首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 255 毫秒
1.
<正>近年来,矿山开采带来的环境污染问题日益严重,矿区内的尾矿坝及露天堆放的废石堆、矿石堆是矿区周围及其下游环境中重金属元素的主要来源,天然雨水淋溶浸泡作用对重金属元素的释放迁移具有一定的促进作用[1],因此,对尾矿、废石、矿石的模拟淋滤实验能够揭示污染源中矿物的分解转化规律、水-岩氧化还原反应机理、重金属元素在水-岩中的迁移转化规律以及影响因素等,从而能够为矿山环境污染  相似文献   

2.
铜陵矿山酸性排水及固体废弃物中的重金属元素   总被引:8,自引:0,他引:8  
在调查中国铜陵凤凰山铜矿和新桥硫铁矿两种不同类型矿山固体废弃物特征的基础上,研究了矿山尾矿和废石产生酸性排水的可能性及其差异以及矿山固体废弃物中重金属元素的赋存形式。结果表明,凤凰山铜矿的尾矿基本不产生矿山酸性排水,而新桥硫铁矿采矿废石产生矿山酸性排水,并且凤凰山铜矿的尾矿和新桥硫铁矿采矿废石中重金属元素的赋存形式也有差异,前者重金属Cu、Pb、Zn、Cd、As、Hg主要赋存于硅酸盐态中,而后者在还原态中有较高的含量,这反映了在地表条件下尾矿中大量重金属元素已经发生了迁移,而采矿废石已经开始氧化,且酸性排水的存在更有利于废石中重金属元素的迁移和扩散,进而导致矿区周围环境的污染。  相似文献   

3.
矿业环境影响的地球化学研究   总被引:17,自引:0,他引:17  
矿业开发对周围地区带来巨大的环境影响, 矿山废弃矿石和脉石堆、矿山选矿废石、尾矿、冶炼熔渣、矿山酸性排水、土壤重金属元素、河流及其沉积物中的重金属、大气污染等都极大地影响了矿山地球化学环境和生态系统。甚至在矿山工业关闭后,长期的环境影响依然是一个重要的地球化学研究内容。环境方面的地球化学化学扰动和平衡,是进一步研究矿山环境地球化学的重要内容。  相似文献   

4.
铜陵是我国著名的有色多金属矿区,有着3千多年铜开采历史,是我国当前最重要的有色金属基地之一,主要开采夕卡岩型铜、铁多金属矿床(常印佛等,1991;翟裕生等,1992),矿石类型复杂,有用组分主要赋存于金属硫化物中.矿石、废石、尾矿、废渣、废水和大气降尘中的重金属元素含量高.本文重点研究了铜陵矿区矿产资源的开采、冶炼和加工过程中重金属元素在不同环境界面中的地球化学性状以及在环境界面间的迁移转化特点,试图建立矿区环境中重金属元素的迁移模式,并开展有关生态修复研究,为重金属元素的环境污染治理提供理论依据和治理措施.  相似文献   

5.
对湘中桃江锰矿废矿堆的废石进行了主量元素、稀土元素、微量元素和重金属元素的地球化学分析。野外观察及分析结果表明:组成废矿堆的岩石主要是赋矿围岩中奥陶统黑色页岩和原生碳酸锰矿石。这些废石富含Cu、Pb、Zn、Cr、Tl、Sb、U等重金属元素。废石暴露地表而遭受风化分解,导致Sc、V、Cr、U、Cd、Th等重金属元素淋滤释出,在废石样品中均表现出不同程度的迁移特征,且以V、Cd、U的迁移性最为强烈。此外,黑色页岩中Ni、Cu、Zn、Pb、Tl、Sb也明显发生淋失。这些重金属元素如Cd、Tl等毒性极强,进入矿区周围不断积聚,便可能对环境造成严重的影响。故对区内分布的废矿堆作为重金属污染源应高度重视。  相似文献   

