that the duration of the first outflow was less than 1 yr and its discharge was approximately 0.1 Sv (1 Sverdrup = 106 m3 s−1). The second outflow lasted about a century with a sustained discharge sufficient to keep the Champlain Sea relatively fresh for its duration. According to climate models, both outflows may have had sufficient discharge, duration and timing to affect meridional ocean circulation and climate. In this report we compare the proglacial lake discharge record in the Champlain and St. Lawrence valleys to paleoclimate records from Greenland Ice cores and Cariaco Basin and discuss the two-step nature of the inception of the Younger Dryas.  相似文献   

12.
Eolian input fluctuations and paleoceanographic conditions in the western Mediterranean have been reconstructed by using a multi-proxy approach to infer climate variability for the last 20,000 yr. A sediment core from the East Alboran Sea basin provides high-resolution geochemical, mineralogical and grain size distribution records from the Last Glacial Maximum onward. The accurate chronology obtained, closely related with the North Greenland Ice core Project, has provided a detailed paleoclimate reconstruction at the centennial–millennial time scale. Mineral and chemical compositions as well as sediment grain size distribution have been used to establish both fluvial and eolian input variations, deep-water current intensity, and ventilation and productivity conditions at the time of deposition. During the cold period Greenland Stadial-2a, the analyzed proxies evidence significant climate oscillations. Redox proxies, showing marked Mn/Al and Fe/Al peaks, as well as granulometric parameters, support major changes in thermohaline circulation, with active circulation triggered by the Western Mediterranean Deep Water formation. Ba/Al ratios and the presence of authigenic barite point to high productivity during the Last Heinrich event. At this time, Zr/Al, Si/Al and Ti/Al ratios as well as quartz and palygorskite contents also corroborate dryer conditions in the Alboran borderlands, with a major reorganization of atmospheric circulation at the beginning of the deglaciation and during the Last Heinrich event. In contrast, a decreasing trend in the Zr/Al ratio and increasing Mg/Al, K/Al and illite + chlorite/kaolinite ratios would indicate enhanced river runoff and supporting lower eolian dust input and wetter periods during the Bölling–Alleröd. Short-term and abrupt climate oscillations such as the Intra-Alleröd Cold Period are likewise reflected by minor yet conspicuous changes in eolian proxies. During the Younger Dryas, we distinguish an initial cold and dry phase, with major westerlies intensity, thermohaline reactivation, and high productivity levels, and a second wetter phase characterized by sporadic rainfalls over poorly vegetated surrounding continental areas. Then, during the Holocene, alternating phases of major humidity and aridity were recorded by major fluctuations in detrital input. These are also correlated with recurrent forest cover declines reported from pollen records, with a noteworthy early decline in the African Humid Period. During the Holocene, an initial demise of the Last Organic-Rich Layer is also evidenced, tentatively associated with aspiration forces promoted by intense thermohaline circulation through the Gibraltar Strait.  相似文献   

13.
A total of 233 samples from the upper 16 m of the Toushe peat core retrieved in central Taiwan were measured for TOC and δ13CTOC values. From these samples, 17 selected samples with large δ13CTOC fluctuations were analyzed for n-alkane and δD of the C27 and C29 n-alkanes. Combining with the detailed high-resolution pollen and geochemical records, this study reveals more detailed climatic variations in terms of temperature and precipitation as well as abrupt climatic events during the past 30 Kyrs. Before the Last Glacial Maximum (LGM), climate was cold and damp with predominantly woodland vegetation in Toushe Basin, and turned to cold and dry after 25 Kyr BP. Climatic conditions there were the worst during LGM over the past 30 Kyrs, especially around 23 and 18 Kyr BP when the woodland was diminished and C4 grass was dominated. Although short durations of relatively wet conditions could be found at 17, 16 and 14 Kyr BP, cold and dry climates were prevailing during 29.5–28, 24–22, 17–15 and 13–11.5 Kyr BP, corresponding to Heinrich (H) Events 3, 2, 1, and Younger Dryas (YD), respectively. During the early Holocene, dry climate occurred at ∼11, ∼10, 9.7–9.2 and ∼8 Kyr BP; whereas wet condition appeared at 10.3, 9.8, 9–7.5 Kyr BP. In the middle Holocene, climate kept warm and moderate wet in the first half period, but many dry events existed in the second half following a cold and dry event at 6 Kyr BP. After a sharply warm peak at 5.2 Kyr BP, the climate in Toushe turned to cold quickly, and tree/shrub vegetation disappeared completely with the replacement of C3 grasses. In the late Holocene, climate was relatively wetter with predominant C3 grasses in the basin. Our climatic interpretations based on the peat records agree well with the Greenland ice core and Chinese speleothem records on millennium time scales during the last glacial period. Dry climates corresponding to weakening of the East Asian Summer Monsoon (EASM) during the Heinrich events and Younger Dryas in central Taiwan and eastern China demonstrate the climatic forcing on such long time scales in concert with regional monsoon climate. However, the discrepancies exist between our peat record and the Dongge/Hulu stalagmite record on: (1) the age of H2; (2) climate intensities of LGM and H1; and (3) wetness condition during Holocene. These observations call for further study on high-resolution climatic changes especially on moisture budget in the East Asian monsoonal region.  相似文献   

