首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Detection, monitoring and precise assessment of the snow covered regions is an important issue. Snow cover area and consequently the amount of runoff generated from snowmelt have a significant effect on water supply management. To precisely detect and monitor the snow covered area we need satellite images with suitable spatial and temporal resolutions where we usually lose one for the other. In this study, products of two sensors MODIS and ASTER both on board of TERRA platform having low and high spatial resolution respectively were used. The objective of the study was to modify the snow products of MODIS by using simultaneous images of ASTER. For this, MODIS snow index image with high temporal resolution were compared with that of ASTER, using regression and correlation analysis. To improve NDSI index two methods were developed. The first method generated from direct comparison of ASTER averaged NDSI with those of MODIS (MODISI). The second method generated by dividing MODIS NDSI index into 10 codes according to their percentage of surface cover and then compared the results with the difference between ASTER averaged and MODIS snow indices (SCMOD). Both methods were tested against some 16 MODIS pixels. It is found that the precision of the MODISI method was more than 96%. This for SCMOD was about 98%. The RMSE of both methods were as good as 0.02.  相似文献   

2.
Integration of the MODIS Snow Cover Produced Into Snowmelt Runoff Modeling   总被引:1,自引:0,他引:1  
Because of the difficulty of monitoring and measuring snow cover in mountainous watersheds, satellite images are used as an alternative to mapping snow cover to replace the ground operations in the watershed. Snow cover is one of the most important data in simulation snowmelt runoff. The daily snow cover maps are received from Moderate Resolution Imaging Spectroradiometer (MODIS), and are used in deriving the snow depletion curve, which is one of the input parameters of the snowmelt runoff model (SRM). Simulating Snowmelt runoff is presented using SRM model as one of the major applications of satellite images processing and extracting snow cover in the Ghara - Chay watershed. The first results of modeling process show that MODIS snow covered area product can be used for simulation and forecast of snowmelt runoff in Ghara - Chay watershed. The studies found that the SCA results were more reliable in the study area.  相似文献   

3.
The Swiss Federal Institute for Snow and Avalanche Research in Davos (SLF) provides snow depth maps for Switzerland on a spatial resolution of 1 km × 1 km. These snow depth maps are derived from snow station measurements using a spatial interpolation method based on the dependency of snow depth and altitude. During a winter season the number of operating snow stations varies and the area-wide snow depth interpolation becomes increasingly difficult in spring. The objective of the study is to develop an operational and near-real time method to calculate snow depth maps using a combination of in situ snow depth measurements and the snow cover extent provided from space borne observations. The operational daily snow cover product obtained from the polar-orbiting NOAA-AVHRR satellite is used to gain an additional set of virtual snow stations to densify the in situ measurements for an improved spatial interpolation. The capacity of this method is demonstrated on selected days during winter 2005. Cross-validation tests are conducted to examine the quantitative accuracy of the synergetic interpolation method. The error estimators prove the decrease in error variance and increase of overall accuracy pointing out the high capacity of this new interpolation method that can be run in near real-time over a large horizontal domain at high horizontal resolution. A solid method for snow–no snow classification in the processing of the satellite data is essential to the quality of the snow depth maps.  相似文献   

4.
A sufficient number of satellite acquisitions in a growing season are essential for deriving agronomic indicators, such as green leaf area index (GLAI), to be assimilated into crop models for crop productivity estimation. However, for most high resolution orbital optical satellites, it is often difficult to obtain images frequently due to their long revisit cycles and unfavorable weather conditions. Data fusion algorithms, such as the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) and the Enhanced STARFM (ESTARFM), have been developed to generate synthetic data with high spatial and temporal resolution to address this issue. In this study, we evaluated the approach of assimilating GLAI into the Simple Algorithm for Yield Estimation model (SAFY) for winter wheat biomass estimation. GLAI was estimated using the two-band Enhanced Vegetation Index (EVI2) derived from data acquired by the Operational Land Imager (OLI) onboard the Landsat-8 and a fusion dataset generated by blending the Moderate-Resolution Imaging Spectroradiometer (MODIS) data and the OLI data using the STARFM and ESTARFM models. The fusion dataset had the temporal resolution of the MODIS data and the spatial resolution of the OLI data. Key parameters of the SAFY model were optimised through assimilation of the estimated GLAI into the crop model using the Shuffled Complex Evolution-University of Arizona (SCE-UA) algorithm. A good agreement was achieved between the estimated and field measured biomass by assimilating the GLAI derived from the OLI data (GLAIL) alone (R2 = 0.77 and RMSE = 231 g m−2). Assimilation of GLAI derived from the fusion dataset (GLAIF) resulted in a R2 of 0.71 and RMSE of 193 g m−2 while assimilating the combination of GLAIL and GLAIF led to further improvements (R2 = 0.76 and RMSE = 176 g m−2). Our results demonstrated the potential of using the fusion algorithms to improve crop growth monitoring and crop productivity estimation when the number of high resolution remote sensing data acquisitions is limited.  相似文献   

