首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use the radiocarbon ages of marine shells and terrestrial vegetation to reconstruct relative sea level (RSL) history in northern Southeast Alaska. RSL fell below its present level around 13,900 cal yr BP, suggesting regional deglaciation was complete by then. RSL stayed at least several meters below modern levels until the mid-Holocene, when it began a fluctuating rise that probably tracked isostatic depression and rebound caused by varying ice loads in nearby Glacier Bay. This fluctuating RSL rise likely reflects the episodic but progressive advance of ice in Glacier Bay that started around 6000 cal yr BP. After that time, RSL low stands probably signaled minor episodes of glacier retreat/thinning that triggered isostatic rebound and land uplift. Progressive, down-fjord advance of the Glacier Bay glacier during the late Holocene is consistent with the main driver of this glacial system being the dynamics of its terminus rather than climate change directly. Only after the glacier reached an exposed position protruding into Icy Strait ca. AD 1750, did its terminus succumb - a century before the climate changes that marked the end of the Little Ice Age - to the catastrophic retreat that triggered the rapid isostatic rebound and RSL fall occurring today in Icy Strait.  相似文献   

2.
Recognizing that climate influences both annual tree-ring growth and glacier mass balance, changes in the mass balance of Place Glacier, British Columbia, were documented from increment core records. Annually resolved ring-width (RW), maximum (MXD), and mean density (MD) chronologies were developed from Engelmann spruce and Douglas-fir trees sampled at sites within the surrounding region. A snowpack record dating to AD 1730 was reconstructed using a multivariate regression of spruce MD and fir RW chronologies. Spruce MXD and RW chronologies were used to reconstruct winter mass balance (Bw) for Place Glacier to AD 1585. Summer mass balance (Bs) was reconstructed using the RW chronology from spruce, and net balance was calculated from Bw and Bs. The reconstructions provide insight into the changes that snowpack and mass balance have undergone in the last 400 years, as well as identifying relationships to air temperature and circulation indices in southern British Columbia. These changes are consistent with other regional mass-balance reconstructions and indicate that the persistent weather systems characterizing large scale climate-forcing mechanisms play a significant glaciological role in this region. A comparison to dated moraine surfaces in the surrounding region substantiates that the mass-balance shifts recorded in the proxy data are evident in the response of glaciers throughout the region.  相似文献   

3.
树轮年代学的若干进展   总被引:60,自引:10,他引:60       下载免费PDF全文
邵雪梅 《第四纪研究》1997,17(3):265-271
树轮年代学是一门研究树木木质部年生长层,以及利用年生长层来定年的科学。由于树轮不仅是一种定年工具,它本身还可提供树轮生成时的环境要素信息,为一种环境变化的代用资料。在全球变化特别是在过去全球气候变化研究中,树轮年代学受到愈来愈广泛的重视,在近期内取得了长足的、惊人的进展。本文仅在树轮长年表的建立,树轮年代学生物基础研究──模式研究,利用树轮对环境要素变化的研究,以及树轮的图像分析等几个与环境变化研究相关的方面和本学科目前研究热点的若干进展,予以概要的论述。  相似文献   

4.
Remains of a Holocene drowned forest in southern Lake Huron discovered in 12.5 m of water (164 m above sea level), 4.5 km east of Lexington, Michigan USA (Sanilac site), provided wood to investigate environment and lake history using several proxies. Macrofossil evidence indicates a forest comprised primarily of conifers equivalent to the modern “rich conifer swamp” community, despite generally low regional abundance of these species in pollen records. Ages range from 7095 ± 50 to 6420 ± 70 14C yr BP, but the clustering of stump dates and the development of 2 floating tree-ring chronologies suggest a briefer forest interval of no more than c. 400 years. Dendrochronological analysis indicates an environment with high inter-annual climate variability. Stable-carbon isotope composition falls within the range of modern trees from this region, but the stable-oxygen composition is consistent with warmer conditions than today. Both our tree-ring and isotope data provide support for a warmer environment in this region, consistent with a mid-Holocene thermal maximum. This drowned forest also provides a dated elevation in the Nipissing transgression at about 6420 14C yr BP (7350 cal yr BP) in the southern Lake Huron basin, a few hundred years before reopening of the St. Clair River drainage.  相似文献   

