首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Existing literature lacks information on formulation and performance assessment of diffuse solar radiation models in the Eastern African region yet this region has a high potential for the utilization of solar energy. The objective of this paper is to assess the performance of seventeen diffuse solar irradiation empirical correlations, at Kampala, Uganda. The best performing correlations were determined using the ranking method. The normalized absolute mean bias error and root mean square error were computed and utilized in the ranking process. The results indicated that the correlations relating diffuse transmittance with relative sunshine duration are more reliable for diffuse solar radiation predictions at least in the Uganda environment. These models are expressed in terms of first, second and third order polynomials of the relative sunshine duration and are particularly recommended for their simplicity and worldwide applicability.  相似文献   

2.
Summary Solar radiation incident on the Earth’s surface is a determining factor of climate on Earth, hence having a proper solar radiation database is crucial in understanding climate processes in the Earth’s atmosphere. Solar radiation data may be used in the development of insolation maps, analysis of crop growth and in the simulation of solar systems. Unfortunately, measured solar radiation data may not be available in locations where it is most needed. An alternative to obtaining observed data is to estimate it using an appropriate solar radiation model. The purpose of this study is to assess the performance of thirteen global solar radiation empirical formulations, in Kampala, Uganda, located in an African Equatorial region. The best performing formulations were determined using the ranking method. The mean bias error, root mean square error and t-statistic value were calculated and utilized in the ranking process. Results have shown that the formulation: is ranked the highest and therefore is the recommended empirical equation for the estimation of the monthly mean global solar irradiation in Kampala, Uganda and in other African Equatorial locations with similar climate and terrain.  相似文献   

3.
利用重庆地区1999年和2018年气象数据, 分别采用薄盘光滑样条、协同克里金、普通克里金、反距离加权4种方法, 从年和月两种尺度对气温、降水、太阳总辐射三个要素进行空间插值; 采取交叉验证方法, 用MAE、MRE、RMSE评估插值精度, 确定各要素最优插值方法。结果表明: 气温和太阳总辐射最优插值方法为薄盘光滑样条, 降水为反距离加权; 插值精度上气温、太阳总辐射高值月份优于低值月份, 降水则相反, 但三个要素均表现出年尺度优于月尺度。MRE检验表明, 插值精度为气温>太阳总辐射>降水, 1999年年尺度插值精度分别为1.86%、4.60%、6.87%, 月尺度插值精度分别为2.79%、5.82%、17.42%;2018年太阳总辐射年、月尺度插值精度分别为3.03%、4.88%, 区域站加密后气温、降水年尺度插值精度分别为2.03%、11.20%, 月尺度对应插值精度分别为3.20%、23.14%。  相似文献   

4.
基于塔克拉玛干沙漠腹地面积最大的天然孤立绿洲达理雅博依2015年1月—2016年2月太阳总辐射观测资料,运用H.L.Penman经验公式模拟计算了该地区2015年逐日总辐射累计量,模拟值与实测值的误差分析显示:本气候学方法成功模拟了沙漠腹地总辐射的年内变化趋势。使用模拟值估算得到达理雅博依绿洲2015年太阳总辐射累计量约为5 332.23 MJ·m-2。又以相同方法模拟了塔中气象站2015年3—5月总辐射变化,结果较达理雅博依的模拟更接近实测值,说明本模拟在塔克拉玛干沙漠腹地不同地点结果有效。  相似文献   

