首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two sequentially formed groups of dikes in the gabbro–porphyrite complex have been distinguished, the ages of which are early Eifelian (early dikes) and early Givetian (late dikes). We have estimated the temperature impact of ore contact metamorphism, which is related to dikes of the Lower Carboniferous Magnitogorsk intrusive complex. A hidden zonality of microimpurities in the ore-forming minerals has been established for the first time by the LA-ICP-MS method. The ore formation age has been determined as early Eifelian–early Givetian.  相似文献   

2.
The Zhaima gold–sulfide deposit is located in the northwestern part of the West Kalba gold belt in eastern Kazakhstan. The mineralization is hosted in Lower Carboniferous volcanic and carbonate rocks formed under conditions of marginal-sea and island-arc volcanic activity. The paper considers the mineralogy and geochemistry of primary gold–sulfide ore and Au-bearing weathering crusts. Au-bearing arsenopyrite–pyrite mineralization formed during only one productive stage. Disseminated, stringer–disseminated, and massive rocks are enriched in Ti, Cr, V, Cu, and Ni, which correspond to the mafic profile of basement. The main ores minerals are represented by finely acicular arsenopyrite containing Au (up to few tens of ppm) and cubic and pentagonal dodecahedral pyrite with sporadic submicroscopic inclusions of native gold. The sulfur isotopic composition of sulfides is close to that of the meteoritic standard (δ34S =–0.2 to +0.2). The 40Ar/39Ar age of three sericite samples from ore veinlets corresponds to the Early Permian: 279 ± 3.3, 275.6 ± 2.9, and 272.2 ± 2.9 Ma. The mantle source of sulfur, ore geochemistry, and spatial compatibility of mineralization with basic dikes allow us to speak about the existence of deep fluid–magmatic systems apparently conjugate with the Tarim plume.  相似文献   

3.
Experimentally derived phase relations of arsenide in sulfide melt are presented to quantify the fractionation paths of As-bearing sulfide melts. When a natural sulfide melt reaches arsenide saturation, a separate Ni–PGE-rich arsenide melt exsolves. The arsenic saturation concentration in an Fe–Ni–Cu sulfide melt is between 0.5 and 1.5 wt%. The affinities of the chalcophile metals for an immiscible arsenide melt follow the order Pt > Pd > Ni ? Fe ≈ Cu. In natural systems, arsenide exsolution will be triggered by the activity of the nickel arsenide components dissolved in sulfide melt, Ni being the most common base metal with strong affinity to the Asn? anionic species. Arsenic may have a major effect on the fractionation paths of sulfide melts even if no separate arsenide phase forms. Arsenic, and probably many other chalcogens and metalloids in magmatic melts, may undergo associations with Pt and Pd well before discrete PGE minerals become stable phases.  相似文献   

4.
The Garson Ni–Cu–platinum group element deposit is a deformed, overturned, low Ni tenor contact-type deposit along the contact between the Sudbury Igneous Complex (SIC) and stratigraphically underlying rocks of the Huronian Supergroup in the South Range of the 1.85-Ga Sudbury structure. The ore bodies are coincident with steeply south-dipping, north-over-south D1 shear zones, which imbricated the SIC, its ore zones, and underlying Huronian rocks during mid-amphibolite facies metamorphism. The shear zones were reactivated as south-over-north, reverse shear zones during D2 at mid-greenschist facies metamorphism. Syn-D2 metamorphic titanite yields an age of 1,849?±?6 Ma, suggesting that D1 and D2 occurred immediately after crystallization of the SIC during the Penokean Orogeny. The ore bodies plunge steeply to the south parallel to colinear L1 and L2 mineral lineations, indicating that the geometry of the ore bodies are strongly controlled by D1 and D2. Sulfide mineralization consists of breccia ores, with minor disseminated sulfides hosted in norite, and syn-D2 quartz–calcite–sulfide veins. Mobilization by ductile plastic flow was the dominant mechanism of sulfide/metal mobilization during D1 and D2, with additional minor hydrothermal mobilization of Cu, Fe, and Ni by hydrothermal fluids during D2. Metamorphic pentlandite overgrows a S1 ferrotschermakite foliation in D1 deformed ore zones. Pentlandite was exsolved from recrystallized polygonal pyrrhotite grains after cessation of D1, which resulted in randomly distributed large pentlandite grains and randomly oriented pentlandite loops along the grain boundaries of polygonal pyrrhotite within the breccia ore. It also overgrows a S2 chlorite foliation in D2 shear zones. Pyrrhotite recrystallized and was flattened during D2 deformation of breccia ore along narrow shear zones. Exsolution of pentlandite loops along the grain boundaries of these flattened grains produced a pyrrhotite–pentlandite layering that is not observed in D1 deformed ore zones. The overprinting of the two foliations by pentlandite and exsolution of pentlandite along the grain boundaries of flattened pyrrhotite grains suggest that the Garson ores reverted to a metamorphic monosulfide solid solution at temperatures ranging between 550 and 600 °C during D1 and continued to deform as a monosulfide solid solution during D2.  相似文献   