5.
Thirty-six new and previously published radiocarbon dates constrain the relative sea-level history of Arviat on the west coast of Hudson Bay. As a result of glacial isostatic adjustment (GIA) following deglaciation, sea level fell rapidly from a high-stand of nearly 170 m elevation just after 8000 cal yr BP to 60 m elevation by the mid Holocene (~ 5200 cal yr BP). The rate of sea-level fall decreased in the mid and late Holocene, with sea level falling 30 m since 3000 cal yr BP. Several late Holocene sea-level measurements are interpreted to originate from the upper end of the tidal range and place tight constraints on sea level. A preliminary measurement of present-day vertical land motion obtained by repeat Global Positioning System (GPS) occupations indicates ongoing crustal uplift at Arviat of 9.3 ± 1.5 mm/yr, in close agreement with the crustal uplift rate inferred from the inferred sea-level curve. Predictions of numerical GIA models indicate that the new sea-level curve is best fit by a Laurentide Ice Sheet reconstruction with a last glacial maximum peak thickness of ~ 3.4 km. This is a 30–35% thickness reduction of the ICE-5G ice-sheet history west of Hudson Bay.  相似文献   

6.
Kenai, located on the west coast of the Kenai Peninsula, Alaska, subsided during the great earthquake of AD 1964. Regional land subsidence is recorded within the estuarine stratigraphy as peat overlain by tidal silt and clay. Reconstructions using quantitative diatom transfer functions estimate co‐seismic subsidence (relative sea‐level rise) between 0.28±0.28 m and 0.70±0.28 m followed by rapid post‐seismic recovery. Stratigraphy records an earlier co‐seismic event as a second peat‐silt couplet, dated to ~1500–1400 cal. yr BP with 1.14±0.28 m subsidence. Two decimetre‐scale relative sea‐level rises are more likely the result of glacio‐isostatic responses to late Holocene and Little Ice Age glacier expansions rather than to co‐seismic subsidence during great earthquakes. Comparison with other sites around Cook Inlet, at Girdwood and Ocean View, helps in constructing regional patterns of land‐level change associated with three great earthquakes, AD 1964, ~950–850 cal. yr BP and ~1500–1400 cal. yr BP. Each earthquake has a different spatial pattern of co‐seismic subsidence which indicates that assessment of seismic hazard in southern Alaska requires an understanding of multiple great earthquakes, not only the most recent. All three earthquakes show a pre‐seismic phase of gradual land subsidence that marked the end of relative land uplift caused by inter‐seismic strain accumulation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Many Northern Hemisphere paleoclimatic records, including ice cores, speleothems, lake sediments, ocean cores and glacier chronologies, indicate an abrupt cooling event about 8200 cal yr BP. A new well-dated series of sediment cores taken from Brown's Lake, a kettle in Northeast Ohio, shows two closely spaced intervals of loess deposition during this time period. The source of loess is uncertain; however, it is likely from an abandoned drainage and former glacial lake basin located to the north of the stagnant ice topography that gave rise to the kettle lake. Strong visual stratigraphy, loss on ignition data and sediment grain size analyses dated with 3 AMS radiocarbon dates place the two intervals of loess deposition between 8950 and 8005 cal yr BP. The possibility of a two-phase abrupt climate change at this time is a finding that has been suggested in other research. This record adds detail to the spatial extent and timing as well as possible structure of the 8.2-ka abrupt climate change event.  相似文献   

8.
The pattern of climate change in the Southern Hemisphere during the Younger Dryas (YD) chronozone provides essential constraint on mechanisms of abrupt climate change only if accurate, high-precision chronologies are obtained. A climate reversal reported previously at Kaipo bog, New Zealand, had been dated between 13,600 and 12,600 cal yr B.P. and appeared to asynchronously overlap the YD chron, but the chronology, based on conventionally radiocarbon-dated bulk sediment samples, left the precise timing questionable. We report a new high-resolution AMS 14C chronology for the Kaipo record that confirms the original chronology and provides further evidence for a mid-latitude Southern Ocean cooling event dated between 13,800 and 12,400 cal yr B.P. (2σ range), roughly equivalent to the Antarctic Cold Reversal.  相似文献   