5.
我国近20年太阳辐射时空分布状况模式评估   总被引:8,自引:1,他引:7       下载免费PDF全文
利用NCAR/PSU联合研发的第5代中尺度气象模式(MM5),结合最优插值方法,模拟获得高时空分辨率的我国太阳辐射分布特征。MM5模式模拟中采用敏感性分析方法挑选参数化方案,结合1975—1997年辐射日平均值资料验证模拟效果,采用最优插值方法优化辐射的模拟效果,并导入GIS平台进行统计分析。分析表明:最优插值后辐射模拟平均标准绝对误差由原来的24.4%下降到8.5%,平均标准偏差由20.6%下降到3.5%。模拟获得的全国平均年太阳辐射总量为5648.6 MJ·m~(-2),空间分布上,呈现以内蒙中西部—宁夏—甘肃西北部—四川西部—云南西北部为分界线的西高东低特征,分界线以西太阳辐射在6000 MJ·m~(-2)以上,东部以华北太阳辐射为最高;1975—1997年年太阳辐射总量呈现上升—下降—上升的变化趋势,1978年太阳辐射最高,1989年最低。此外,基于Arc GIS 8.3统计获得各省份平均年太阳辐射总量,对各省份太阳辐射丰富程度进行等级划分,统计结果表明:西藏、青海、新疆是太阳辐射最丰富的省份,其中,西藏平均年太阳辐射总量在6900MJ·m~(-2)以上。  相似文献   

6.
基于空气污染指数的太阳日总辐射计算方法   总被引:2,自引:1,他引:1       下载免费PDF全文
通过对2001—2012年全国23个站实测资料的分析,利用非线性回归法建立了以气温日较差、天文日照百分率和空气污染指数为主导因子的太阳日总辐射模型,这里简称为DSRM-Y模型 (Daily Solar Radiation Model-Y),检验其效果并与已有的DSRM-C模型 (Daily Solar Radiation Model-C) 进行效果比对。结果表明:太阳日总辐射与空气污染指数呈显著负相关,DSRM-Y模型的太阳日总辐射估算值与实测值的散点图以及平均偏差、均方根误差、误差分析均表现出较好的拟合效果。将模型应用于西宁、上海、昆明3个代表站,空气污染指数上升后,3个站太阳日总辐射均呈减少趋势;23个站DSRM-Y模型的均方根误差均小于DSRM-C模型,即DSRM-Y模型的拟合效果好于DSRM-C模型。  相似文献   

7.
Global solar radiation is of great significance to the balance of ground surface radiation, the energy exchange between the Earth’s surface and atmosphere, and the development of weather and climate systems in various regions. In this study, the monthly global radiation recorded at 23 stations over the Qinghai–Tibetan Plateau (QTP) was utilized to estimate global solar radiation (Q) from sunshine duration and to obtain improved fits to the variation coefficients of the monthly Angström–Prescott model (APM). The modeling results were evaluated by calculating the statistical errors, including mean bias error, mean absolute error, root mean square error, and mean relative error. We demonstrate that the monthly Q values can be predicted accurately by APM over the QTP. We also assess the variations of Q values at 116 meteorological stations by APM over the QTP during 1961–2000. The analysis shows that the annual mean sunshine duration amounted to more than 3,000 h over the whole plateau, implying promising prospects for economic applications of solar energy. During the past 40 years, the mean global solar radiation has been relatively high in the western QTP, extending northward to the Inner Mongolian Plateau. Although its decadal variations in the QTP and surrounding regions were inconsistent, the anomaly values of global solar radiation were generally positive during the 1960s and 1970s, indicating that the QTP’s global solar radiation has increased during those periods. The anomaly values were negative during the 1980s and 1990s, showing that the plateau’s global solar radiation has decreased during those periods. Global solar radiation over the QTP is negatively proportional to latitude but positively proportional to altitude and relative sunshine duration. Three factors, the sunshine duration, latitude, and altitude, exert great influence on global surface radiation, of which sunshine duration is most significant. A high-variation-coefficient zone of global solar radiation occurred in the western part of the QTP but, on average, the variation coefficient of the plateau’s global solar radiation was only 0.031, suggesting that the variation in global radiation was relatively stable over the whole QTP.  相似文献   