5.
The Rietfontein platinum group element (PGE)–Cu–Ni sulfide deposit of the Eastern Limb of the Bushveld Complex hosts disseminated contact-style mineralization that is similar to other economic magmatic sulfide deposits in marginal settings within the complex. The mineralization at Rietfontein consists of disseminated PGE-bearing base metal sulfides that are preferentially located at the contact between a distinct package of marginal norites overlain by a thick heterogeneous unit dominated by gabbronorites with lesser norites and ultramafic rocks. Down-hole composite data and metal scatterplots indicate that the PGE correlate well with Ni, Cu and S and that only minor metal remobilization has taken place within the basal norite sequence. Plots of (Nb/Th)PM vs. (Th/Yb)PM indicate that the melts that formed the Rietfontein intrusive sequence were strongly crustally contaminated prior to emplacement at Rietfontein, whereas inverse relationships between PGE tenors and S/Se ratios indicate that these magmas assimilated crustal S, causing S-saturation and the formation of immiscible sulfides under high R-factor conditions that generated high PGE tenor sulfides. Reverse zoning of cumulus minerals at Rietfontein suggests that fresh primitive melts were introduced to a partially fractionated staging chamber. The introduction of new magmas into the chamber caused overpressure and the forced evacuation of the contents of the chamber, leading to the emplacement of the existing magmas within the staging chamber at Rietfontein in two separate pulses. The first pulse of magma contained late-formed cumulus phases, including low Mg# orthopyroxene and plagioclase, was emplaced between footwall unreactive and S-poor Pretoria Group quartzites and a hangingwall sequence of Rooiberg Group felsites, and was rapidly chilled to form the basal norite sequence at Rietfontein. The second pulse of magma contained early formed cumulus phases, including olivine, chromite, and high Mg# orthopyroxene, and was emplaced above the chilled norite sequence as a crystal mush to form gabbronorites and ultramafic rocks. This second pulse of magma also contained PGE-bearing base metal sulfides that accumulated at the contact between this second batch of magma and the already chilled basal norite sequence. The formation of Platreef-type mineralization outside of the Northern Limb of the Bushveld Complex confirms there are a number of areas within the Bushveld Complex that are prospective for this style of mineralization.  相似文献   

6.
Bismuth mineralization, including native bismuth, tsumoite (Bi1.99–2.03Te2.00), and Pb-bearing tsumoite (Bi1.56–1.88Pb0.45–0.14)2.00–2.03Te2.00, was identified in the Au-enriched disseminated ore at the Tarn’er massive sulfide deposit formed under the effect of a large diorite intrusion. Native bismuth associated with hessite forms idiomorphic inclusions in chalcopyrite. The assemblage of Pb-bearing tsumoite, hessite, and altaite occurs as angular allotriomorphic-granular inclusions in silicates or at the contact between silicate and sulfide aggregates. Tsumoite in allotriomorphic-granular aggregates with galena, hessite, and sphalerite is devoid of lead. Gold (Au0.65Ag0.35) was identified along with bismuth tellurides. The temperature of contact methamorphism (500–800°C) was estimated from the stability of andalusite, sillimanite, and cordierite. The morphology of the bismuth telluride aggregates in silicates and graphic intergrowth of tsumoite with galena suggest possible crystallization from anatectic melt. The positive correlation between Bi, Te, and Au confirms their probable joint transportation in the melt.  相似文献   