9.
A multiproxy study of palaeoceanographic and climatic changes in northernmost Baffin Bay shows that major environmental changes have occurred since the deglaciation of the area at about 12 500 cal. yr BP. The interpretation is based on sedimentology, benthic and planktonic foraminifera and their isotopic composition, as well as diatom assemblages in the sedimentary records at two core sites, one located in the deeper central part of northernmost Baffin Bay and one in a separate trough closer to the Greenland coast. A revised chronology for the two records is established on the basis of 15 previously published AMS 14C age determinations. A basal diamicton is overlain by laminated, fossil-free sediments. Our data from the early part of the fossiliferous record (12 300–11 300 cal. yr BP), which is also initially laminated, indicate extensive seasonal sea-ice cover and brine release. There is indication of a cooling event between 11 300 and 10 900 cal. yr BP, and maximum Atlantic Water influence occurred between 10 900 and 8200 cal. yr BP (no sediment recovery between 8200 and 7300 cal. yr BP). A gradual, but fluctuating, increase in sea-ice cover is seen after 7300 cal. yr BP. Sea-ice diatoms were particularly abundant in the central part of northernmost Baffin Bay, presumably due to the inflow of Polar waters from the Arctic Ocean, and less sea ice occurred at the near-coastal site, which was under continuous influence of the West Greenland Current. Our data from the deep, central part show a fluctuating degree of upwelling after c . 7300 cal. yr BP, culminating between 4000 and 3050 cal. yr BP. There was a gradual increase in the influence of cold bottom waters from the Arctic Ocean after about 3050 cal. yr BP, when agglutinated foraminifera became abundant. A superimposed short-term change in the sea-surface proxies is correlated with the Little Ice Age cooling.  相似文献   

10.
The Late Quaternary climate history of the Larsemann Hills has been reconstructed using siliceous microfossils (diatoms, chrysophytes and silicoflagellates) in sediment cores extracted from three isolation lakes. Results show that the western peninsula, Stornes, and offshore islands were ice‐covered between 30 000 yr BP and 13 500 cal. yr BP. From 13 500 cal. yr BP (shortly after the Antarctic Cold Reversal) the coastal lakes of the Larsemann Hills were deglaciated and biogenic sedimentation commenced. Between 13 500 and 11 500 cal. yr BP conditions were warmer and wetter than during the preceding glacial period, but still colder than today. From 11 500 to 9500 cal. yr BP there is evidence for wet and warm conditions, which probably is related to the early Holocene climate optimum, recorded in Antarctic ice cores. Between 9500 and 7400 cal. yr BP dry and cold conditions are inferred from high lake‐water salinities, and low water levels and an extended duration of nearshore sea‐ice. A second climate optimum occurred between 7400 and 5230 cal. yr BP when stratified, open water conditions during spring and summer characterised the marine coast of Prydz Bay. From 5230 until 2750 cal. yr BP sea‐ice duration in Prydz Bay increased, with conditions similar to the present day. A short return to stratified, open water conditions and a reduction in nearshore winter sea‐ice extent is evident between 2750 and 2200 cal. yr BP. Simultaneously, reconstructions of lake water depth and salinity suggests relatively humid and warm conditions on land between 3000 and 2000 cal. yr BP, which corresponds to a Holocene Hypsithermal reported elsewhere in Antarctica. Finally, dry conditions are recorded around 2000, between 760 and 690, and between 280 and 140 cal. yr BP. These data are consistent with ice‐core records from Antarctica and support the hypothesis that lacustrine and marine sediments on land can be used to evaluate the effect of long‐term climate change on the terrestrial environment. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
Excavations in the late-glacial Presumpscot Formation at Portland, Maine, uncovered tree remains and other terrestrial organics associated with marine invertebrate shells in a landslide deposit. Buds of Populus balsamifera (balsam poplar) occurred with twigs of Picea glauca (white spruce) in the Presumpscot clay. Tree rings in Picea logs indicate that the trees all died during winter dormancy in the same year. Ring widths show patterns of variation indicating responses to environmental changes. Fossil mosses and insects represent a variety of species and wet to dry microsites. The late-glacial environment at the site was similar to that of today's Maine coast. Radiocarbon ages of 14 tree samples are 11,907 ± 31 to 11,650 ± 50 14C yr BP. Wiggle matching of dated tree-ring segments to radiocarbon calibration data sets dates the landslide occurrence at ca. 13,520 + 95/−20 cal yr BP. Ages of shells juxtaposed with the logs are 12,850 ± 65 14C yr BP (Mytilus edulis) and 12,800 ± 55 14C yr BP (Balanus sp.), indicating a marine reservoir age of about 1000 yr. Using this value to correct previously published radiocarbon ages reduces the discrepancy between the Maine deglaciation chronology and the varve-based chronology elsewhere in New England.  相似文献   