6.
湖南水口山及周边是湖南省重金属污染较为严重的地区之一,龙王山金矿床是该区中部的一个重要金矿床.为调查该矿床废石堆污染状况、是否为周边环境的污染源、污染途径、重金属迁移能力和潜在的危害,对矿区FS17废石堆进行了自然淋滤水和24 m浅钻系统取样,开展重金属元素总量分析,利用单因子指数法和内梅罗综合污染指数法对其重金属污染程度进行污染评价,采用四步改良BCR提取法分析废石堆中8种重(类)金属元素(Pb、Zn、Cd、Cu、Cr、Ni、As和Fe)的赋存形态,并利用迁移指数量化废石堆重金属元素迁移能力;发现废石堆中Cd、Cu、Pb、As、Zn、Ni重金属元素严重超标,且在垂向上分布极不均匀;其自然淋滤水样中重金属元素Cd、Ni、Zn、Cu也严重超标;废石堆浅层重金属元素潜在迁移能力顺序为:Cd>Ni≈Zn>Cu>Pb>As>Cr>Fe,深层重金属元素迁移能力顺序为:Cd>Zn>Cu>Ni>Cr>Pb>As>Fe,浅层重金属元素的迁移性大于深层;说明该废石堆重金属元素含量高,是周围环境重要污染源,酸性废水排放为其释放污染元素的主要途径;Cd、Cu、Zn、Ni迁移能力强,是周围环境的主要污染元素;Pb、Ni、As的迁移性在深层明显降低,可以通过埋深来削弱其迁移性,而Cr不会对周边环境产生污染.   相似文献   

7.
矿山开发过程产生的废石、废渣、矿坑排水及冶炼尾矿和炉渣等都或多或少地含有重金属.在长期的风化淋滤作用过程中某些重金属元素就迁移释放出来,从而污染周围的土壤和水体.重金属在地表环境中不能被微生物降解,具有累积效应.生物体通过食物链富集重金属,并把重金属转化成毒性更强的化合物;重金属就因这种隐蔽性、长期性和不可逆性而影响人类健康.  相似文献   

8.
采矿环境地球化学研究   总被引:14,自引:2,他引:14  
余平 《矿产与地质》2002,16(6):360-363
阐述了采矿对环境造成的负面影响 ,包括 :尾矿或废石堆中的杂质元素会进入表生地球化学循环 ,在不同气候条件下 ,呈现不同的特征模式 ,尾矿氧化带的酸性水的排放 ;矿山污染源对周围土壤和植物的影响使重金属元素等进入食物链 ,对人类和动物健康造成威胁。根据国内外的最新研究动向 ,指出建立环境地球化学模式 ,对采矿环境污染作出客观的监测和评价 ,能为防止污染和治理环境提供可靠的地球化学依据。  相似文献   

9.
铅锌矿的开采和选冶使含锌和镉等有害物质的尾矿暴露于地表,这些有毒元素通过自然风化淋滤作用进入地表水,进而污染矿区水体,对矿区生态环境破坏性极大。本文通过对贵州都匀牛角塘富镉锌矿区河流、选矿厂排放的污水、坑道水进行采样分析,发现矿区水体呈弱碱性,水体重金属污染并不严重,其中Cd等重金属有毒元素的含量大多没有超过生活用水国家标准和农业灌溉水国家标准。结合已有研究成果,认为碳酸岩地区碱性环境限制了镉等重金属有毒元素的活化迁移,使其就近富集在矿区土壤、植物及河流沉积物中。更重要的是由于碳酸盐岩对矿山酸性排水的中和缓冲作用,降低了矿石的风化淋滤速度,减轻了因铅锌矿开采和选冶活动导致的Zn、Cd等有毒重金属元素对矿区环境的污染,为非碳酸岩地区铅锌矿山环境污染和治理提供了一些借鉴。  相似文献   