5.
Burnings, which cause major changes to the environment, can be effectively monitored via satellite data, regarding both the identification of active fires and the estimation of burned areas. Among the many orbital sensors suitable for mapping burned areas on global and regional scales, the moderate resolution imaging spectroradiometer (MODIS), on board the Terra and Aqua platforms, has been the most widely utilized. In this study, the performance of the MODIS MCD45A1 burned area product was thoroughly evaluated in the Brazilian savanna, the second largest biome in South America and a global biodiversity hotspot, characterized by a conspicuous climatic seasonality and the systematic occurrence of natural and anthropogenic fires. Overall, September MCD45A1 polygons (2000–2012) compared well to the Landsat-based reference mapping (r2 = 0.92) and were closely accompanied, on a monthly basis, by MOD14 and MYD14 hotspots (r2 = 0.89), although large omissions errors, linked to landscape patterns, structures, and overall conditions depicted in each reference image, were observed. In spite of its spatial and temporal limitations, the MCD45A1 product proved instrumental for mapping and understanding fire behavior and impacts on the Cerrado landscapes.  相似文献   

6.
Satellite remote sensing has been used successfully to map leaf area index (LAI) across landscapes, but advances are still needed to exploit multi-scale data streams for producing LAI at both high spatial and temporal resolution. A multi-scale Spatio-Temporal Enhancement Method for medium resolution LAI (STEM-LAI) has been developed to generate 4-day time-series of Landsat-scale LAI from existing medium resolution LAI products. STEM-LAI has been designed to meet the demands of applications requiring frequent and spatially explicit information, such as effectively resolving rapidly evolving vegetation dynamics at sub-field (30 m) scales. In this study, STEM-LAI is applied to Moderate Resolution Imaging Spectroradiometer (MODIS) based LAI data and utilizes a reference-based regression tree approach for producing MODIS-consistent, but Landsat-based, LAI. The Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) is used to interpolate the downscaled LAI between Landsat acquisition dates, providing a high spatial and temporal resolution improvement over existing LAI products. STARFM predicts high resolution LAI by blending MODIS and Landsat based information from a common acquisition date, with MODIS data from a prediction date. To demonstrate its capacity to reproduce fine-scale spatial features observed in actual Landsat LAI, the STEM-LAI approach is tested over an agricultural region in Nebraska. The implementation of a 250 m resolution LAI product, derived from MODIS 1 km data and using a scale consistent approach based on the Normalized Difference Vegetation Index (NDVI), is found to significantly improve accuracies of spatial pattern prediction, with the coefficient of efficiency (E) ranging from 0.77–0.94 compared to 0.01–0.85 when using 1 km LAI inputs alone. Comparisons against an 11-year record of in-situ measured LAI over maize and soybean highlight the utility of STEM-LAI in reproducing observed LAI dynamics (both characterized by r2 = 0.86) over a range of plant development stages. Overall, STEM-LAI represents an effective downscaling and temporal enhancement mechanism that predicts in-situ measured LAI better than estimates derived through linear interpolation between Landsat acquisitions. This is particularly true when the in-situ measurement date is greater than 10 days from the nearest Landsat acquisition, with prediction errors reduced by up to 50%. With a streamlined and completely automated processing interface, STEM-LAI represents a flexible tool for LAI disaggregation in space and time that is adaptable to different land cover types, landscape heterogeneities, and cloud cover conditions.  相似文献   