14.
利用14C测年及孢粉分析方法对位于若尔盖高原的红原泥炭剖面进行了系统研究,重建了若尔盖地区晚冰期以来古环境的演化历史,并识别在此期间发生的主要气候事件.结果表明:该区晚冰期的气候特点为冷偏干或凉偏干,冷暖波动频繁.其中,14.1~13.4、12.4~12.0和10.5~10.0 kaBP之间的冷阶段分别对应于Oldest Dryas、Older Dryas及Younger Dryas事件;发生于12.6~12.4和12.0~10.5kaBP左右的暖阶段分别对应于Bolling及Allerod暖期.Younger Dryas事件之后,气候总体以温湿为主要特征,8.9~8.7和6.1~5.8kaBP之间的明显降温为全新世期间的2次冷事件.孢粉记录所反映的若尔盖地区晚冰期以来的气候演化与全球气候变化具有较好的可比性.  相似文献   

15.
High-temporal resolution analyses of pollen, chironomid, and lake-level records from Lake Lautrey provide multi-proxy, quantitative estimates of climatic change during the Late-Glacial period in eastern France. Past temperature and moisture parameters were estimated using modern analogues and ‘plant functional types’ transfer-function methods for three pollen records obtained from different localities within the paleolake basin. The comparison of these methods shows that they provide generally similar climate signals, with the exception of the Bölling. Comparison of pollen- and chironomid-based temperature of the warmest month reconstructions generally agree, except during the Bölling. Major abrupt changes associated with the Oldest Dryas/Bölling, Alleröd/Younger Dryas, and the Younger Dryas/Preboreal transitions were quantified as well as other minor fluctuations related to the cold events (e.g., Preboreal oscillation). The temperature of the warmest month increased by ∼5°C at the start of Bölling, and by 1.5°-3°C at the onset of the Holocene, while it fell by ca. 3° to 4°C at the beginning of Younger Dryas. The comparative analysis of the results based on the three Lautrey cores have highlighted significant differences in the climate reconstructions related to the location of each core, underlining the caution that is needed when studying single cores not taken from deepest part of lake basins.  相似文献   

16.
黄俊华  胡超涌 《地球科学》2000,25(5):505-509
通过对湖北清江和尚洞HS - 2号石笋的沉积特征及碳、氧同位素特征分析, 利用U系法定年, 获取了湖北地区19.0~6.9ka的古气候、古环境信息(平均分辨率为17a, 局部分辨率达到7a).得出如下结论: (1) 19.0~16.6ka, C, O同位素偏轻, 气候冷湿; (2) 16.6~11.1ka, C, O同位素偏重, 气候干热; (3) 11.1~10.3ka干热时期中的突然回冷事件对应于新仙女木事件; (4) 10.3~6.9ka气候温和, 雨量较丰, 后期逐渐变冷.反映了历史时期湿冷、干热、温暖交替变化的气候趋势, 得出了千年级和百年级的一些气候变化趋势   相似文献   

17.
We propose that prior to the Younger Dryas period, the Arctic Ocean supported extremely thick multi-year fast ice overlain by superimposed ice and firn. We re-introduce the historical term paleocrystic ice to describe this. The ice was independent of continental (glacier) ice and formed a massive floating body trapped within the almost closed Arctic Basin, when sea-level was lower during the last glacial maximum. As sea-level rose and the Barents Sea Shelf became deglaciated, the volume of warm Atlantic water entering the Arctic Ocean increased, as did the corresponding egress, driving the paleocrystic ice towards Fram Strait. New evidence shows that Bering Strait was resubmerged around the same time, providing further dynamical forcing of the ice as the Transpolar Drift became established. Additional freshwater entered the Arctic Basin from Siberia and North America, from proglacial lakes and meltwater derived from the Laurentide Ice Sheet. Collectively, these forces drove large volumes of thick paleocrystic ice and relatively fresh water from the Arctic Ocean into the Greenland Sea, shutting down deepwater formation and creating conditions conducive for extensive sea-ice to form and persist as far south as 60°N. We propose that the forcing responsible for the Younger Dryas cold episode was thus the result of extremely thick sea-ice being driven from the Arctic Ocean, dampening or shutting off the thermohaline circulation, as sea-level rose and Atlantic and Pacific waters entered the Arctic Basin. This hypothesis focuses attention on the potential role of Arctic sea-ice in causing the Younger Dryas episode, but does not preclude other factors that may also have played a role.  相似文献   