7.
8.
The paper presents concentrations of the platinum-group and chalcophile elements in the base metal sulfides (BMS) from the Jinchuan Ni–Cu sulfide deposit determined by laser ablation-inductively coupled plasma-mass spectrometry. Mass balance calculations reveal that pentlandite hosts a large proportion of Co, Ni and Pd (> 65%), and that pentlandite and pyrrhotite accommodate significant proportions of Re, Os, Ru, Rh, and Ag (~ 35–90%), whereas chalcopyrite contains a small amount of Ag (~ 10%) but negligible platinum-group elements. Iridium and Pt are not concentrated in the BMS and mostly occur in As-rich platinum-group minerals. The enrichments of Co, Ni, Re, Os, Ru, and Rh in pentlandite and pyrrhotite, and Cu in chalcopyrite are consistent with the fractionation of sulfide liquid and exsolution of pentlandite and pyrrhotite from the mono-sulfide solid solution (MSS). The Ir-bearing minerals exsolved from the MSS, depleting pentlandite and pyrrhotite in Ir, whereas sperrylite exsolved from the residual sulfide liquid on cooling. Diffusion of Pd from residual sulfide liquid into pentlandite during its exsolution from the MSS and crystallization of Pt-bearing minerals in the residual sulfide liquid resulted in the enrichment of Pd in pentlandite and decoupling between Pd and Pt in the Jinchuan net-textured and massive ores.  相似文献   

9.
For the first time, extremely high Se and In contents were determined for the pinches of massive sulfide orebodies that are composed of small-clastic layered sulfide sediments transformed during submarine supergenesis. Se (clausthalite and naumannite) and In (roquesite) minerals were found. Hydrothermal chalcopyrite, a significant amount of which is present in the clasts of paleohydrothermal black smoker chimneys, was the source of Se. Most of the amount of In was contributed during dissolution of clasts of hydrothermal sphalerite, which is unstable in the submarine oxidation zone in the presence of oxidized pyrite.  相似文献   

10.
The mineralogy of the Istala deposit, Gümüşhane, northeastern Turkey, was studied in detail, and a geochemical investigation was carried out using electron probe micro-analysis (EPMA). Sphalerite, galena, chalcopyrite and pyrite are the major sulfide minerals found in the Istala deposit, with minor amounts of bornite, idaite, tetrahedrite–tennantite, anilite, yarrowite, mckinstryite, covellite and chalcocite. In addition to these, barite and a small quantity of quartz occur as gangue minerals. Based on the textural relations and mineral assemblages, five different stages of crystallization have been recognized. Mineral paragenesis of the first four stages has been found to be similar, whereas clear enrichment has been observed in the modal abundance of the copper sulfide mineral assemblage at the fifth-stage ore formation. Whole-rock geochemical analyses of the Istala ore show an enrichment of Ag content up to 3328 ppm. Optical observations and EPMA study indicated that abundant silver mineralization was found in the Istala ore, especially during the later-stage ore deposition. Repetition to the presence of native silver in the samples, a significant amount of silver was incorporated in bornite, idaite, tetrahedrite–tennantite, anilite, yarrowite, mckinstryite, covellite and chalcocite, whereas a trace amount of silver has been detected in sphalerite, galena, chalcopyrite and pyrite. The homogenization temperatures (Th) of the primary fluid inclusions were measured between 98 and 284 °C, with frequency peaks around 140 °C, 190 °C and 240 °C. All data obtained support the theory that later stage copper-rich sulfides, formed under the low temperature conditions, are responsible for the large amounts of silver content in the Istala mine.  相似文献   

