首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 843 毫秒
1.
Image matching is emerging as a compelling alternative to airborne laser scanning (ALS) as a data source for forest inventory and management. There is currently an open discussion in the forest inventory community about whether, and to what extent, the new method can be applied to practical inventory campaigns. This paper aims to contribute to this discussion by comparing two different image matching algorithms (Semi-Global Matching [SGM] and Next-Generation Automatic Terrain Extraction [NGATE]) and ALS in a typical managed boreal forest environment in southern Finland. Spectral features from unrectified aerial images were included in the modeling and the potential of image matching in areas without a high resolution digital terrain model (DTM) was also explored. Plot level predictions for total volume, stem number, basal area, height of basal area median tree and diameter of basal area median tree were modeled using an area-based approach. Plot level dominant tree species were predicted using a random forest algorithm, also using an area-based approach. The statistical difference between the error rates from different datasets was evaluated using a bootstrap method.Results showed that ALS outperformed image matching with every forest attribute, even when a high resolution DTM was used for height normalization and spectral information from images was included. Dominant tree species classification with image matching achieved accuracy levels similar to ALS regardless of the resolution of the DTM when spectral metrics were used. Neither of the image matching algorithms consistently outperformed the other, but there were noticeably different error rates depending on the parameter configuration, spectral band, resolution of DTM, or response variable. This study showed that image matching provides reasonable point cloud data for forest inventory purposes, especially when a high resolution DTM is available and information from the understory is redundant.  相似文献   

2.
The satellite digital vegetation index data has been correlated with the forest growing stock by fitting linear regression models. The goodness of fit was tested. The analysis showed that the vegetation index which is the ratio of reflectance of vegetation in near infrared band to red wave band of electromagnetic spectrum is highly correlated to forest growing stock and the same can be used to predict the volume in remote forest areas for quick assessment purpose. Implications for future forest inventory are discussed.  相似文献   

3.
Wood products provide a relatively long-term carbon storage mechanism. Due to lack of consistent datasets on these products, however, it is difficult to determine their carbon contents. The main purpose of this study was to quantify forest disturbance and timber product output (TPO) using time series Landsat observations for North Carolina. The results revealed that North Carolina had an average forest disturbance rate of 178,000 ha per year from 1985 to 2010. The derived disturbance products were found to be highly correlated with TPO survey data, explaining up to 87% of the total variance of county level industrial roundwood production. State level TPO estimates derived using the Landsat-based disturbance products tracked those derived from ground-based survey data closely. The TPO modeling approach developed in this study complements the ground-based TPO surveys conducted by the US Forest Service. It allows derivation of TPO estimates for the years that did not have TPO survey data, and may be applicable in other regions or countries where at least some ground-based survey data on timber production are available for model development and dense time series Landsat observations exist for developing annual forest disturbance products.  相似文献   

4.
The present investigation was carried out to determine carbon sequestration potential of Solan Forest Division of Himachal Pradesh during 2006–2007. There are six land uses viz., Chir pine, Ban oak, Deodar, Other broadleaves, Culturable and Un-culturable, which are distributed in 538 compartments along altitudinal gradient from 900 to 2,100m. The study reveals that among various land uses, the Other broadleaved species will result in maximum expected carbon (19.88 Mt) which will be 28.81, 23.95, and 3.07 times higher than standing carbon in Ban oak, Deodar and Chir pine, respectively. The Solan Forest Division on the whole, has potential to sequester 17 times more carbon over standing carbon of 1.67 Mt, if forest species are extended to their corresponding altitudinal limits in the “land area available for planting” i.e., Uncultrable land area in the forest division however, to have an accurate estimate of the carbon sequestration potential of the area, other attributes that decides the establishment of plantation of different species such as slope, aspect, soil, climate, etc. need to be taken into consideration beside altitude.  相似文献   