7.
Understanding spatial and temporal patterns of burned areas at regional scales, provides a long-term perspective of fire processes and its effects on ecosystems and vegetation recovery patterns, and it is a key factor to design prevention and post-fire restoration plans and strategies. Remote sensing has become the most widely used tool to detect fire affected areas over large tracts of land (e.g., ecosystem, regional and global levels). Standard satellite burned area and active fire products derived from the 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) and the Satellite Pour l’Observation de la Terre (SPOT) are available to this end. However, prior research caution on the use of these global-scale products for regional and sub-regional applications. Consequently, we propose a novel semi-automated algorithm for identification and mapping of burned areas at regional scale. The semi-arid Monte shrublands, a biome covering 240,000 km2 in the western part of Argentina, and exposed to seasonal bushfires was selected as the test area. The algorithm uses a set of the normalized burned ratio index products derived from MODIS time series; using a two-phased cycle, it firstly detects potentially burned pixels while keeping a low commission error (false detection of burned areas), and subsequently labels them as seed patches. Region growing image segmentation algorithms are applied to the seed patches in the second-phase, to define the perimeter of fire affected areas while decreasing omission errors (missing real burned areas). Independently-derived Landsat ETM+ burned-area reference data was used for validation purposes. Additionally, the performance of the adaptive algorithm was assessed against standard global fire products derived from MODIS Aqua and Terra satellites, total burned area (MCD45A1), the active fire algorithm (MOD14); and the L3JRC SPOT VEGETATION 1 km GLOBCARBON products. The correlation between the size of burned areas detected by the global fire products and independently-derived Landsat reference data ranged from R2 = 0.01–0.28, while our algorithm performed showed a stronger correlation coefficient (R2 = 0.96). Our findings confirm prior research calling for caution when using the global fire products locally or regionally.  相似文献   

8.
Seasonal vegetation phenology can significantly alter surface albedo which in turn affects the global energy balance and the albedo warming/cooling feedbacks that impact climate change. To monitor and quantify the surface dynamics of heterogeneous landscapes, high temporal and spatial resolution synthetic time series of albedo and the enhanced vegetation index (EVI) were generated from the 500 m Moderate Resolution Imaging Spectroradiometer (MODIS) operational Collection V006 daily BRDF/NBAR/albedo products and 30 m Landsat 5 albedo and near-nadir reflectance data through the use of the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The traditional Landsat Albedo (Shuai et al., 2011) makes use of the MODIS BRDF/Albedo products (MCD43) by assigning appropriate BRDFs from coincident MODIS products to each Landsat image to generate a 30 m Landsat albedo product for that acquisition date. The available cloud free Landsat 5 albedos (due to clouds, generated every 16 days at best) were used in conjunction with the daily MODIS albedos to determine the appropriate 30 m albedos for the intervening daily time steps in this study. These enhanced daily 30 m spatial resolution synthetic time series were then used to track albedo and vegetation phenology dynamics over three Ameriflux tower sites (Harvard Forest in 2007, Santa Rita in 2011 and Walker Branch in 2005). These Ameriflux sites were chosen as they are all quite nearby new towers coming on line for the National Ecological Observatory Network (NEON), and thus represent locations which will be served by spatially paired albedo measures in the near future. The availability of data from the NEON towers will greatly expand the sources of tower albedometer data available for evaluation of satellite products. At these three Ameriflux tower sites the synthetic time series of broadband shortwave albedos were evaluated using the tower albedo measurements with a Root Mean Square Error (RMSE) less than 0.013 and a bias within the range of ±0.006. These synthetic time series provide much greater spatial detail than the 500 m gridded MODIS data, especially over more heterogeneous surfaces, which improves the efforts to characterize and monitor the spatial variation across species and communities. The mean of the difference between maximum and minimum synthetic time series of albedo within the MODIS pixels over a subset of satellite data of Harvard Forest (16 km by 14 km) was as high as 0.2 during the snow-covered period and reduced to around 0.1 during the snow-free period. Similarly, we have used STARFM to also couple MODIS Nadir BRDF Adjusted Reflectances (NBAR) values with Landsat 5 reflectances to generate daily synthetic times series of NBAR and thus Enhanced Vegetation Index (NBAR-EVI) at a 30 m resolution. While normally STARFM is used with directional reflectances, the use of the view angle corrected daily MODIS NBAR values will provide more consistent time series. These synthetic times series of EVI are shown to capture seasonal vegetation dynamics with finer spatial and temporal details, especially over heterogeneous land surfaces.  相似文献   

9.
刘艳  汪宏  张璞  李杨 《国土资源遥感》2011,22(1):128-132
以古尔班通古特沙漠为研究区,以中分辨率成像光谱仪(MODIS)为遥感数据源,结合ASD FieldSpec准同步实测积雪反射光谱数据对FLAASH大气校正能力进行了评价。研究表明: ①校正后的MODIS各波段积雪反射率与准同步实测积雪反射率波形相似, 在第1~7波段整体相关系数达0.82,表明FLAASH大气校正能极大地提高MODIS地物识别能力; ②校正后的MODIS 第6波段反射率和归一化差值积雪指数(NDSI)与实测雪密度呈线性相关,可用回归拟合构建MODIS雪密度遥感计算模式。  相似文献   