11.
The Suwałki anorthosite massif, located in extreme northeast Poland beneath more than a kilometer of Phanerozoic cover, hosts major Fe-Ti-V deposits. These deposits, discovered in 1962, are contained in Fe and Ti oxide minerals that coexist with subordinate quantities of Fe, Cu, Ni, and Co sulfides in massif-style anorthosites, norites, and gabbronorites. Accessibility and other considerations preclude development of this natural resource in the present economic climate. Detailed work by Polish geologists during the last 35 years provides a sound geologic framework for this Re-Os study of the age and origin of oxide and sulfide deposits associated with a major, but lesser known anorthosite massif. Rhenium and osmium abundances and Os isotopic compositions were measured for nine sulfides and four titanomagnetites from the Suwałki anorthosite massif. The titanomagnetites are over an order of magnitude lower in Re (0.4–1.5 ppb) and Os (0.036–0.144 ppb) concentrations than co-precipitated pyrrhotite, pyrite, and chalcopyrite that yield consistent concentrations for Re (30–55 ppb) and Os (1–6 ppb). Parallel lines connecting co-existing titanomagnetite and sulfides have slopes of ∼1 on Re versus common Os concentration plots, indicating that both Re and Os behave similarly during crystallization in their high preference for any sulfide phase over magnetite. Samples from three deposits within the anorthosite massif were analyzed. An age of 1559 ± 37 Ma (n=10) with an initial 187Os/188Os of 1.16 ± 0.06 for the Jezioro Okrągłe and Krzemianka deposits is essentially identical to an age of 1556 ± 94 Ma (n=3) for the Udryń deposit. Udryń, however, yielded a marginally lower initial 187Os/188Os of 0.87 ± 0.20. The high initial 187Os/188Os combined with the Proterozoic Re-Os age indicates that the source for Suwałki oxides-sulfides is older crust, and hypothetically, could involve Archean rocks. An average crustal value of 50 for 187Re/188Os yields a 2777 Ma age for Suwałki source rocks. Widespread Phanerozoic cover severely limits knowledge of basement rocks in Poland, however, and no Archean rocks are known in the immediate region. More likely, 187Re/188Os ratios may be higher than average continental crust, reflecting mafic crust in the source, and may move the source age for Suwałki anorthosite and mineral deposits toward younger values that easily include ∼2.0 Ga Proterozoic rocks. This more favorable case also accommodates Paleoproterozoic Nd model ages. Regardless of Archean or Proterozoic source age, the high initial 187Os/188Os ratios derived from the Re-Os isochron indicate that the source for the oxide-sulfide mineral deposits is more likely the crust and not the mantle. Given that these deposits are clearly magmatic, the Re-Os results add a new dimension to the long-standing “origin of anorthosite” problem, implying a crustal source for the anorthosite as well. The 1559 Ma Suwałki age is compatible with a well-exposed east-west band of 1530-1660 Ma rapakivi granite-anorthosite magmatism to the immediate north, transecting western Russia, southern Finland, Estonia and Latvia, and central Sweden. In particular, the age and isotopic character of Suwałki are not unlike those of the well-studied Salmi rapakivi granite-anorthosite batholith in western Russia (Karelia). Received: 4 December 1998 / Accepted: 11 November 1999  相似文献   