8.
Three simple methods to estimate global solar radiation are proposed in addition to (Solar Energy 63 (1998) 147). All were tested seasonally and at different sky conditions at seven locations in Egypt. The methods use ground-based measurements of maximum and minimum temperature, daily mean of cloud cover and extraterrestrial global radiation. Average of root mean square differences (RMSD) for a comparison between observed and estimated global radiation for all locations tested was around 10% for the new methods and 13% for Supit–Van Kappel method. The coefficient of determination R2 is higher for the new methods for all tested locations. Better results were obtained when applying the new methods to different seasons. The differences in root mean square error (RMSE) between the new methods and Ångstrom–Prescott method that is based on sunshine duration data were less than 1.0 MJ m−2 day−1 at all sites. On the whole, the performance statistics demonstrate that the new methods are better when compared by Ångstrom–Prescott method.  相似文献   

9.
All numerical weather prediction (NWP) models inherently have substantial biases, especially in the forecast of near-surface weather variables. Statistical methods can be used to remove the systematic error based on historical bias data at observation stations. However, many end users of weather forecasts need bias corrected forecasts at locations that scarcely have any historical bias data. To circumvent this limitation, the bias of surface temperature forecasts on a regular grid covering Iran is removed, by using the information available at observation stations in the vicinity of any given grid point. To this end, the running mean error method is first used to correct the forecasts at observation stations, then four interpolation methods including inverse distance squared weighting with constant lapse rate (IDSW-CLR), Kriging with constant lapse rate (Kriging-CLR), gradient inverse distance squared with linear lapse rate (GIDS-LR), and gradient inverse distance squared with lapse rate determined by classification and regression tree (GIDS-CART), are employed to interpolate the bias corrected forecasts at neighboring observation stations to any given location. The results show that all four interpolation methods used do reduce the model error significantly, but Kriging-CLR has better performance than the other methods. For Kriging-CLR, root mean square error (RMSE) and mean absolute error (MAE) were decreased by 26% and 29%, respectively, as compared to the raw forecasts. It is found also, that after applying any of the proposed methods, unlike the raw forecasts, the bias corrected forecasts do not show spatial or temporal dependency.  相似文献   

10.
为讨论不同时间序列模型对电离层垂直总电子含量(VTEC)的预报效果,在平静电离层条件下,采用载波相位平滑伪距法解算单站上空的电离层VTEC值,分别利用自回归积分滑动平均模型(ARIMA)与Holt-Winters指数平滑模型进行逐站建模,通过时长为9 d的样本序列实现3 d预报,并对预报值进行系统评估.结果表明,时间序列模型能够较好地反映预报期内的电离层VTEC变化情况,均方根误差均值不超5 TECU.此外,Holt-Winters乘法模型的预报值偏差最大,加法模型次之,ARIMA模型在11个测站的相对精度都高于Holt-Winters指数平滑模型,且其均方根误差峰值最小,具有最高的预报精度.  相似文献   

11.
Delaunay三角剖分法在降水量插值中的应用   总被引:1,自引:0,他引:1  
熊敏诠 《气象学报》2012,70(6):1390-1400
Delaunay三角剖分方法在空间分析中具有重要地位,文中简要介绍了Delaunay三角网特性和常用的3类算法,并对随机增长法实现过程进行了详细阐述.根据三角分片线性插值原理,求得插值系数,实现对任意点的三角分片线性插值.利用2008年中国2200个观测站的08时24 h降水量资料,对全中国范围及划分的8个区域内相应的0.28125°×0.28125°降水量格点场,使用交叉检验方法,对比分析了三角分片线性插值和反距离权重法的估值准确率.结果表明:在各区域,三角分片线性插值法的均方根误差偏小;在站点较密集的区域,均方根误差、平均绝对误差比较中,三角分片线性插值都有一定的优势;在平均误差对比中,三角分片线性插值优势明显,在全中国范围交叉检验中,三角分片线性插值法对应的年平均误差是0.005 mm,而反距离权重法为-0.107 mm,对其可能的原因进行了分析,证明了Delaunay三角剖分法的合理性.同时,从图形上展示了降水量的Delaunay三角网的三维结构图和三角分片线性插值后的格点场,在直观上,Delaunay三角剖分后得到降水分布和实况保持一致,并有较好的视觉效果;通过三角分片线性插值得到的格点场降水量分布图,克服了反距离权重法的固有缺陷,使获得的降水量格点场趋于合理,提高了插值精度.最后,探讨了Delaunay三角网在气象领域的应用前景.  相似文献   