10.
硫化物矿床开采的环境污染效应与围岩性质有密切关系,碳酸盐岩类围岩能在一定程度上中和硫化物矿床开采形成的酸性矿山废水(AMD),从而降低酸性废水及重金属的污染危害。以广西贵港锡基坑硫化物矿床为研究区,系统采集了矿石、尾矿、废水、地表水、悬浮物、底积物及地下水样品,测定了重金属含量及pH值等理化指标,研究了岩溶区硫化物矿床开采的生态效应,以期为类似碳酸盐岩地区硫化物矿床开采的环境污染与生态危害评价、矿山环境保护提供科学依据。研究取得结论如下:(1)尾矿及废水样品中Cd、Pb等重金属含量较高,对矿区地表水及地下水质量构成一定的潜在风险;(2)硫化物矿床开采过程释放的重金属元素对矿区地表水有较显著影响,由于碳酸盐岩的中和作用,流出矿区后地表水、悬浮物及底积物中重金属含量迅速降低,重金属潜在风险处于轻微等级;(3)富含Cd、Pb等重金属的矿坑酸性积水,下渗过程中与碳酸盐岩中的Ca~(2+)、CO_3~(2-)、HCO~-_3发生中和反应而沉淀,矿区地下水环境质量良好,除了尾矿库、矿坑水周边存在少量超标样品外,矿区周边村镇地下水质均未受到明显的采矿污染影响。可见,碳酸盐岩类围岩是重金属元素迁移的天然地球化学障,能有效降低硫化物矿床开采的环境污染风险。  相似文献   

11.
矿山-河流系统中重金属污染的地球化学研究   总被引:4,自引:0,他引:4  
立足于矿山及纳污河流生态系统,从重金属污染源研究入手,分析了尾矿重金属淋滤释放规律和影响因素;阐述了重金属在矿山及相关河流系统中的迁移、转化和富集过程及其对生态环境的影响;总结和评述了现有的矿山环境重金属污染的评价方法,指出了今后的研究重点:努力减少尾矿中重金属向环境释放,逐步实现矿床的无废开采;设计不同条件和影响因素下的尾矿淋滤实验,加强酸性废水和尾矿重金属淋滤释放规律的研究,建立酸性矿山废水和重金属释放的预测模型;运用微量元素、稀土元素和高精度的Pb、S同位素测试手段,示踪重金属的来源及其运移途径;运用3S技术和高新技术手段提取和识别环境地球化学信息,加强矿山-河流系统重金属污染及其生态环境影响的监测;运用地球化学工程技术和植物修复技术治理矿山环境及其影响流域的污染。  相似文献   

12.
以陕西潼关、大柳塔及辽宁阜新矿区为例,采用对比分析的方法研究矿产资源开发中矿山地质环境问题差异性响应的主要因素。上述3个矿区矿产资源开发中矿山地质环境问题主要包括:20世纪90年代以前,陕西潼关金矿区是中国矿产资源开发秩序十分混乱的矿区之一,地下开采的采矿废石随意堆排导致了极为严重的矿山泥石流地质灾害及其隐患,"三废"无序排放导致土壤、河水及其底泥的重金属及氰化物污染严重,严重影响人体健康;地处生态环境脆弱带的陕西大柳塔煤矿区,20年大型机械化地下煤炭资源开采导致大面积地面塌陷及其链生的地下水含水层破坏严重,但矿区土地沙漠化程度总体没有呈现加重的趋势,水土环境重金属呈轻度污染;具有百年开发历史的辽宁阜新煤矿区,露天开采使土地生态破坏严重、边坡滑坡灾害频发、土地压占与破坏突出,地下开采引起的地面塌陷对地表建筑物及人居安全影响严重,但相对于金属矿区,该矿区水土环境重金属污染相对轻得多。对比上述3个矿区矿山地质环境问题,得到其差异性响应主要因素:矿产资源种类、原生地质环境条件、开采方式及矿山环境保护意识等。  相似文献   