5.
The study compared forest cover maps derived using coarse resolution vegetation continuous fields (MODIS VCF; 500m resolution) with the maps derived from medium resolution (24m; IRS LISS-III) data. The comparison of VCF, per cent tree cover product, for the years 2000 to 2004 with LISS III forest density class maps of 2001 and 2003 was carried out for two sites representing hilly (Uttarakhand) and undulating terrains (Madhya Pradesh). Slicing VCF to corresponding forest crown cover, i.e., 0–10%, 10–40%, 40–70% and >70% produced considerable difference in forest area estimates when compared to original LISS III derived crown cover area. The corresponding value range in VCF for 0–10% of actual forest cover were 0–31% and 0–25% in 2 sites respectively, and the respective limit was consistent at 1–20% when VCF range were sliced with respect to upscaled LISS III at 500m resolution. Similarly, all other class limits were also found through iterative process. These limits were similar, within a site, across five years. Spatial Kappa match between these two data indicated higher match in 40–70% class, and also in undulating site. When compared at same resolution, similar forest area cover estimated with weighted area upscaling gave closest match. The study is useful in knowing the usability and limits of VCF product, and utility of spatial Kappa.  相似文献   

6.

Background

The reliable monitoring, reporting and verification (MRV) of carbon emissions and removals from the forest sector is an important part of the efforts on reducing emissions from deforestation and forest degradation (REDD+). Forest-dependent local communities are engaged to contribute to MRV through community-based monitoring systems. The efficiency of such monitoring systems could be improved through the rational integration of the studies at permanent plots with the geospatial technologies. This article presents a case study of integrating community-based measurements at permanent plots at the foothills of central Nepal and biomass maps that were developed using GeoEye-1 and IKONS satellite images.

Results

The use of very-high-resolution satellite-based tree cover parameters, including crown projected area (CPA), crown density and crown size classes improves salience, reliability and legitimacy of the community-based survey of 0.04% intensity at the lower cost than increasing intensity of the community-based survey to 0.14% level (2.5 USD/ha vs. 7.5 USD/ha).

Conclusion

The proposed REDD+ MRV complementary system is the first of its kind and demonstrates the enhancement of information content, accuracy of reporting and reduction in cost. It also allows assessment of the efficacy of community-based forest management and extension to national scale.
  相似文献   

7.

Background

We determine the potential of forests and the forest sector to mitigate greenhouse gas (GHG) emissions by changes in management practices and wood use for two regions within Canada’s managed forest from 2018 to 2050. Our modeling frameworks include the Carbon Budget Model of the Canadian Forest Sector, a framework for harvested wood products that estimates emissions based on product half-life decay times, and an account of marginal emission substitution benefits from the changes in use of wood products and bioenergy. Using a spatially explicit forest inventory with 16 ha pixels, we examine mitigation scenarios relating to forest management and wood use: increased harvesting efficiency; residue management for bioenergy; reduced harvest; reduced slashburning, and more longer-lived wood products. The primary reason for the spatially explicit approach at this coarse resolution was to estimate transportation distances associated with delivering harvest residues for heat and/or electricity production for local communities.

Results

Results demonstrated large differences among alternative scenarios, and from alternative assumptions about substitution benefits for fossil fuel-based energy and products which changed scenario rankings. Combining forest management activities with a wood-use scenario that generated more longer-lived products had the highest mitigation potential.

Conclusions

The use of harvest residues to meet local energy demands in place of burning fossil fuels was found to be an effective scenario to reduce GHG emissions, along with scenarios that increased the utilization level for harvest, and increased the longevity of wood products. Substitution benefits from avoiding fossil fuels or emissions-intensive products were dependent on local circumstances for energy demand and fuel mix, and the assumed wood use for products. As projected future demand for biomass use in national GHG mitigation strategies could exceed sustainable biomass supply, analyses such as this can help identify biomass sources that achieve the greatest mitigation benefits.
  相似文献   