12.
This paper describes and tests two models for estimating net radiation(or the radiation balance)on sloping surfacesof alpine environments.They are an empirical method based on the linear relationship between net radiation and globalsolar radiation and a flux-by-flux method involving the estimation of all the individual components of radiation budgetindependently.The results show that the empirical method is capable of predicting hourly net radiation on sloping sur-faces to within about±53 W m~(-2) under all sky conditions.During clear sky conditions,it could predict net radiation onslopes to within±58 W m~(-2) or 16% of the measured values.The flux-by-flux method,although it did not perform aswell as the empirical method,performed adequately and could give estimates of net radiation on slopes with root meansquare error of less than 74 W m~(-2)(20%)and a mean bias error of 27 W m~(-2)(7%).  相似文献   

13.
Although accurately evaluating photosynthetically active radiation is important, much effort is required to measure this radiation using a quantum sensor. We develop a new model that makes estimates using only general meteorological data—solar radiation, atmospheric pressure, air temperature, and relative humidity. Root mean square deviations for eight datasets at five sites in Japan were smaller than 5.2 %, similar to error in other studies and to individual differences of quantum sensors. Most root mean square deviations of nine previous models and our eight datasets are larger than that of the new estimation model, which performed well. This suggests that the model is useful for estimating photosynthetically active radiation in a temperate, humid area of Japan.  相似文献   

14.
王晓东  曹雯  伍琼  岳伟  段春锋 《气象科学》2021,41(2):245-252
利用1961-2015年黄淮地区8个辐射站太阳辐射和日照时数等常规气象资料,分别评价6种常用的太阳总辐射和有效辐射估算模型在黄淮地区的适用性,同时采用多元回归分析和迭代等方法,对辐射参数进行优化调整,建立了适合本地区的辐射最优化估算模型.结果 表明:童宏良公式和邓根云公式分别在估算太阳总辐射和地面有效辐射时的误差最小,...  相似文献   

15.
王林  陈正洪  唐俊 《气象》2014,40(8):1006-1012
基于湖北省气象新能源研究中心光伏电站一年完整的发电数据与同期气象资料,对辐射和发电功率短期预报方法进行检验分析,结果表明:(1)太阳辐射度预报与实况有很好的对应关系,相关系数在0.77以上,均通过a=0.001的显著性水平检验。(2)光伏发电功率预报的短期方法中,以模式辐照度订正值代入光电转换模型的方法最优,预报第一天的相对均方根误差为0.16。(3)太阳辐射预报及光伏发电功率预报随太阳高度角变化而呈一定的规律性,冬季中午误差最大,夏季晚上误差最小;阴雨天气误差明显高于晴天。如何降低阴雨天气预报时的误差将是下一步工作中需要研究的重点。  相似文献   

16.
A new scheme for the estimation of daily global solar radiation over sloped topography in China is developed based on the Iqbal model C and MODIS cloud fraction. The effects of topography are determined using a digital elevation model. The scheme is tested using observations of solar radiation at 98 stations in China, and the results show that the mean absolute bias error is 1.51 MJ m~(-2) d~(-1) and the mean relative absolute bias error is 10.57%. Based on calculations using this scheme,the distribution of daily global solar radiation over slopes in China on four days in the middle of each season(15 January,15 April, 15 July and 15 October 2003) at a spatial resolution of 1 km × 1 km are analyzed. To investigate the effects of topography on global solar radiation, the results determined in four mountains areas(Tianshan, Kunlun Mountains, Qinling,and Nanling) are discussed, and the typical characteristics of solar radiation over sloped surfaces revealed. In general, the new scheme can produce reasonable characteristics of solar radiation distribution at a high spatial resolution in mountain areas,which will be useful in analyses of mountain climate and planning for agricultural production.  相似文献   