12.
The 329-Mt Brunswick No. 12 volcanogenic massive sulfide deposit (total resource of 163 Mt at 10.4% Zn, 4.2% Pb, 0.34% Cu, and 115 g/t Ag) is hosted within a Middle Ordovician bimodal volcanic and sedimentary sequence. Massive sulfides are for the most part syngenetic, and the bulk of the sulfide ore occurs as a Zn–Pb-rich banded sulfide facies that forms an intimate relationship with a laterally extensive Algoma-type iron formation and defines the Brunswick Horizon. Zone refining of stratiform sulfides is considered to have resulted in the development of a large replacement-style Cu-rich basal sulfide facies, which is generally confined between the banded sulfide facies and an underlying stringer sulfide zone. Complex polyphase deformation and associated lower- to upper-greenschist facies regional metamorphism is responsible for the present geometry of the deposit. Textural modification has resulted in a general increase in grain size through the development of pyrite and arsenopyrite porphyroblasts, which tend to overprint primary mineral assemblages. Despite the heterogeneous ductile deformation, primary features have locally been preserved, such as fine-grained colloform pyrite and base and precious metal zonation within the Main Zone. Base metal and trace element abundances in massive sulfides from the Brunswick No. 12 deposit indicate two distinct geochemical associations. The basal sulfide facies, characterized by a proximal high-temperature hydrothermal signature (Cu–Co–Bi–Se), contains generally low Au contents averaging 0.39 ppm (n = 34). Conversely, Au is enriched in the banded sulfide facies, averaging 1.1 ppm Au (n = 21), and is associated with an exhalative suite of elements (Zn–Pb–As–Sb–Ag–Sn). Finely laminated sulfide lenses hosted by iron formation at the north end of the Main Zone are further enriched in Au, averaging 1.7 ppm (n = 41) and ranging up to 8.2 ppm. Laser ablation inductively coupled plasma-mass spectrometry (ICP-MS) analyses of pyrite (n = 97) from the north end of the Main Zone average 2.6 ppm Au and range from the detection limit (0.015 ppm) to 21 ppm. Overall, these analyses reveal a distinct Au–Sb–As–Ag–Hg–Mn association within pyrite grains. Gold is strongly enriched in large pseudo-primary masses of pyrite that exhibit relict banding and fine-grained cores; smaller euhedral pyrite porphyroblasts, and euhedral rims of metamorphic origin surrounding the pyrite masses, contain much less Au, Sb, Ag, As, and Sn. Arsenopyrite, occurring chiefly as late porphyroblasts, contains less Au, averaging 1.0 ppm and ranging from the detection limit (0.027 ppm) to 6.9 ppm. Depth profiles for single-spot laser ablation ICP-MS analyses of pyrite and arsenopyrite display uniform values of Au and an absence of discrete microscopic inclusions of Au-bearing minerals, which is consistent with chemically bonded Au in the sulfide structure. The pervasive correlation of Au with Sn in the Zn–Pb-rich banded sulfide facies suggests similar hydrothermal behavior during the waxing stages of deposition on the seafloor. Under high temperature (>350oC) and moderate- to low-pH conditions, Au and Sn in hydrothermal fluids would be transported as chlorocomplexes. An abrupt decrease in temperature and aH2S, accompanied by an increase in fO2 and pH during mixing with seawater, would lead to the simultaneous destabilization of both Au and Sn chlorocomplexes. The enrichment of Au in fine-grained laminated sulfides on the periphery of the deposit, accompanied by sporadic occurrences of barite and Fe-poor sphalerite, supports lower hydrothermal fluid temperatures analogous to white smoker activity on the flanks of a large volcanogenic massive sulfide system. In lower temperature (<350oC) and mildly acidic hydrothermal fluids, Au would be transported by thiocomplexes, which exhibit multifunctional (retrograde–prograde) solubility and a capacity to mobilize Au to the outer parts of the sulfide mound. The sluggish nature of this low-temperature venting together with larger variations in ambient fO2 could lead to a sharp enrichment of Au towards the stratigraphic hanging wall of massive sulfide deposits. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Re–Os dating of disseminated ore from the Kalatongke Cu–Ni sulfide mineral deposit, Xinjiang, Northwest (NW) China, yields an apparent isochron age of 433 ± 31 Ma with an apparent initial 187Os/188Os (433 Ma) ratio of 0.197 ± 0.027. This apparent age is older than not only the zircon U–Pb age of the host intrusion (287 ± 5 Ma, Han et al., 2004) but also the stratigraphic age of the intruded country rock. Thus, the regression line is a pseudo-isochron. However, previous Re–Os dating of massive ores of the same deposit yielded an age that is consistent, within analytical uncertainty, with the zircon U–Pb age (Zhang et al., 2008). This relationship is similar to that observed in the Jinchuan deposit, NW China. Therefore, we suggested that the same mechanism, post-segregation diffusion of Os (Yang et al., 2008), is applicable to the Kalatongke deposit.Re–Os isotopic studies of Kalatongke, Jinchuan and representative magmatic Cu–Ni sulfide deposits suggest that the massive ores of mafic–ultramafic-rock-associated Cu–Ni sulfide deposits would yield geologically meaningful Re–Os age, whereas a pseudo-isochron would be obtained for the disseminated ores. Therefore, to obtain a geologically meaningful Re–Os age, the type of the deposit, the type of the ore and the ore-forming process should be taken into account.  相似文献   

14.
We report new data on the stratigraphy, mineralogy and geochemistry of the rocks and ores of the Maslovsky Pt–Cu–Ni sulfide deposit which is thought to be the southwestern extension of the Noril’sk 1 intrusion. Variations in the Ta/Nb ratio of the gabbro-dolerites hosting the sulfide mineralization and the compositions of their pyroxene and olivine indicate that these rocks were produced by two discrete magmatic pulses, which gave rise to the Northern and Southern Maslovsky intrusions that together host the Maslovsky deposit. The Northern intrusion is located inside the Tungusska sandstones and basalt of the Ivakinsky Formation. The Southern intrusion cuts through all of the lower units of the Siberian Trap tuff-lavas, including the Lower Nadezhdinsky Formation; demonstrating that the ore-bearing intrusions of the Noril’sk Complex post-date that unit. Rocks in both intrusions have low TiO2 and elevated MgO contents (average mean TiO2 <1 and MgO?=?12?wt.%) that are more primitive than the lavas of the Upper Formations of the Siberian Traps which suggests that the ore-bearing intrusions result from a separate magmatic event. Unusually high concentrations of both HREE (Dy+Yb+Er+Lu) and Y (up to 1.2 and 2.1?ppm, respectively) occur in olivines (Fo79.5 and 0.25% NiO) from picritic and taxitic gabbro-dolerites with disseminated sulfide mineralization. Thus accumulation of HREE, Y and Ni in the melts is correlated with the mineral potential of the intrusions. The TiO2 concentration in pyroxene has a strong negative correlation with the Mg# of both host mineral and Mg# of host rock. Sulfides from the Northern Maslovsky intrusion are predominantly chalcopyrite–pyrrhotite–pentlandite with subordinate and minor amounts of cubanite, bornite and millerite and a diverse assemblage of rare precious metal minerals including native metals (Au, Ag and Pd), Sn–Pd–Pt–Bi–Pb compounds and Fe–Pt alloys. Sulfides from the Southern Maslovsky intrusion have δ 34S?=?5–6‰ up to 10.8‰ in two samples whereas the country rock basalt have δ 34S?=?3–4‰, implying there was no in situ assimilation of surrounding rocks by magmas.  相似文献   