10.
In high-altitude areas, snow cover plays a significant role in mountainous hydrology. Satluj, which is a snow-fed river, is a part of the Indus River system in the western Himalayas. Snow cover area (SCA) variability in this river basin affects the spatio-temporal flow availability and avalanche events. Keeping this in mind, the present study focuses on SCA variability and its relationship with various topographical features such as elevation, slope and aspect. The study has been carried out in the upper part of the Satluj River Basin on the basis of MODIS Terra (MOD10A2) data from 2001 to 2014. It has been noticed that the average annual SCA in this part of the Satluj River Basin varies from 44 to 56% with an average of about 48% of the total basin area of 16, 650 km2. Further, snow accumulation and depletion curves have been suggested for assessing the SCA in the study area.  相似文献   

11.
Snow cover mapping is important for snow and glacier-related research. The spatial and temporal distribution of snow cover area is a fundamental input to the atmospheric models, snowmelt runoff models and climate models, as well as other applications. Daily snow cover maps from Moderate Resolution Imaging Spectroradiometer (MODIS) Terra satellite were retrieved for the period between 2004 and 2007, and pixels in these images were classified as cloud, snow or snow-free. These images have then been compared with ground snow depth (SD) measurements from the four observatories located at different parts of Himalayas. Comparison of snow maps with in situ data showed good agreement with overall accuracies in between 78.15 and 95.60%. When snow cover was less, MODIS data were found to be less accurate in mapping snow cover region. As the SD increases, the accuracy of MODIS snow cover maps also increases.  相似文献   

12.
Recent changes in rice crop management within Northern Italy rice district led to a reduction of seeding in flooding condition, which may have an impact on reservoir water management and on the animal and plant communities that depend on the flooded paddies. Therefore, monitoring and quantifying the spatial and temporal variability of water presence in paddy fields is becoming important. In this study we present a method to estimate dynamics of presence of standing water (i.e. fraction of flooded area) in rice fields using MODIS data. First, we produced high resolution water presence maps from Landsat by thresholding the Normalised Difference Flood Index (NDFI) made: we made it by comparing five Landsat 8 images with field-obtained information about rice field status and water presence. Using these data we developed an empirical model to estimate the flooding fraction of each MODIS cell. Finally we validated the MODIS-based flooding maps with both Landsat and ground information. Results showed a good predictability of water surface from Landsat (OA = 92%) and a robust usability of MODIS data to predict water fraction (R2 = 0.73, EF = 0.57, RMSE = 0.13 at 1 × 1 km resolution). Analysis showed that the predictive ability of the model decreases with the greening up of rice, so we used NDVI to automatically discriminate estimations for inaccurate cells in order to provide the water maps with a reliability flag. Results demonstrate that it is possible to monitor water dynamics in rice paddies using moderate resolution multispectral satellite data. The achievement is a proof of concept for the analysis of MODIS archives to investigate irrigation dynamics in the last 15 years to retrieve information for ecological and hydrological studies.  相似文献   

13.
Snow cover monitoring in the Qinghai-Tibetan Plateau is very important to global climate change research. Because of the geographic distribution of ground meteorological stations in Qinghai-Tibetan Plateau is too sparse, satellite remote sensing became the only choice for snow cover monitoring in Qinghai-Tibetan Plateau. In this paper, multi-channel data from Visible and Infrared Radiometer (VIRR) on Chinese polar orbiting meteorological satellites Fengyun-3(FY-3) are utilized for snow cover monitoring, in this work, the distribution of snow cover is extracted from the normalized difference snow index(NDSI), and the multi-channel threshold from the brightness temperature difference in infrared channels. Then, the monitoring results of FY-3A and FY-3B are combined to generate the daily composited snow cover product. Finally, the snow cover products from MODIS and FY-3 are both verified by snow depth of meteorological station observations, result shows that the FY-3 products and MODIS products are basically consistent, the overall accuracy of FY-3 products is higher than MODIS products by nearly 1 %. And the cloud coverage rate of FY-3 products is less than MODIS by 2.64 %. This work indicates that FY-3/VIRR data can be reliable data sources for monitoring snow cover in the Qinghai-Tibetan Plateau.  相似文献   