12.
Analysis of pollen, spores, macrofossils, and lithology of an AMS 14C-dated core from a subarctic fen on the Kenai Peninsula, Alaska reveals changes in vegetation and climate beginning 14,200 cal yr BP. Betula expansion and contraction of herb tundra vegetation characterize the Younger Dryas on the Kenai, suggesting increased winter snowfall concurrent with cool, sunny summers. Remarkable Polypodiaceae (fern) abundance between 11,500 and 8500 cal yr BP implies a significant change in climate. Enhanced peat preservation and the occurrence of wet meadow species suggest high moisture from 11,500 to 10,700 cal yr BP, in contrast to drier conditions in southeastern Alaska; this pattern may indicate an intensification and repositioning of the Aleutian Low (AL). Drier conditions on the Kenai Peninsula from 10,700 to 8500 cal yr BP may signify a weaker AL, but elevated fern abundance may have been sustained by high seasonality with substantial snowfall and enhanced glacial melt. Decreased insolation-induced seasonality resulted in climatic cooling after 8500 cal yr BP, with increased humidity from 8000 to 5000 cal yr BP. A dry interval punctuated by volcanic activity occurred between 5000 and 3500 cal yr BP, followed by cool, moist climate, coincident with Neoglaciation. Tsuga mertensiana expanded after ~ 1500 cal yr BP in response to the shift to cooler conditions.  相似文献   

13.
Annually resolved tree-ring width variations and radiocarbon ages were measured from a collection of 120 Lateglacial pine stumps excavated on the Swiss Plateau. These data – representing the oldest absolutely dated wood samples worldwide – extend the absolute tree-ring chronology from Central Europe by 183 years back to 12 593 cal. yr BP (10 644 cal. yr BC). They also yield a 1420-year floating chronology covering the entire Allerød and the early Younger Dryas (14 170–12 750 cal. yr BP). Radiocarbon data suggest a 250-year jump in the 14C reservoir correction around the time of the Allerød to Younger Dryas transition, although calendric dating of the floating chronology – by filling a ∼150 year gap – is necessary for confirmation. Various subgroups, based on the year of germination, were used to assess temporal changes in growth characteristics along the Allerød to Younger Dryas transition. Comparison of these Lateglacial data with a reference data set of living and historic pines from the Swiss Valais (AD 940–2000) revealed differences in both growth trend and level. The generally slower Lateglacial growth was likely influenced by higher geomorphic activity and severe climatic conditions. After removal of the biological age-trend, a strong common signal found in the tree-ring data suggests some skill in estimating interannual to multidecadal Lateglacial climatic variations.  相似文献   

14.
A 14C-dated magnetostratigraphy of absolute declination and inclination between 12500 and 10000 14C yr BP was recently developed for southern Sweden. Recently also the Swedish geochronological time-scale, based on c. 11 500 annually deposited clay-varves, was connected with the present. It should therefore be possible to compare the two chronologies with a reliable magnetostratigraphic record in an appropriate clay-varve section. We have found such a site within the Middle Swedish end-moraine zone. Statistical correlations between the two independently dated time-scales suggest that at 10500–10200 14Cy r BP the varve chronology exceeds the 14C chronology by the order of 500-600 varve yr. Other correlations indicate that the difference between the two chronologies was less at 11000 14C yr BP, and further correlations between the time-scales at 12000 14C yr BP suggest that the difference between the chronologies increased steadily from 12000 to 10000 14C yr BP. If these correlations are correct they imply that the 14C production rate increased steadily during the Late Weichselian.  相似文献   

