首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Linear dispersion characteristics of the coupled drift acoustic modes are investigated in inhomogeneous dusty magnetoplasmas both when the dust is considered immobile and when the dust dynamics is taken into account in the presence of nonthermal population of electrons and ions. In this regard, Cairns and Kappa distributed electrons and ions are considered. It is found that the nonthermal distributions affect the phase velocities and the fundamental scalelengths of the plasma. It is found that for both the ion and dust dynamics driven waves, the phase velocities are highest for Cairns, intermediate for Kappa, whereas they are minimum for the Maxwellian distributed electrons. The work presented here may be useful to understand the low frequency electrostatic modes in inhomogeneous dusty plasmas such as those found in planetary environments.  相似文献   

2.
A theoretical investigation is made on the formation as well as basic properties of dust-ion-acoustic (DIA) shock waves in a magnetized nonthermal dusty plasma consisting of immobile charge fluctuating dust, inertial ion fluid and nonthermal electrons. The reductive perturbation method is employed to derive the Korteweg-de Vries-Burgers equation governing the DIA shock waves. The combined effects of external static magnetic field, obliqueness, nonthermal electron distribution and dust charge fluctuation on the DIA shock waves are also investigated. It is shown that the dust charge fluctuation is a source of dissipation, and is responsible for the formation of the DIA shock waves. It is also observed that the combined effects of obliqueness, nonthermal electron distribution and dust charge fluctuation significantly modify the basic properties of the DIA shock waves. The implications of our results in space and laboratory dusty plasma situations are briefly discussed.  相似文献   

3.
The instability of dust ion acoustic waves (DIAWs) driven by ions and electrons with different drift velocities in an unmagnetized, collisionless, isotropic dusty plasma was investigated. The electrons, ions and dust particles are assumed to be the generalized q-nonextensive distributions. The spectral indices of the q-distributions for the three plasma components are different from each other. Based on kinetic theory, the dispersion relation and the instability growth rate of DIAWs are obtained. It is found that the presence of the nonextensive distribution electrons and ions significantly modify the domain of the instability growth rate, as well as the ion-electron density ratio (ρ) and drifting-thermal velocity ratio (u i0/v Te ). In reverse, the index of dust grains has nearly no any effect on the instability growth rate. Furthermore, the effects of these parameters on the growth rate have also been discussed in detail.  相似文献   

4.
The propagation of dust ion acoustic waves is studied in plasmas composed of superthermal distributed electrons and stationary dust particles. The nonlinear Schrödinger equation is derived using the reductive perturbation technique and the modulational instability of dust ion acoustic waves is analyzed. Parametric investigations indicate that the presence of superthermal distributed electrons significantly modify the modulational instability and its growth rate. The effect of particle relative density on the wave characters is also investigated.  相似文献   

5.
The propagation of nonlinear waves in warm dusty plasmas with variable dust charge, two-temperature ions, and nonthermal electrons is studied. By using the reductive perturbation theory, the Kadomtsev–Petviashivili (KP) equation is derived. The energy of the soliton has been calculated. By using standard normal modes analysis a linear dispersion relation has been obtained. The effects of variable dust charge on the energy of the soliton and the angular frequency of the linear wave are also discussed. It is shown that the amplitude of solitary waves of the KP equation diverges at the critical values of plasma parameters. We derive solitons of a modified KP equation with finite amplitude in this situation.  相似文献   

6.
Using the standard reductive perturbation technique, nonlinear cylindrical and spherical Kadomtsev-Petviashvili (KP) equations are derived for the propagation of ion acoustic solitary waves in an unmagnetized collisionless plasma with nonthermal electrons and warm ions. The influence of nonthermally distributed electrons and the effects caused by the transverse perturbation on cylindrical and spherical ion acoustic waves (IAWs) are investigated. It is observed that the presence of nonthermally distributed electrons has a significant role in the nature of ion acoustic waves. In particular, when the nonthermal distribution parameter ?? takes certain values the usual cylindrical KP equation (CKPE) and spherical KP equation (SKPE) become invalid. One then has to have recourse to the modified CKPE or SKPE. Analytical solutions of both CKPE and SKPE and their modified versions are discussed in the present paper. The present investigation may have relevance in the study of propagation of IAWs in space and laboratory plasmas.  相似文献   

7.
Based on the kinetic theory, Landau damping of dust acoustic waves (DAWs) propagating in a dusty plasma composed of hybrid nonthermal nonextensive distributed electrons, Maxwellian distributed ions and negatively charged dust grains is investigated using Vlasov-Poisson’s equations. The characteristics of the DAWs Landau damping are discussed. It is found that the wave frequency increases by decreasing (increasing) the value of nonextensive (nonthermal) parameter, \(q\) (\(\alpha \)). It is recognized that \(\alpha \) plays a significant role in observing damping or growing DAW oscillations. For small values of \(\alpha \), damping modes have been observed until reaching a certain value of \(\alpha \) at which \(\omega _{i}\) vanishes, then a growing mode appears in the case of superextensive electrons. However, only damping DAW modes are observed in case of subextensive electrons. The present study is useful in the space situations where such distribution exists.  相似文献   