15.
16.
The Kalatongke (also spelt as Karatungk) Ni–Cu–(platinum-group element, PGE) sulfide deposit, containing 33 Mt sulfide ore with a grade of 0.8 wt.% Ni and 1.3 wt.% Cu, is located in the Eastern Junggar terrane, Northern Xinjiang, NW China. The largest sulfide ore body, which occupies more than 50 vol.% of the intrusion Y1, is dominantly comprised of disseminated sulfide with a massive sulfide inner zone. Economic disseminated sulfides also occur at the base of the intrusions Y2 and Y3. The main host rock types are norite in the lower part and diorite in the upper part of each intrusion. Enrichment in large ion lithophile elements and depletion in heavy rare earth elements relative to mid-ocean ridge basalt indicate that the mafic intrusions were produced from magmas derived from a metasomatized garnet lherzolite mantle. The average grades of the disseminated ores are 0.6 wt.% Ni and 1.1 wt.% Cu, whereas those of the massive ores are 2 wt.% Ni and 8 wt.% Cu. The PGE contents of the disseminated ores (14–69 ppb Pt and 78–162 ppb Pd) are lower than those of the massive ores (120–505 ppb Pt and 30–827 ppb Pd). However, on the basis of 100% sulfide, PGE contents of the massive sulfides are lower than those of the disseminated sulfides. Very high Cu/Pd ratios (>4.5 × 104) indicate that the Kalatongke sulfides segregated from PGE-depleted magma produced by prior sulfide saturation and separation. A negative correlation between the Cu/Pd ratio and the Pd content in 100% sulfide indicates that the PGE content of the sulfide is controlled by both the PGE concentrations in the parental silicate magma and the ratio of the amount of silicate to sulfide magma. The negative correlations between Ir and Pd indicate that the massive sulfides experienced fractionation.  相似文献   

17.
The Ansil Cu–Au volcanogenic massive sulfide deposit is located within an Archean-age cauldron infill sequence that contains the well-known Noranda base metal mining district. The deposit is unusual in that 17% of the massive pyrrhotite–chalcopyrite orebody is replaced by semi-massive to massive magnetite. Temporally associated with the magnetite formation are several calc-silicate mineral assemblages within the massive sulfide lens and the underlying sulfide stockwork vein system. Coarse-grained andradite–hedenbergite and ferroactinolite–ilvaite alteration facies formed in the immediate footwall to the massive magnetite–sulfide lens, whereas an epidote–albite–pyrite-rich mineral assemblage overprints the margins of the chlorite-rich stockwork zone. The epidote-rich facies is in turn overprinted by a retrograde chlorite–magnetite–calcite mineral assemblage, and the andradite–hedenbergite is overprinted first by ferroactinolite–ilvaite, followed by semi-massive to massive magnetite. The footwall sulfide- and magnetite-rich alteration facies are truncated by a late phase of the Flavrian synvolcanic tonalite–trondhjemite complex. Early phases of this intrusive complex are affected to varying degrees by calc-silicate-rich mineral assemblages that are commonly confined to miarolitic cavities, pipe vesicles and veins. The vein trends parallel the orientation of synvolcanic faults that controlled volcanism and hydrothermal fluid migration in the overlying cauldron succession. The magnetite-rich calc-silicate alteration facies are compositionally similar to those of volcanic-hosted Ca–Fe-rich skarn systems typical of oceanic arc terranes. Tonalite–trondhjemite phases of the Flavrian complex intruded to within 400 m of the base of the earlier-formed Ansil deposit. The low-Al trondhjemites generated relatively oxidized, acidic, Ca–Fe-rich magmatic–hydrothermal fluids either through interaction with convecting seawater, or by assimilation of previously altered rocks. These fluids migrated upsection along synvolcanic faults that controlled the formation of the original volcanogenic massive sulfide deposit. This is one of the few documented examples of intense metasomatism of a VMS orebody by magmatic–hydrothermal fluids exsolved from a relatively primitive composite sub-seafloor intrusion. Received: 15 April 1999 / Accepted: 20 January 2000  相似文献   