14.
Global warming associated with climate change is one of the greatest challenges of today’s world. Increasing emissions of the greenhouse gas CO2 are considered as a major contributing factor to global warming. One regulating factor of CO2 exchange between atmosphere and land surface is vegetation. Measurements of land cover changes in combination with modelling the Gross Primary Productivity (GPP) can contribute to determine important sources and sinks of CO2.The aim of this study is to accurately model the GPP for a region in West Africa with a spatial resolution of 250 m, and the differentiation of GPP based on woody and herbaceous vegetation. For this purpose, the Regional Biomass Model (RBM) was applied, which is based on a Light Use Efficiency (LUE) approach. The focus was on the spatial enhancement of the RBM from the original 1000–250 m spatial resolution (RBM+). The adaptation to the 250 m scale included the modification of two main input parameters: (1) the fraction of absorbed Photosynthetically Active Radiation (FPAR) based on the 1000 m MODIS MOD15A2 FPAR product which was downscaled to 250 m using MODIS NDVI time series; (2) the fractional cover of woody and herbaceous vegetation, which was improved by using a multi-scale approach. For validation and regional adjustments of GPP and the input parameters, in situ data from a climate station and eddy covariance measurements were integrated.The results of this approach show that the input parameters could be improved significantly: downscaling considerably reduces data gaps of the original FPAR product and the improved dataset differed less than 5.0% from the original data for cloud free regions. The RMSE of the fractional vegetation cover varied between 5.1 and 12.7%. Modelled GPP showed a slight overestimation in comparison to eddy covariance measurements. The in situ data was exceeded by 8.8% for 2005 and by 2.0% for 2006. The model results were converted to NPP and also agreed well with previous NPP measurements reported from different studies. Altogether a high accuracy and suitability of the regionally adjusted and downscaled model RBM+ can be concluded. The differentiation between vegetation growth forms allows a separation of long-term and short-term carbon storage based on woody and herbaceous vegetation, respectively.  相似文献   

15.
The Qinghai-Tibetan Plateau (QTP) snow cover information acquisition of the high precision spatial and temporal characteristics is of great significance for the research on its land surface atmosphere coupled system and global climate change effects. The Moderate Resolution Imaging Spectro-radiometer (MODIS) daily snow cover products (MOD10A1 and MYD10A1) have been widely used in long time series of spatial and temporal variation analysis, but they are limited to be used because of high cloud cover ratio. In this paper, a 7-day rolling combination algorithm was presented to eliminate cloud obscuration, and the whole cloud amount falls below 7 %. The ground station in situ measurements verify that the overall precision is more than 90 %. The presented algorithm guaranteed the same spatial resolution and temporal resolution, and has higher precision than products MOD10A1 and MYD10A1. The MODIS 7-day rolling combination snow cover datasets products were obtained between 2003 and 2014 in the QTP, and the snow cover area of spatial and temporal variation was analyzed. The change characteristics of snow cover duration was also studied combining with the Digital Elevation Model data. Results show that the snow cover area of the whole QTP has a slowly decreased trend, but increases in autumn. Thus, the snow cover proportion of annual periodic and unstable in different elevations has the highest correlation with area of the elevation.  相似文献   

16.
Four up-to-date daily cloud-free snow products – IMS (Interactive Multisensor Snow products), MOD-SSM/I (combination of the MODIS and SSM/I snow products), MOD-B (Blending method basing on the MODIS snow cover products) and TAI (Terra–Aqua–IMS) – with high-resolutions over the Qinghai-Tibetan Plateau (QTP) were comprehensively assessed. Comparisons of the IMS, MOD-SSM/I, MOD-B and TAI cloud-free snow products against meteorological stations observations over 10 snow seasons (2004–2013) over the QTP indicated overall accuracies of 76.0%, 89.3%, 92.0% and 92.0%, respectively. The Khat values of the IMS, MOD-SSM/I, MOD-B and TAI products were 0.084, 0.463, 0.428 and 0.526, respectively. The TAI products appear to have the best cloud-removal ability among the four snow products over the QTP. Based on the assessment, an I-TAI (Improvement of Terra–Aqua–IMS) snow product was proposed, which can improve the accuracy to some extent. However, the algorithms of the MODIS series products show instability when identifying wet snow and snow under forest cover over the QTP. The snow misclassification is an important limitation of MODIS snow cover products and requires additional improvements.  相似文献   