8.
Canopy shadowing mediated by topography is an important source of radiometric distortion on remote sensing images of rugged terrain. Topographic correction based on the sun–canopy–sensor (SCS) model significantly improved over those based on the sun–terrain–sensor (STS) model for surfaces with high forest canopy cover, because the SCS model considers and preserves the geotropic nature of trees. The SCS model accounts for sub-pixel canopy shadowing effects and normalizes the sunlit canopy area within a pixel. However, it does not account for mutual shadowing between neighboring pixels. Pixel-to-pixel shadowing is especially apparent for fine resolution satellite images in which individual tree crowns are resolved. This paper proposes a new topographic correction model: the sun–crown–sensor (SCnS) model based on high-resolution satellite imagery (IKONOS) and high-precision LiDAR digital elevation model. An improvement on the C-correction logic with a radiance partitioning method to address the effects of diffuse irradiance is also introduced (SCnS + C). In addition, we incorporate a weighting variable, based on pixel shadow fraction, on the direct and diffuse radiance portions to enhance the retrieval of at-sensor radiance and reflectance of highly shadowed tree pixels and form another variety of SCnS model (SCnS + W). Model evaluation with IKONOS test data showed that the new SCnS model outperformed the STS and SCS models in quantifying the correlation between terrain-regulated illumination factor and at-sensor radiance. Our adapted C-correction logic based on the sun–crown–sensor geometry and radiance partitioning better represented the general additive effects of diffuse radiation than C parameters derived from the STS or SCS models. The weighting factor Wt also significantly enhanced correction results by reducing within-class standard deviation and balancing the mean pixel radiance between sunlit and shaded slopes. We analyzed these improvements with model comparison on the red and near infrared bands. The advantages of SCnS + C and SCnS + W on both bands are expected to facilitate forest classification and change detection applications.  相似文献   

9.

Background

REDD+?is being questioned by the particular status of High Forest/Low Deforestation countries. Indeed, the formulation of reference levels is made difficult by the confrontation of low historical deforestation records with the forest transition theory on the one hand. On the other hand, those countries might formulate incredibly high deforestation scenarios to ensure large payments even in case of inaction.

Results

Using a wide range of scenarios within the Guiana Shield, from methods involving basic assumptions made from past deforestation, to explicit modelling of deforestation using relevant socio-economic variables at the regional scale, we show that the most common methodologies predict huge increases in deforestation, unlikely to happen given the existing socio-economic situation. More importantly, it is unlikely that funds provided under most of these scenarios could compensate for the total cost of avoided deforestation in the region, including social and economic costs.

Conclusion

This study suggests that a useful and efficient international mechanism should really focus on removing the underlying political and socio-economic forces of deforestation rather than on hypothetical result-based payments estimated from very questionable reference levels.
  相似文献   

10.
Indian Remote Sensing Satellite-1A (IRS-1A) LISS-II data of 24th Nov., 1988 was analysed digitally to differentiate three density classes viz. dense/closed forest, open forest and degraded forest within each vegetation type in the district, Jalpaiguri, West Bengal. Stratification approach was used to classify separately forest cover into pure sal forests, mixed forests, riverine forests along with man-made sal/teak plantations. In this approach the forested and non-forested areas were classified separately through supervised classification techniques using maximum likelihood algorithm using VAX 11/780 based VIPS-32 Image Processing software. Later the two classified outputs were composited to provide entire area of the district. The forest cover of the district was 1420.89 sq. km, (22.82 percent). Other broad landuse/landcover dominant in the district include agricultural areas.(45.20 percent) and tea gardens (10.49 percent). The accuracy of the classified output was estimated to be 90 percent for forested areas and 85 percent in case of other landuse/landcover classes.  相似文献   