18.
The Sargaz Cu–Zn massive sulfide deposit is situated in the southeastern part of Kerman Province, in the southern Sanandaj–Sirjan Zone of Iran. The stratigraphic footwall of the Sargaz deposit is Upper Triassic to Lower Jurassic (?) pillowed basalt, whereas the stratigraphic hanging wall is andesite. Mafic volcanic rocks are overlain by andesitic volcaniclastics and volcanic breccias and locally by heterogeneous debris flows. Rhyodacitic flows and volcaniclastics overlie the sequence of basaltic and andesitic rocks. Based on the bimodal nature of volcanism, the regional geologic setting and petrochemistry of the volcanic rocks, we suggest massive sulfide mineralization in the Sargaz formed in a nascent ensialic back-arc basin. The current reserves (after ancient mining) of the Sargaz deposit are 3 Mt at 1.34% Cu, 0.38% Zn, 0.08%Pb, 0.24 g/t Au, and 7 g/t Ag. The structurally dismembered massive sulfide lens is zoned from a pyrite-rich base, to a pyrite?±?chalcopyrite-rich central part, and a sphalerite–chalcopyrite-rich upper part, with a sphalerite-rich zone lateral to the upper part. The main sulfide mineral is pyrite, with lesser chalcopyrite and sphalerite. The feeder zone, comprised of a vein stockwork consists of quartz–sulfide–sericite pesudobreccia and, in the deepest part, chlorite–quartz–pyrite pesudobreccia. Footwall hydrothermal alteration extends at least 70–80 m below the massive sulfide lens and more than a hundred meters along strike from the massive sulfide lens. Jasper and Fe–Mn bearing chert horizons lateral to the sulfide deposit represent low-temperature hydrothermal precipitates of the evolving hydrothermal system. Based on mineral textures and paragenetic relationships, the growth history of the Sargaz deposit is complex and includes: (1) early precipitation of sulfides (protore) on the seafloor as precipitation of fine-grained anhedral pyrite, sphalerite, quartz, and barite; (2) anhydrite precipitation in open spaces and mineral interstices within the sulfide mound followed by its subsequent dissolution, formation of breccia textures, and mound clasts and precipitation of coarse-grained pyrite, sphalerite, tetrahedrite–tennantite, galena and barite; (3) replacement of pre-existing sulfides by chalcopyrite precipitated at higher temperatures (zone refining); (4) continued “refining” led to the dissolution of stage 3 chalcopyrite and formation of a base-metal-depleted pyrite body in the lowermost part of the massive sulfide lens; (5) carbonate veins were emplaced into the sulfide lens, replacing stage 2 barite. The δ34S composition of the sulfides ranges from +2.8‰ to +8.5‰ (average, +5.6‰) with a general increase of δ34S ratios with depth within the massive sulfide lens and underlying stockwork zone. The heavier values indicate that some of the sulfur was derived from seawater sulfate that was ultimately thermochemically reduced in deep hydrothermal reaction zones.  相似文献   

