首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
矢量C-V模型的高光谱遥感影像分割   总被引:1,自引:0,他引:1  
王相海  周夏  方玲玲 《遥感学报》2015,19(3):443-450
高光谱遥感影像除了包含普通2维影像所具有的空间信息还包含了1维光谱信息,传统的针对2维影像的分割方法不能很好地应用于高光谱遥感影像。为此,本文提出一种能够同时处理多波段影像的高光谱遥感影像矢量C-V模型分割方法。首先选出高光谱遥感影像中目标与背景对比度较大的波段,并通过计算波段相关系数,去除其中的冗余信息形成新的波段组合,进而根据所确定的波段组合构建高光谱遥感影像矢量矩阵;在此基础上,构造基于该矢量矩阵的矢量C-V分割模型。模型中通过引入基于梯度的边缘引导函数,在保留传统C-V模型基于区域信息进行影像分割的基础上,利用影像的边缘细节信息,增强了模型在异质区域和复杂背景情况下对目标边缘的捕捉能力,提高了对高光谱遥感影像的分割精度和速度。最后利用HYPERION数据进行仿真实验,并将实验结果和传统C-V模型和相关方法进行了对比,结果表明,本文方法能够在短时间内有效地分割高光谱遥感影像,与传统方法相比,具有分割精度更高运算速度更快的特点。  相似文献   

2.
陈伟  余旭初  张立福  张鹏强 《遥感学报》2012,16(6):1157-1172
高斯径向基核函数是基于光谱向量间欧氏距离的度量,对于因光照强度变化而引起的地物光谱变异敏感,当同类地物光谱发生变异时,基于高斯径向基核的高光谱影像地物检测算法的性能下降.为了解决该问题,基于光谱曲线形状相似性描述提出了光谱角度余弦核测度这一非正定核函数,并应用于一种非正定OCSVM 方法的高光谱影像地物检测.最后利用两幅高光谱影像进行了实验分析,实验结果证明了本文算法的有效性.  相似文献   

3.
利用稀疏促进原理以及高光谱影像端元提取传统算法,结合线性光谱混合模型,提出了一种采用稀疏促进的高光谱影像端元提取方法.该方法不需要预先对端元数量进行估计,也不需要假设影像中存在纯像元.利用模拟数据以及真实高光谱影像对提出方法、ICE算法和NMF算法进行了对比实验分析.实验结果表明:提出方法能稳定地从影像中提取端元并同时...  相似文献   

4.
针对高光谱影像特征提取中地物类别训练样本获取代价较高的情况,在线性判别分析的基础上,结合核方法和半监督学习理论,提出了一种基于核半监督判别分析(KSDA)的高光谱影像特征提取方法。该方法同时利用少量已知类别和大量未知类别样本数据进行模型的学习和训练。通过OMIS高光谱影像数据实验表明:在少量已知类别训练样本的条件下,经KSDA特征提取的样本数据在特征空间中能更好地聚集成团,且类别之间的距离较大,增加了类别之间的可分性,得到了较高的分类精度;同时,提取的特征影像能够较好地区分各种地物类别。  相似文献   

5.
基于相关向量机的高光谱影像分类研究   总被引:2,自引:0,他引:2  
虽然支持向量机在高光谱影像分类得到成功应用,但是它自身固有许多不足之处。相关向量机是在贝叶斯框架下提出的更加稀疏的学习机器,它没有规则化系数,其核函数不需要满足Mercer条件,不仅具备良好的泛化能力,而且还能够得到具有统计意义的预测结果。本文从分析支持向量机用于高光谱影像分类存在的不足出发,提出了一种基于相关向量机的高光谱影像分类方法,介绍了稀疏贝叶斯分类模型,将相关向量机学习转化为最大化边缘似然函数估计问题,并采用了快速序列稀疏贝叶斯学习算法。通过PHI和OMIS影像分类实验分析表明了基于相关向量机的高光谱影像分类方法的优越性。  相似文献   

6.
基于区域合并分割方法的性能很大程度上取决于区域模型、合并准则和合并顺序。依据遥感影像的目视解译原理,分析高分辨率遥感影像的特点,设计一种新的融合光谱、形状和空间位置的合并代价函数进行区域相似性度量。同时加入面积控制参数,使得区域在光谱值相同的情况下优先合并小区域。在合并顺序的改进中,以最优邻接链的形式来表达和获取局部范围的最小合并代价区域对,确保每次相互合并的区域都为局部最优。对QuickBird多光谱影像进行分割实验并与eCognition的分割结果比较,结果证明本文方法在分割精度上有优势,更符合人的视觉感知。  相似文献   

7.
针对高光谱影像非线性分类问题,根据高光谱影像光谱分辨率高且光谱具有非线性的特点,结合深度学习理论,提出了一种采用降噪自动编码器(DAE)的高光谱影像分类方法。该方法结合降噪自动编码器与SOFTMAX分类器,构造深层网络分类模型;然后,利用加噪后的光谱数据,采用Dropout方法对分类模型进行预训练和微调;最后,利用训练得到的网络模型学习高光谱影像光谱的隐含特征,实现高光谱影像的分类。采用该方法对AVIRIS和PHI的高光谱影像分别进行分类对比实验,结果表明该方法能有效提高高光谱影像分类精度。  相似文献   