11.
The contribution of forest degradation to changes in forest carbon stocks remains poorly quantified and constitutes a main source of uncertainty in the forest carbon budget. Charcoal production is a major source of forest degradation in sub-Saharan Africa. We used multitemporal Sentinel-2 imagery to monitor and quantify forest degradation extent in the main supplying area of a major urban center of southern Africa over a 4-year period. We implemented an indirect approach combining Sentinel-2 imagery to map kiln and field measurements to estimate AGB removals and carbon losses from charcoal production. This work generated 10 m resolution maps of forest degradation extent from charcoal production in the study area at quarterly intervals from 2016–2019. These maps reveal an intense and rapid forest degradation process and expose the spatial and temporal patterns of forest degradation from charcoal production with high detail. The total area under charcoal production over the study period reached 26,647 ha (SD = 320.8) and the forest degradation front advanced 10.5 km in a 4-year period, with an average of 19.4 ha of woodlands degraded daily. By the end of 2019, charcoal production disturbed most mopane stands in the study area and woodland fragmentation increased in 70.4 % of the mopane woodlands. We estimated that charcoal production was responsible for 2,568,761 Mg (SD = 42,130) of aboveground biomass extracted from the forest and 1,284,381 Mg (SD = 21,075) of carbon loss. The magnitude of these figures underlines the relevance of charcoal production as a main cause of forest cover change and remarks the existing uncertainties in the quantification of forest degradation processes. These results illustrate the potential of multitemporal medium resolution imagery to quantify forest degradation in sub-Saharan Africa and improve REDD + Monitoring, Reporting, and Verification systems in compliance with international reporting commitments.  相似文献   

12.
Abstract

Characterisation and mapping of land cover/land use within forest areas over long-multitemporal intervals is a complex task. This complexity is mainly due to the location and extent of such areas and, as a consequence, to the lack of full continuous cloud-free coverage of those large regions by one single remote sensing instrument. In order to provide improved long-multitemporal forest change detection using Landsat MSS and ETM + in part of Mt. Kenya rainforest, and to develop a model for forest change monitoring, wavelet transforms analysis was tested against the ISOCLUS algorithm for the derivation of changes in natural forest cover, as determined using four simple ratio-based Vegetation Indices: Simple Ratio (SR), Normalised Difference Vegetation Index (NDVI), Renormalised Difference Vegetation Index (RDVI) and modified simple ratio (MSR). Based on statistical and empirical accuracy assessments, RDVI presented the optimal index for the case study. The overall accuracy statistic of the wavelet derived change/no-change was used to rank the performances of the indices as: RDVI (91.68%), MSR (82.55%), NDVI (79.73%) and SR (65.34%). The integrated discrete wavelet transform–ISOCLUS (DWT–ISOCLUS) result was 42.65% higher than the independent ISOCLUS approach in mapping the change/no-change information. The methodology suggested in this study presents a cost-effective and practical method to detect land-cover changes in support of decision-making for updating forest databases, and for long-term monitoring of vegetation changes from multisensor imagery. The current research contributes to Digital Earth with regards to geo-data acquisition, data mining and representation of one forest systems.  相似文献   

13.
Spaceborne sensors allow for wide-scale assessments of forest ecosystems. Combining the products of multiple sensors is hypothesized to improve the estimation of forest biomass. We applied interferometric (Tandem-X) and photogrammetric (WorldView-2) based predictors, e.g. canopy height models, in combination with hyperspectral predictors (EO1-Hyperion) by using 4 different machine learning algorithms for biomass estimation in temperate forest stands near Karlsruhe, Germany. An iterative model selection procedure was used to identify the optimal combination of predictors. The most accurate model (Random Forest) reached a r2 of 0.73 with a RMSE of 14.9% (29.4 t/ha). Further results revealed that the predictive accuracy depended highly on the statistical model and the area size of the field samples. We conclude that a fusion of canopy height and spectral information allows for accurate estimations of forest biomass from space.  相似文献   

14.

Background

We analyzed the dynamics of carbon (C) stocks and CO2 removals by Brazilian forest plantations over the period 1990–2016. Data on the extent of forests compiled from various sources were used in the calculations. Productivities were simulated using species-specific growth and yield simulators for the main trees species planted in the country. Biomass expansion factors, root-to-shoot ratios, wood densities, and carbon fractions compiled from literature were applied. C stocks in necromass (deadwood and litter) and harvested wood products (HWP) were also included in the calculations.