17.
With the high deforestation rates of global forest covers during the past decades, there is an ever-increasing need to monitor forest covers at both fine spatial and temporal resolutions. Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat series images have been used commonly for satellite-derived forest cover mapping. However, the spatial resolution of MODIS images and the temporal resolution of Landsat images are too coarse to observe forest cover at both fine spatial and temporal resolutions. In this paper, a novel multiscale spectral-spatial-temporal superresolution mapping (MSSTSRM) approach is proposed to update Landsat-based forest maps by integrating current MODIS images with the previous forest maps generated from Landsat image. Both the 240 m MODIS bands and 480 m MODIS bands were used as inputs of the spectral energy function of the MSSTSRM model. The principle of maximal spatial dependence was used as the spatial energy function to make the updated forest map spatially smooth. The temporal energy function was based on a multiscale spatial-temporal dependence model, and considers the land cover changes between the previous and current time. The novel MSSTSRM model was able to update Landsat-based forest maps more accurately, in terms of both visual and quantitative evaluation, than traditional pixel-based classification and the latest sub-pixel based super-resolution mapping methods The results demonstrate the great efficiency and potential of MSSTSRM for updating fine temporal resolution Landsat-based forest maps using MODIS images.  相似文献   

18.
Soil respiration (Rs) is of great importance to the global carbon balance. Remote sensing of Rs is challenging because of (1) the lack of long-term Rs data for model development and (2) limited knowledge of using satellite-based products to estimate Rs. Using 8-years (2002–2009) of continuous Rs measurements with nonsteady-state automated chamber systems at a Canadian boreal black spruce stand (SK-OBS), we found that Rs was strongly correlated with the product of the normalized difference vegetation index (NDVI) and the nighttime land surface temperature (LSTn) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. The coefficients of the linear regression equation of this correlation between Rs and NDVI × LSTn could be further calibrated using the MODIS leaf area index (LAI) product, resulting in an algorithm that is driven solely by remote sensing observations. Modeled Rs closely tracked the seasonal patterns of measured Rs and explained 74–92% of the variance in Rs with a root mean square error (RMSE) less than 1.0 g C/m2/d. Further validation of the model from SK-OBS site at another two independent sites (SK-OA and SK-OJP, old aspen and old jack pine, respectively) showed that the algorithm can produce good estimates of Rs with an overall R2 of 0.78 (p < 0.001) for data of these two sites. Consequently, we mapped Rs of forest landscapes of Saskatchewan using entirely MODIS observations for 2003 and spatial and temporal patterns of Rs were well modeled. These results point to a strong relationship between the soil respiratory process and canopy photosynthesis as indicated from the greenness index (i.e., NDVI), thereby implying the potential of remote sensing data for detecting variations in Rs. A combination of both biological and environmental variables estimated from remote sensing in this analysis may be valuable in future investigations of spatial and temporal characteristics of Rs.  相似文献   

19.
高光谱遥感积雪制图算法及验证   总被引:8,自引:0,他引:8  
李震  施建成 《测绘学报》2001,30(1):67-73
雪盖面积是高山地区和季节雪盖区水文和气象模型的重要输入因子。机载和星载遥感数据提取的雪盖面积是融雪径流模型的重要组成部分。对应不同传感器件的光谱特征,多种分类方法被相继提出。但是,缺乏相对独立的验证手段来评价各种分类方法,其主要原因是缺乏地面真实状态。针对该现状,本研究利用高光谱图像的细分光谱特征,建立高光谱影像及其对应“地面真相”的像对数据库来发展和验证积雪制图算法,并展示MODIS积雪制图算法验证和ASTER混合像元分解雪盖制图算法研究的应用实例。  相似文献   

20.
Moderate Resolution Imaging Spectroradiometer (MODIS) imagery provides a good data source for timely and accurate monitoring of dust storms. However, effective MODIS-based dust indices are inadequate. In this study, we proposed an improved brightness temperature adjusted dust index (BADI) by integrating the brightness temperatures of three thermal infrared MODIS bands: band20 (3.66–3.84 μm), band31 (10.78–11.28 μm) and band32 (11.77–12.27 μm). We used the BADI to monitor several representative dust storms over the Northeast Asia between 2000 and 2011. When compared to commonly used MODIS-based dust indices, such as the brightness temperature difference index in band32 and band31 (BTD32-31) and the normalized difference dust index (NDDI), the BADI captured the spatial extent and density of dust storms more accurately. The BADI detected dust storm extent with an overall accuracy >90%, which was 7% and 29% higher than the results derived from BTD32-31 and NDDI, respectively. The BADI also demonstrated good agreement with the density indicator of MODIS Deep Blue Aerosol Optical Depth (R2 = 0.59, P < 0.01). We suggest that the BADI is an effective tool to monitor large-scale dust storms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号