8.
针对云检测任务中云和背景样本不均衡易造成模型泛化能力差的问题,应用代价敏感学习方法,在卷积网络的损失函数中引入代价系数,同时使用F1分数代替总体精度指标进行模型选择,可有效克服样本不均衡问题.以高分一号影像为实验数据,提取了不同下垫面的云,验证了本方法的有效性.  相似文献   

9.
基于多层形状特征提取与融合的城市高光谱影像解译   总被引:1,自引:0,他引:1  
以前的研究往往从像素光谱的角度来解译高光谱影像,忽略了像素间的空间上下文关系。本文提出一种基于像素和对象层形状特征提取与融合的方法,把多层形状特征和光谱信息用支持向量机(SVM)输出函数方法进行融合,用于提取城市高光谱影像的形状特性,利用影像的空间关系。实验用HydICE-DC航空高光谱数据对提出的方法进行了验证,结果表明:像素级形状指数能够提供比对象级形状指数更优的结果,但像素—对象级形状特征的融合,能够给出更高的精度。  相似文献   

10.
传统的SVM模型采用同一映射形式的单核模式对叠加的空间特征和光谱特征进行处理,往往无法得到理想的结果,为了解决该问题,提出了一种基于扩展的形态学剖面(EMP)与混合核SVM的高光谱遥感影像分类方法.该方法首先通过EMP有效提取空间信息,再采用不同的核函数处理空间信息与光谱信息,最终完成混合核SVM的高光谱影像分类.对多种组合形式的单核以及多核SVM模型进行了对比分析,结果表明,该方法具有较高的适应性,对于高光谱遥感影像的分类精度较高.  相似文献   

11.
基于支撑向量机概率输出的高光谱影像混合像元分解   总被引:5,自引:0,他引:5  
提出利用支撑向量机(SVM)后验概率来分解高光谱影像的混合像元,通过支撑向量机的输出值转化为两两配对的后验概率,再由两两配对的概率值求得多类后验概率,并以像元所属类别的后验概率作为地物的组分信息。实验结果表明,该方法能较好地估计出混合像元的组分比。  相似文献   

12.
Sub-pixel mapping is a promising technique for producing a spatial distribution map of different categories at the sub-pixel scale by using the fractional abundance image as the input. The traditional sub-pixel mapping algorithms based on single images often have uncertainty due to insufficient constraint of the sub-pixel land-cover patterns within the low-resolution pixels. To improve the sub-pixel mapping accuracy, sub-pixel mapping algorithms based on auxiliary datasets, e.g., multiple shifted images, have been designed, and the maximum a posteriori (MAP) model has been successfully applied to solve the ill-posed sub-pixel mapping problem. However, the regularization parameter is difficult to set properly. In this paper, to avoid a manually defined regularization parameter, and to utilize the complementary information, a novel adaptive MAP sub-pixel mapping model based on regularization curve, namely AMMSSM, is proposed for hyperspectral remote sensing imagery. In AMMSSM, a regularization curve which includes an L-curve or U-curve method is utilized to adaptively select the regularization parameter. In addition, to take the influence of the sub-pixel spatial information into account, three class determination strategies based on a spatial attraction model, a class determination strategy, and a winner-takes-all method are utilized to obtain the final sub-pixel mapping result. The proposed method was applied to three synthetic images and one real hyperspectral image. The experimental results confirm that the AMMSSM algorithm is an effective option for sub-pixel mapping, compared with the traditional sub-pixel mapping method based on a single image and the latest sub-pixel mapping methods based on multiple shifted images.  相似文献   

13.
高光谱影像光谱-空间多特征加权概率融合分类   总被引:3,自引:3,他引:0  
提出了一种基于光谱-空间多特征加权概率融合的高光谱影像分类方法。首先,利用最小噪声分离(minimum noise fraction,MNF)方法对高光谱影像进行降维和特征提取,并以得到的MNF特征影像作为光谱特征,联合灰度共生矩阵(gray level co-occurrence matrix,GLCM)提取的纹理特征、基于OFC算子建立的多尺度形态学特征以及采用连续最大角凸锥(sequential maximum angle convex cone,SMACC)提取的端元组分特征,组成3组光谱-空间特征;然后利用支持向量机(support vector machine,SVM)对每一组光谱-空间特征进行分类,得到每组特征的概率输出结果;最后,建立多特征加权概率融合模型,应用该模型将不同特征的概率输出结果进行加权融合,得到最终分类结果。为了验证该方法的有效性,利用ROSIS和 AVIRIS影像进行试验,总体分类精度分别达到97.65%和96.62%。结果表明本文的方法不但较好地克服了传统基于单一特征高光谱影像分类的局限性,而且其分类效果也优于常规矢量叠加(vector stacking,VS)和概率融合的多特征分类方法,有效地改善了高光谱影像的分类结果。  相似文献   