Results

Plantation forests stocked 231 Mt C in 1990 increasing to 612 Mt C in 2016 due to an increase in plantation area and higher productivity of the stands during the 26-year period. Eucalyptus contributed 58% of the C stock in 1990 and 71% in 2016 due to a remarkable increase in plantation area and productivity. Pinus reduced its proportion of the carbon storage due to its low growth in area, while the other species shared less than 6% of the C stocks during the period of study. Aboveground biomass, belowground biomass and necromass shared 71, 12, and 5% of the total C stocked in plantations in 2016, respectively. HWP stocked 76 Mt C in the period, which represents 12% of the total C stocked. Carbon dioxide removals by Brazilian forest plantations during the 26-year period totaled 1669 Gt CO2-e.

Conclusions

The carbon dioxide removed by Brazilian forest plantations over the 26 years represent almost the totality of the country´s emissions from the waste sector within the same period, or from the agriculture, forestry and other land use sector in 2016. We concluded that forest plantations play an important role in mitigating GHG (greenhouse gases) emissions in Brazil. This study is helpful to improve national reporting on plantation forests and their GHG sequestration potential, and to achieve Brazil’s Nationally Determined Contribution and the Paris Agreement.
  相似文献   

15.
16.
We studied changes in area and species composition of six indigenous forest fragments in the Taita Hills, Kenya using 1955 and 1995 aerial photography with 2004 airborne digital camera mosaics. The study area is part of Eastern Arc Mountains, a global biodiversity hot spot that boasts an outstanding diversity of flora and fauna and a high level of endemism. While a total of 260 ha (50%) of indigenous tropical cloud forest was lost to agriculture and bushland between 1955 and 2004, large-scale planting of exotic pines, eucalyptus, grevillea, black wattle and cypress on barren land during the same period resulted in a balanced total forest area. In the Taita Hills, like in other Afrotropical forests, indigenous forest loss may adversely affect ecosystem services.  相似文献   

17.
There has been a significant advancement in the application of remote sensing from various space altitudes for inventorying and monitoring ofjhum (shifting) cultivation associated forest loss. The dynamic nature ofjhum system, complex physiography, small size of individualjhum plots and their discontinuous nature of distribution, highly heterogeneous vegetation and ever-changing atmospheric condition in the Arunachal Himalaya posses a great challenge to local flora and fauna. Indian Remote Sensing (IRS)-1C/1D LISS-III data were used to classify the current and abandonedjhum areas in Dibang valley district. The amount of area occupied by current and abandonedjhum corresponds to 199.34 km2(1.53%) and 225.40 km2(1.73%) respectively. Field data were collected following stratified random sampling method to gather information on plant community occurring in abandonedjhum cultivated areas. It was observed that only nine species out of 45 contribute to 50% of the important value index (IVI). Of the 45 species, 7 species (15.56%) have been found to be endemic to Eastern Himalayas. Population inducedjhum cultivation has led to deforestation, biodiversity loss, increased surface soil erosion, and sedimentation of water bodies in this area. The potential use of satellite-derived maps can best be used for better management and land use planning.  相似文献   

18.
The accuracy of three classification techniques namely Maximum likelihood, contextual and neural network for landuse/landcover with special emphasis on forest type mapping was evaluated in Jaldapara Wildlife Sanctuary area using IRS-1B LISS II data of Dec. 1994. The area was segregated into ten categories by using all the three classification techniques taking same set of training areas. The classification accuracy was evaluated from the error matrix of same set of training and validating pixels. The analysis showed that the neural net work achieved maximum accuracy of 95 percent, maximum likelihood algorithm with 91.06 percent and contextual classifier with 87.42 percent. It is concluded that the neural network classifier works better in heterogeneous and contextual in homogenous forestlands whereas the maximum likelihood is the best in both the conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号