8.
《Planetary and Space Science》2007,55(10):1464-1469
The ion-acoustic instability in a dusty negative ion plasma is investigated, focusing on the parameter regime in which the negative ion density is much larger than the electron density. The dynamics of the massive dust grains are neglected, but collisions of electrons and ions with dust grains in addition to other collisional processes are taken into account. The presence of a population of charged dust can change the frequency of the fast wave, lead to additional damping due to ion–dust collisions, and change the conditions for wave growth. Applications to dusty negative ion plasmas in the laboratory and in space are discussed.  相似文献   

9.
The effect of two negative ions on the Landau damping and stellar solar wind driven instability is analyzed using kinetic theory for the Lorentzian plasmas. It is investigated that the dispersion relations, damping rates and instability growths are appreciably modified in the presence of Generalized Lorentzian or kappa distributed function and additional negative ion in our plasma system. A quantitative measurement of the threshold value of the streaming velocity is also determined to estimate the condition of the growing instability.  相似文献   

10.
The nonlinear amplitude modulation of dust-ion acoustic wave (DIAW) is studied in the presence of nonextensive distributed electrons in dusty plasmas with stationary dust particles. Using the reductive perturbation method (RPM), the nonlinear Schrödinger equation (NLSE) which governs the modulational instability (MI) of the DIAWs is obtained. Modulational instability regions and the growth rate of nonlinear waves are discussed. It is shown that the wave characters are affected by the value of nonextensive parameter and also relative density of plasma constituents.  相似文献   

11.
We study thermal instability in a magnetized and partially ionized plasma with charged dust particles. Our linear analysis shows that the growth rate of the unstable modes in the presence of dust particles strongly depends on the ratio of the cooling rate and the modified dust-cyclotron frequency. If the cooling rate is less than the modified dust-cyclotron frequency, then the growth rate of the condensation modes does not modify due to the existence of the charged dust particles. But, when the cooling rate is greater than (or comparable to) the modified dust-cyclotron frequency, the growth rate of unstable modes increases because of the dust particles. Also, the wavenumber of the perturbations corresponding to the maximum growth rate shifts to the smaller values (larger wavelengths) as the cooling rate becomes larger than the modified dust-cyclotron frequency. We show that the growth rate of the condensation modes increases with the electrical charge of the dust particles.  相似文献   

12.
Existence and characteristics of ion-acoustic (IA) wave modulation are studied in a plasma with two-temperature electron satisfying kappa distribution. Based on the multiple time scales perturbation, a nonlinear Schrödinger equation (NLS) is derived. Similar to the case of double Maxwellian electrons, both polarities of envelope soliton can exist over restricted ranges of the fractional hot electron density ratio and two-temperature superthermal electrons. The transition from stable dark solitons to unstable bright ones shifts to the smaller wavelength regions in the presence of cool and hot superthermal electrons. It is shown that the small values of the hot electron populations leads to shrinking the modulation instability region. It is also found the instability growth rate reduces due to the presence of hot electrons. The result of present investigation contributes to the physics of wave modulation in Saturn’s magnetosphere where two-temperature electrons with kappa distribution exist.  相似文献   

13.
In this investigation, we attempt to analyze the quasi-linear cyclotron instability (under the weak turbulence regime) for whistler-mode waves due to pitch angle anisotropy of nonthermal electrons. The motivation of this study is to explain the triggered discrete VLF emissions occurring in the terrestrial magnetosphere. The time evolution of the growth rate and the induced waves spectrum for a loss cone type of nonthermal electrons is analyzed numerically. The diffusion of particles in pitch angles due to quasilinear cyclotron instability is illustrated. It is shown that several major features of triggered VLF emissions can be explained by the stated instability. Some predictions of the theory is given and suggestions for further research are presented.On special leave during the summer of 1971 from the Physics Department, Faculty of Science, University of Hong Kong.  相似文献   

14.
Properties of fully nonlinear ion-acoustic solitary waves in an unmagnetized and collisionless pair-ion (PI) plasma containing superthermal electrons obeying Cairns distribution have been analyzed. A linear biquadratic dispersion relation has been derived, which yields the fast (supersonic) and slow (subsonic) modes in a pair-ion-electron plasma with nonthermal electrons. For nonlinear analysis, Korteweg-de Vries equation is obtained using the reductive perturbation technique. It is found that in case of slow mode, both electrostatic hump and dip type structures are formed depending on the temperature difference between positively and negatively charged ions, whereas, only dip type solitary structures have been observed for fast mode. The present work may be employed to explore and to understand the formation of solitary structures in the space (especially, the Earth’s ionosphere where two distinct pair ion species (H ±) are present) and laboratory produced pair-ion plasmas with nonthermal electrons.  相似文献   