15.
We propose a chronology of late Wisconsinan glacial fluctuations in middle North America, from Alberta to Wisconsin, based on radiocarbon dates derived solely from wood. Previous chronologies of the southwestern margin of the North American Continental Ice Sheet have depended to a considerable degree on radiocarbon dates from fine-grained organic sediment. This material is commonly contaminated with older carbon, resulting in chronologic confusion. By using only dates from wood, much of the confusion disappears. However, because of the scarcity of wood dates, only four of the sixteen identified fluctuations are accurately dated: an advance into Iowa about 14,000 to 13,500 BP, an advance into South Dakota and Iowa about 12,300 BP, an advance into the Lake Michigan basin about 11,700 BP, and an advance into the Lake Superior basin about 9900 BP. In addition, the beginning of late Wisconsinan glaciation, before 20,000 BP, is fairly well documented. None of the fluctuations in the western part of the region are accurately dated.  相似文献   

16.
Terraces of different age in the Zackenberg delta, located at 74°N in northeast Greenland, have provided the opportunity for an interdisciplinary approach to the investigation of Holocene glacial, periglacial, pedological, biological and archaeological conditions that existed during and after delta deposition. The raised Zackenberg delta accumulated mainly during the Holocene Climatic Optimum, starting slightly prior to 9500 cal. yr BP (30 m a.s.l.) and continued until at least 6300 cal. yr BP (0.5 m a.s.l.). Evidence of sea‐level change is based on conventional 14C dates of shells from the marine delta bottomsets, 14C AMS dating of macroscopic plant material from the foresets and of fluvial deposits. Arthropod and plant remains from 7960 cal. yr BP in the delta foresets include the oldest evidence of the arctic hare in Greenland and evidence of a rich herb flora slightly different from the modern flora. Empetrum nigrum and Salix herbacea remains indicate a summer temperature at least as high as today during delta deposition. Post‐depositional nivation activity, dated by luminescence, lichenometry and Schmidt Hammer measurements indicate mainly late Holocene activity, at least since 2900 yr BP, including Little Ice Age (LIA) avalanche activity. Pedological analyses of fossil podsols in the Zackenberg delta, including 14C AMS dating of selected organic rich B‐horizons, show continued podsol development during the Holocene Climatic Optimum and into the subsequent colder period of the late Holocene, until 3000–2400 yr BP. A Neo‐Eskimo house ruin found on the lower part of the delta, presently being eroded by the sea, is dated to AD 1800. It presumably was abandoned prior to AD 1869, and suggests that some of the last Eskimos that lived in northeast Greenland might have occupied the Zackenberg delta. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
We present a fossil pollen analysis from a swamp forest in the semiarid coast of Chile (32°05′S; 71°30′W), at the northern influence zone of southern westerly wind belt. A ∼10,000 cal yr BP (calendar years before 1950) palynological sequence indicates a humid phase characterized by dense swamp forest taxa dated between ∼9900 and 8700 cal yr BP. The presence of pollen-starved sediments with only scant evidence for semiarid vegetation indicates that extreme aridity ensued until ∼5700 cal yr BP. The swamp forest recovered slowly afterwards, helped by a significant increase in moisture at ∼4200 cal yr BP. A new swamp forest contraction suggests that another slightly less intense drought occurred between ∼3000 and 2200 cal yr BP. The swamp forest expansion begins again at ∼2200 cal yr BP, punctuated by a highly variable climate. Comparisons between the record presented here with other records across the region imply major variations in the extent of the southern westerlies during the Holocene. This variability could have been caused either by latitudinal displacements from the present mean position of southern westerlies wind belt or by changes in the intensity of the South Pacific Subtropical Anticyclone, both of which affect winter precipitation in the region.  相似文献   