17.
利用1km和5km多源融合格点实况数据和四川地面观测站点资料,采用预报准确率、平均绝对误差、均方根误差和Alpha Index(AI)等统计量,选取2020年夏季四川2次高温天气过程对多源融合格点实况数据的质量进行了检验评估。研究结果表明:多源融合格点实况数据利用邻近插值方法插值到站点优于双线性插值;误差大值区主要位于高海拔地区,如川西高原、攀西地区及盆地山周;AI指数接近于0,多源融合格点实况数据没有随机误差,较为接近理想值;1km分辨率融合格点实况数据在四川的适用性优于5km,误差≤2℃的准确率可达98%,且均方根误差< 1。   相似文献   

18.
GMS卫星资料估算地表旬太阳辐射   总被引:3,自引:0,他引:3  
刘文  刘洪鹏  王延平 《气象》2002,28(6):35-38
GMS-5静止气象卫星较宽的可见光波段,为估算到达地表的太阳辐射提供了极好的信息源。利用GMS-5可见光通道资料,分析估计太阳辐射的可行性,并给出了相应的卫星资料处理方法。利用逐时观测资料和济南日射观测站太阳总辐射小时辐照总量实测资料,建立了可见光反照率与小时辐照总量的统计关系,探讨了旬太阳辐射的估算模型。估算结果与日射站实测结果比较,旬辐射估计量的均方误差为7.7MJ.m^-1,平均相对误差为3.4%。  相似文献   

19.
采用两种插值方法将2018年2m气温实况融合格点分析产品插值到2380个国家级考核站,通过相关系数、平均值误差、平均绝对误差、均方根误差及准确率等指标对该产品进行评估。结果表明:利用邻近插值法得到的评估结果略优于双线性插值法,实况融合格点分析产品的评估结果具有一定的日变化和月变化。总体而言,逐小时实况融合格点产品与站点实况基本一致,具有较高的参考性,其相关系数达到0.99以上,均方根误差在1℃以下,2℃以内准确率达到98%以上,1℃以内准确率达到95%以上。分省和分海拔评估结果表明,评估结果随海拔高度的增加而变差,因此在海拔较高、地形较复杂区域、气象站较稀疏区域应用该产品时应谨慎;由小时实况融合格点产品获得的日最高、最低温度也有很高的指示性;该产品对高温过程也有较好的监测能力。   相似文献   

20.
NASA/GEWEX (National Aeronautics and Space Administration/Global Energy and Water Cycle Experiment) Surface Radiation Budget (SRB) has released its latest radiation dataset, version 3.0. We examine the accuracy of the monthly mean global radiation in China using surface-observed radiation (SOR) data at 42 stations during the period 1984?C2004. Overall comparison shows a general overestimation of satellite retrieval radiation data with a bias of 14.6?W?m?2 and a root mean square error of 25.9?W?m?2. Differences at individual stations suggested satellite data are consistently higher than surface measurements over eastern China (110°E), but occasional underestimation occurs in Western China, especially Southwest China. Intra-annual variation analysis indicates that SRB satellite radiation can capture the annual cycle well. For trend of global radiations, there are evident discrepancies between satellite retrievals and surface measurements for both the entire period and segmental terms. For the entire period from 1984 to 2004, most stations show a positive trend based on surface measurements, while the majority of collocated pixels show a negative trend. Segmental trends demonstrated that the principal difference occurred during the first period of 1981?C1994. After 1994, the two datasets change similarly. Therefore, trend analysis in terms of detecting global dimming/brightening remains very difficult as surface measurements and satellite products do not agree yet. In addition, some proposals are made towards better understanding of the bias of satellite products and to improve further the satellite retrieval algorithm with better representation of both cloud and aerosol properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号