14.
面对高光谱影像分类的半监督阶梯网络   总被引:1,自引:0,他引:1  
提出一种半监督阶梯网络用于对高光谱影像进行分类,以解决小样本条件下基于堆栈式自编码器的高光谱影像分类方法分类精度不高的问题。首先,该网络以堆栈式自编码器为基础,在编码器和解码器之间增加横向连接参数构建阶梯网络,以使网络适合半监督分类;然后将无监督损失函数与有监督损失函数之和作为最终优化的目标函数,采用半监督的方式对整个网络进行训练。为进一步提高分类精度,提取局部二值模式纹理特征进行分类实验。实验结果表明:提出的半监督阶梯网络能够较好地解决高光谱影像分类小样本问题;且LBP纹理特征能够有效提高分类精度。  相似文献   

15.
针对高光谱图像分类中对光谱信息利用不足的问题,提出一种基于卷积神经网络在光谱域开展的分类算法。该算法通过构建五层网络结构,逐像素对光谱信息开展分析,将全光谱段集合作为输入,利用神经网络展开代价函数值的计算,实现对光谱特征的提取与分类。实验中采用三组高光谱遥感影像数据进行对比分析,以India Pines数据集为例,提出的基于卷积神经网络的分类方法的分类正确率达到90.16%,比RBF-SVM方法高出2.56%,相比三种传统的深度学习方法高出1%~3%,训练速度也较为理想。实验结果表明,本文所提出的算法充分利用了高光谱图像中逐像素点的光谱域信息,能够有效提高分类正确率。与传统学习算法相比,在较少训练样本的情况下,更能发挥其良好的分类性能。  相似文献   

16.
Targeting at a reliable image matching of multiple remote sensing images for the generation of digital surface models, this paper presents a geometric-constrained multi-view image matching method, based on an energy minimization framework. By employing a geometrical constraint, the cost value of the energy function was calculated from multiple images, and the cost value was aggregated in an image space using a semi-global optimization approach. A homography transform parameter calculation method is proposed for fast calculation of projection pixel on each image when calculating cost values. It is based on the known interior orientation parameters, exterior orientation parameters, and a given elevation value. For an efficient and reliable processing of multiple remote sensing images, the proposed matching method was performed via a coarse-to-fine strategy through image pyramid. Three sets of airborne remote sensing images were used to evaluate the performance of the proposed method. Results reveal that the multi-view image matching can improve matching reliability. Moreover, the experimental results show that the proposed method performs better than traditional methods.  相似文献   

17.
小样本的高光谱图像降噪与分类   总被引:1,自引:0,他引:1  
在样本数目稀少情况下实现高光谱图像精细分类是个挑战性的问题。高光谱图像信噪比提高比较困难,噪声大小对分类结果有最直接的影响。利用高光谱图像相邻波段之间的相关性和相邻像素之间的相关性,提出多级降噪滤波的高光谱图像分类方法,通过改进的两阶段稀疏与低秩矩阵分解方法,去除高光谱图像中能量较高的噪声,利用主成分分析方法去除高光谱图像中能量较低的噪声,引导滤波方法去除分类结果图中的"椒盐噪声"。选取两幅真实高光谱图像进行实验,结果表明,两阶段稀疏与低秩矩阵分解法和主成分分析法两种降噪方法具有较强的互补性;引导滤波方法使得分类图更加平滑且分类精度更高。与其他光谱空间分类方法相比,本文方法分类精度更高,且在样本极少时能获得很高的分类精度。  相似文献   

18.
高光谱遥感影像的波段光谱特征是各类地物内在物理化学性质的反映,在对不同地物进行分类与识别时具有巨大潜能,但由于其波段多造成的信息冗余,需要对高光谱数据进行有效降维,以提高高光谱影像的分类准确度。本文提出了基于判别局部片排列的流形学习算法(DLA)对Hypersion高光谱数据进行降维,通过对局部样本数据进行流形学习框架内的优化训练,将原始光谱特征空间转换为低维的最优判别流形子空间,然后在该子空间内利用最大似然分类器对Hypersion影像中的每个像素进行分类,并与主成分分析(PCA)、原始光谱特征(spectral)降维方法的分类效果进行比较。结果表明,DLA能够有效提高高光谱数据的分类准确度,对不同树种分类取得了满意效果。  相似文献   

19.
联合空-谱信息的高光谱影像深度三维卷积网络分类   总被引:4,自引:2,他引:2  
针对高光谱影像分类高维和小样本的特点,提出一种基于深度三维卷积神经网络的高光谱影像分类方法。首先,该方法直接以高光谱数据立方体为输入,利用三维卷积操作提取高光谱数据立方体的三维空-谱特征。然后,利用残差学习构建深层网络,提取更高层次的特征表达,以提高分类精度。最后,采用Dropout正则化方法防止过拟合。利用Pavia大学、Indian Pines和Salinas 3组高光谱数据进行试验验证,结果表明,与支持向量机和现有的基于深度学习的高光谱影像分类方法相比,该方法能有效提高高光谱影像的地物分类精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号