18.
《Quaternary Science Reviews》2007,26(19-21):2586-2597
Recent paleoclimatic work on terrestrial and marine deposits from Asia and the Indian Ocean has indicated abrupt changes in the strength of the Asian monsoon during the last deglaciation. Comparison of marine paleoclimate records that track salinity changes from Asian rivers can help evaluate the coherence of the Indian Ocean monsoon (IOM) with the larger Asian monsoon. Here we present paired Mg/Ca and δ18O data on the planktic foraminifer Globigerinoides ruber (white) from Andaman Sea core RC12-344 that provide records of sea-surface temperature (SST) and δ18O of seawater (δ18Osw) over the past 25,000 years (ka) before present (BP). Age control is based on nine accelerator mass spectrometry (AMS) dates on mixed planktic foraminifera. Mg/Ca-SST data indicate that SST was ∼3 °C cooler during the last glacial maximum (LGM) than the late Holocene. Andaman Sea δ18Osw exhibited higher than present values during the Lateglacial interval ca 19–15 ka BP and briefly during the Younger Dryas ca 12 ka BP. Lower than present δ18Osw values during the BØlling/AllerØd ca 14.5–12.6 ka BP and during the early Holocene ca 10.8–5.5 ka BP are interpreted to indicate lower salinity, reflect some combination of decreased evaporation–precipitation (E–P) over the Andaman Sea and increased Irrawaddy River outflow. Our results are consistent with the suggestion that IOM intensity was stronger than present during the BØlling/AllerØd and early Holocene, and weaker during the late glaciation, Younger Dryas, and the late Holocene. These findings support the hypothesis that rapid climate change during the last deglaciation and Holocene included substantial hydrologic changes in the IOM system that were coherent with the larger Asian monsoon.  相似文献   

19.
The North Atlantic Younger Dryas climatic reversal did not cause a glacier advance on Mount Rainier. The glaciers on Mount Rainier seem to have advanced in response to regional or local shifts in climate. However, the Younger Dryas climatic reversal may have affected the Mount Rainier area, causing a cold, but dry, climate unfavorable to glacier advances. Glaciers in the vicinity of Mount Rainier advanced twice during late glacial/early Holocene time. Radiocarbon dates obtained from lake sediments adjacent to the corresponding moraines are concordant, indicating that the ages for the advances are closely limiting. The first advance occurred before 11,300 14C yr BP (13,200 cal yr BP). During the North Atlantic Younger Dryas event, between 11,000 and 10,000 14C yr BP (12,900 and 11,600 cal yr BP), glaciers retreated on Mount Rainier, probably due to a lack of available moisture, but conditions may have remained cold. The onset of warmer conditions on Mount Rainier occurred around 10,000 14C yr BP (11,600 cal yr BP). Organic sedimentation lasted for at least 700 years before glaciers readvanced between 9800 and 8950 14C yr BP (10,900 and 9950 cal yr BP).  相似文献   

20.
In this paper we present a detailed record of proxy-climatic events in the coastal belt of the eastern Mediterranean during the past 53,000 years. A sequence of alternating palaeosols, aeolianites, and dune sands, which have been dated by luminescence and by 14C, was studied by the magnetic susceptibility, particle-size distribution, clay mineralogy and soil micromorphology. Thirteen proxy-climatic events, demonstrating fluctuations of relatively dry and wet episodes, were recognized. The soil parent materials, as well as the different soil types, were rated in a semi-quantitative “dry” to “wet” scale. The palaeosol sequence is compared to a proxy-climatic record of oxygen and carbon isotopes in speleothems from a karstic cave in central Israel and to a record of lake levels of Lake Lisan and its successor, which is known as the Dead Sea. A genuine red Mediterranean Soil (Rhodoxeralfs), localy designated as “Hamra Soil” developed during the Last Glacial Stage, from 40 to 12.5 thousand calendar years BP. Climatic fluctuations that were recorded in speleothems and in changing lake levels were not preserved in this soil. During the cold and dry Younger Dryas, ca 12.5 to 11.5 calendar ka BP, a thick bed of loess material, deriving from atmospheric dust of the Sahara and Arabian deserts, covered the entire coastal belt. During this phase Lake Lisan was desiccated and turned into the modern, smaller Dead Sea. During the early Holocene, some 10–7.5 calendar ka BP, a second Red Hamra soil developed in warm and wet environments, associated with a relatively high stand of the Dead Sea level. A depletion of δ18O and a significant enrichment of δ13C in the speleothems were recorded during this episode. This event was in phase with the widespread distribution of freshwater lakes in the Sahara Desert and the accumulation of the S1 Sapropel in the eastern Mediterranean. Several small-scale dry and somewhat wet fluctuations of the Late Holocene, from 7.5 calendar ka BP to the present, were recorded in the coastal belt. Changes in human history, as reflected in archaeological records, are associated with proxy-climatic fluctuations. Periods of desertification and deterioration are coupled with dry episodes; periods of relative human prosperity are coupled with wetter episodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号