19.
The Limahe Ni–Cu sulfide deposit is hosted by a small mafic–ultramafic intrusion (800 × 200 × 300 m) that is temporally associated with the voluminous Permian flood basalts in SW China. The objective of this study is to better understand the origin of the deposit in the context of regional magmatism which is important for the ongoing mineral exploration in the region. The Limahe intrusion is a multiphase intrusion with an ultramafic unit at the base and a mafic unit at the top. The two rock units have intrusive contacts and exhibit similar mantle-normalized trace element patterns and Sr–Nd isotopic compositions but significantly different cumulus mineralogy and major element compositions. The similarities suggest that they are related to a common parental liquid, whereas the differences point to magma differentiation by olivine crystallization at depth. Sulfide mineralization is restricted to the ultramafic unit. The abundances of sulfides in the ultramafic unit generally increase towards the basal contacts with sedimentary footwall. The δ 34S values of sulfide minerals from the Limahe deposit are elevated, ranging from +2.4 to +5.4‰. These values suggest the involvement of external S with elevated δ 34S values. The mantle-normalized platinum-group element (PGE) patterns of bulk sulfide ores are similar to those of picrites associated with flood basalts in the region. The abundances of PGE in the sulfide ores, however, are significantly lower than that of sulfide liquid expected to segregate from undepleted picrite magma. Cr-spinel and olivine are present in the Limahe ultramafic rocks as well as in the picrites. Mantle-normalized trace element patterns of the Limahe intrusion generally resemble those of the picrites. However, negative Nb–Ta anomalies, common features of contamination with the lower or middle crust, are present in the intrusion but absent in the picrites. Sr–Nd isotopes suggest that the Limahe intrusion experienced higher degrees of contamination with the upper crust than did the picrites. The results of this study permit us to suggest that the parental magma of the Limahe intrusion was derived from picritic magma by olivine fractionation and contamination in a staging chamber at mid-crustal levels. Depletion of PGE in the sulfide ores in the Limahe intrusion is likely due to previous sulfide segregation of the parental magmas in the staging chamber. Sulfide mineralization in the Limahe intrusion is related to second-stage sulfide segregation after the fractionated magmas acquired external S from pyrite-bearing country rocks during magma ascent to the Limahe chamber. The abrupt change in mineralogical and chemical compositions between the ultramafic unit and the overlying unit suggests that at least two separate pulses of magma were involved in the development of the Limahe intrusion. We propose that the Limahe intrusion was once a wider part of a dynamic conduit that fed magma to the overlying subvolcanic dykes/sills or lavas. The ultramafic unit formed by the first, relatively more primitive magma, and the mafic unit formed by the second, relatively more fractionated magma. Immiscible sulfide droplets that segregated from the first magma settled down with olivine crystals to form the sulfide-bearing, olivine-rich rocks in the base of the intrusion. The overlying residual liquids were then pushed out of the chamber by the second magma. Critical factors for the formation of an economic Ni–Cu sulfide deposit in such a small intrusion include the dynamic petrologic processes involved and the availability of external sulfur. The Limahe deposit reminds us that small, multiphase, mafic–ultramafic intrusions in the region should not be overlooked for the potential of economic Ni–Cu sulfide deposits.  相似文献   

20.
Eastern and western portions of the Jinchuan ultramafic intrusion have previously been interpreted as dismembered segments of a single elongate intrusion by late faults. However, the different stratigraphic sequences of the two portions indicate that they are originally two separate intrusions, referred to as Eastern and Western intrusions in this study. The Eastern intrusion is characterized by a concentric distribution of rock types with a core of sulfide dunite enveloped by lherzolite, whereas the Western intrusion is composed of the Upper and Lower units, interpreted as magmatic mega cycles with regular variations in lithology and chemistry. In the Western intrusion, the Upper unit consists of fine-grained dunite, lherzolite, and pyroxenite from its base to its top. The MgO contents decrease upward from the dunites (42–45 wt.%) to the lherzolites (36–41 wt.%), while Al2O3 and incompatible elements increase upward. In contrast, the Lower unit consists of coarse-grained dunites and lherzolites containing 37–40 and 28–35 wt.% MgO, respectively. Sharp contacts between the Upper and Lower units and fine-grained dunite xenoliths at the top of the Lower unit indicate that the Lower unit intruded along the base of the Upper unit. Disseminated and net-textured sulfides primarily occur in the Lower unit and comprise the no. 24 ore body. Very low S contents (<100 ppm) of the wall rocks at Jinchuan indicate that they were not the source of S causing sulfide immiscibility. Sulfide segregation more likely occurred in deep-seated magma chambers, and sulfides were deposited in the Western intrusion when sulfide-bearing magmas passed through the intrusion. In contrast, the Eastern intrusion was formed by injections of sulfide-free and sulfide-bearing olivine-crystal mushes, respectively, from another deep-seated staging magma chamber. The Eastern and Western intrusions and the deep-seated magma chambers comprise a complicated magma plumbing system at Jinchuan. Normal faults played a significant role in the formation of the magma plumbing system and provided pathways for the magmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号