18.
Until now, availability of wood from the Younger Dryas abrupt cooling event (YDE) in N. America ca. 12.9 to 11.6 ka has been insufficient to develop high-resolution chronologies for refining our understanding of YDE conditions. Here we present a multi-proxy tree-ring chronology (ring widths, “events” evidenced by microanatomy and macro features, stable isotopes) from a buried black spruce forest in the Great Lakes area (Liverpool East site), spanning 116 yr at ca. 12,000 cal yr BP. During this largely cold and wet period, the proxies convey a coherent and precise forest history including frost events, tilting, drowning and burial in estuarine sands as the Laurentide Ice Sheet deteriorated. In the middle of the period, a short mild interval appears to have launched the final and largest episode of tree recruitment. Ultimately the tops of the trees were sheared off after death, perhaps by wind-driven ice floes, culminating an interval of rising water and sediment deposition around the base of the trees. Although relative influences of the continental ice sheet and local effects from ancestral Lake Michigan are indeterminate, the tree-ring proxies provide important insight into environment and ecology of a N. American YDE boreal forest stand.  相似文献   

19.
Complex glacier and tree-line fluctuations in the White River valley on the northern flank of the St. Elias and Wrangell Mountains in southern Alaska and Yukon Territory are recognized by detailed moraine maps and drift stratigraphy, and are dated by dendrochronology, lichenometry, 14C ages, and stratigraphic relations of drift to the eastern (1230 14C yr BP) and northern (1980 14C yr BP) lobes of the White River Ash. The results show two major intervals of expansion, one concurrent with the well-known and widespread Little Ice Age and the other dated between 2900 and 2100 14C yr BP, with a culmination about 2600 and 2800 14C yr BP. Here, the ages of Little Ice Age moraines suggest fluctuating glacier expansion between ad 1500 and the early 20th century. Much of the 20th century has experienced glacier recession, but probably it would be premature to declare the Little Ice Age over. The complex moraine systems of the older expansion interval lie immediately downvalley from Little Ice Age moraines, suggesting that the two expansion intervals represent similar events in the Holocene, and hence that the Little Ice Age is not unique. Another very short-lived advance occurred about 1230 to 1050 14C yr BP. Spruce immigrated into the valley to a minimum altitude of 3500 ft (1067 m), about 600 ft (183 m) below the current spruce tree line of 4100 ft (1250 m), at least by 8020 14C yr BP. Subsequent intervals of high tree line were in accord with glacier recession; in fact, several spruce-wood deposits above current tree line occur bedded between Holocene tills. High deposits of fossil wood range up to 76 m above present tree line and are dated at about 5250, 3600 to 3000, and 2100 to 1230 14C yr BP. St. Elias glacial and tree-line fluctuations, which probably are controlled predominantly by summer temperature and by length of the growing and ablation seasons, correlate closely with a detailed Holocene tree-ring curve from California, suggesting a degree of synchronism of Holocene summer-temperature changes between the two areas. This synchronism is strengthened by comparison with the glacier record from British Columbia and Mt. Rainier, Likewise, broad synchronism of Holocene events exists across the Arctic between the St. Elias Mountains and Swedish Lappland. Finally, two sequences from the Southern Hemisphere show similar records, in so far as dating allows. Hence, we believe that a preliminary case can be made for broad synchronism of Holocene climatic fluctuations in several regions, although further data are needed and several areas, particularly Colorado and Baffin Island, show major differences in the regional pattern.  相似文献   

20.
Three time series based on precisely dated annual tree-ring widths have been used to reconstruct June plus July degree days for the central Alaska and northwestern Canada region. The time series are the longest recently developed chronologies for the area and represent 57 core samples from 27 trees. The degree-day reconstruction, extending back to A.D. 1524, exhibits much year-to-year variation and extended warming and cooling trends including a general warming trend from about 1840 to 1960. The reconstruction is in agreement with some subaretic glacial information and with data of percentage melting from arctic ice cores. This and similar reconstructions can provide quantitative information to compare with general circulation and energy budget models for longer time periods than are available in recorded meteorological data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号