15.
Dust acoustic (DA) solitary wave existence conditions are investigated for positively charged dust particles in the presence of nonthermal electrons. Once Sagdeev pseudo-potential derived through fluid equations, for large amplitude DA waves, the lower limit on Mach number is calculated analytically using the necessary condition for the solitary waves existence. The double layers conditions provides the upper limit on Mach number. This allowed us to numerically investigate the effect of the temperature, density and nonthermal parameters on the solitary waves’ characteristics. The present study is devoted to a complex plasma subject to ultraviolet radiations such as the one in the lower earth’s ionosphere.  相似文献   

16.
Propagation of nonlinear dust-acoustic waves in a magnetized collisionless plasma having positively, negatively charged dust grains and nonextensive distributed electrons and ions has been investigated. A reductive perturbation method is used to obtain a nonlinear Korteweg-de Vries (KdV) equation describing the model. The dynamics of the modulational instability gives rise to the formation of rogue waves that is described by a nonlinear Schrödinger equation. The dependence of rogue waves profiles on positive and negative charged dust cyclotron frequencies, nonextensive parameters of electrons and ions is investigated numerically. The result of the present investigation may be applicable to some plasma environments, such as cometary tails and upper mesosphere.  相似文献   

17.
A theoretical investigation of the one dimensional dynamics of nonlinear electrostatic dust ion-acoustic (DIA) waves in an unmagnetized dusty plasma consisting of ion fluid, non-thermal electrons and fluctuating immobile dust particles has been made by the reductive perturbation technique. The basic features of DIA solitary and shock waves are studied by deriving the Korteweg-de Vries (KdV) and KdV Burger equations, respectively. It is shown that the special patterns of nonlinear electrostatic waves are significantly modified by the presence of the non-thermal electron component. In particular, the rarefactive solitary and shock structures are found with smaller amplitude in comparison to the isothermal case. The transition from DIA solitary to shock waves is also studied which is related to the contributions of the dispersive and dissipative terms. It is found that the dust charge fluctuation is a source of dissipation, and is responsible for the formation of the dust ion-acoustic shock waves. Furthermore, the dissipative effect becomes important and may prevail over that of dispersion as the population of non-thermal electrons present decreases. The present investigation may be of relevance to electrostatic solitary structures observed in many space dusty plasma, such as Saturn’s E-ring.  相似文献   

18.
The concept of ion nonthermality is generalized within the theoretical framework of the Tsallis thermostatistics. In this connection, a physically meaningful ion distribution function is outlined. As the nonextensive character of the nonthermal ions increases, the distribution shoulders may become less or more prominent and high energy states are less or more probable than in the extensive nonthermal case. Variable charge dust acoustic waves are then addressed. We first consider the case of adiabatic dust charge variation and discuss later the case when the nonadiabatic charge variations are self-consistently included. Our results may complement and provide new insight into previously published work in nonthermal space plasmas.  相似文献   

19.
A rigorous theoretical investigation has been made on multi-dimensional instability of obliquely propagating electrostatic dust-ion-acoustic (DIA) solitary structures in a magnetized dusty electronegative plasma which consists of Boltzmann electrons, nonthermal negative ions, cold mobile positive ions, and arbitrarily charged stationary dust. The Zakharov-Kuznetsov (ZK) equation is derived by the reductive perturbation method, and its solitary wave solution is analyzed for the study of the DIA solitary structures, which are found to exist in such a dusty plasma. The multi-dimensional instability of these solitary structures is also studied by the small-k (long wave-length plane wave) perturbation expansion technique. The combined effects of the external magnetic field, obliqueness, and nonthermal distribution of negative ions, which are found to significantly modify the basic properties of small but finite-amplitude DIA solitary waves, are examined. The external magnetic field and the propagation directions of both the nonlinear waves and their perturbation modes are found to play a very important role in changing the instability criterion and the growth rate of the unstable DIA solitary waves. The basic features (viz. speed, amplitude, width, instability, etc.) and the underlying physics of the DIA solitary waves, which are relevant to many astrophysical situations (especially, auroral plasma, Saturn’s E-ring and F-ring, Halley’s comet, etc.) and laboratory dusty plasma situations, are briefly discussed.  相似文献   

20.
The properties of small but finite amplitude dust acoustic (DA) shock waves are studied in a charge varying dusty plasma with ions and electrons having kappa velocity distribution. We obtain the global Debye length including the influence of suprathermality effects and dust charge fluctuations. It is shown that the effects of suprathermality of ions/electrons and dust charge fluctuation significantly modify the basic properties of DA shock wave. We observe that only negative DA shock waves will be excited in this model. The amplitude of DA shock wave increases with deviation of electrons or ions from Maxwellian distribution via decrease of spectral index, κ j (j=i,e denotes, ions and electrons, respectively). Also, it is indicated that the amplitude and steepness of the shock front decreases with an increase in the ion temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号