13.
<正>矿产资源是人类赖以生存与发展的重要物质基础,一个多世纪以来,金属和非金属矿产资源的开发与利用给人类社会发展带来了巨大的经济效应。然而,伴随着矿产资源开发强度越来越大,矿山环境地质问题日益突出。1国内外研究现状1.1废石、尾矿及AMD中重金属元素研究金属硫化物矿床,不论是露天开采还是地下开采,都将产生两种主要废物:废石和选矿尾渣。  相似文献   

14.
人类活动对环境影响严重,采矿活动尤甚。对矿山环境的研究重要而迫切,特别是重金属元素污染,其首要问题是重金属元素的迁移能力和影响因素,归根结底是污染元素从污染源到外围区域的时空响应和时空结构。中国铜陵、铜绿山等众多金属矿山具有悠久的采矿历史,在为国民经济带来重大效益的同时,也带来了众多的环境问题。目前对矿山环境的研究多集中在非动态及调查性研究方面,很少从时间与空间结构2个角度同时考虑地球化学迁移转化的机理;国内关于矿山环境的研究资料也不多。建议在矿区重金属环境地球化学的研究中应用非线性研究手段,重点是分形、多重分形、非线性时间序列等分析方法,研究重金属元素的时序分布和空间展布机制。  相似文献   

15.
本文基于凤凰山铜矿田药园山矿床采矿废石的淋溶实验研究,着重探索表生环境下影响重金属淋滤迁移的因素,分析重金属在采矿废石中迁移转化的机制。动态淋滤实验考查了重金属从两种采矿废石中淋出的浓度与淋溶液的pH值、淋滤时间以及淋出液酸度的关系。结果表明,采矿废石中重金属淋滤强度随酸度的增加而逐渐增强,而淋滤出的重金属浓度并不总是随时间的延长而递减,同时实验研究也表明,淋溶采矿废石的排放水不一定都是酸性的。因此,在评价矿山环境污染以及治理过程中要对当地雨水的平均pH值、所排放采矿废石的岩性以及废石的堆放时间进行综合考虑。  相似文献   

16.
南京栖霞山铅锌矿区铅同位素示踪   总被引:3,自引:0,他引:3  
南京栖霞山铅锌矿已开采50余年,环境问题日益突出。为了了解污染来源和污染传播方式,采集了该地水、土、植物、大气沉降、燃油灰尘、矿石、人血和生物等多种样品进行重金属元素含量和铅同位素示踪分析。结果表明矿区重金属污染严重,且污染随着靠近矿区而逐渐加重,重金属元素Pb、As、Cd、Cu、Zn之间相关性明显,初步反映了污染与矿山有关;同位素分析显示,矿区大气沉降样品、大部分植物样品、部分土壤和部分生物样品铅同位素组成与矿石铅同位素组成相似,证实了污染源为矿山。另外,大气沉降与植物样品铅含量高且它们的铅同位素组成相当,反映了大气沉降是污染传播方式之一。  相似文献   

17.
陈龙  赵元艺  常玉虎 《地质论评》2016,62(S1):259-260
戴村位于江西省乐平市,长期受毗邻德兴矿集区内多个矿山开采产生的重金属污染的影响,矿山开采过程中,开采与选冶、矿山尾砂库堆积、露天废石厂淋滤和老窿洞等产生的废渣废水能携带大量重金属元素通过向土壤、地表水、地下水、及生物体中迁移,长此以往可造成严重的重金属污染,进而破坏地区生态环境(刘春阳等,2006;王晓亮等,2013;Liu Guannan et al.,2013;柳建平等,2014)  相似文献   

18.
<正>随着工业化发展对于各种金属需求的增加,矿产资源的过渡开采以及不合理开采引起了矿区及周边严重的环境污染问题,其中酸性矿山废水(AMD)是矿山开发和利用过程中产生的普遍而严重的环境问题[1-4]。AMD灌溉导致重金属进入到矿区农田中,造成整个矿区的生态环境遭受严重破坏[2,7],对人类健康造成危害。前人重点研究AMD中重金属的环境影响以及对人体等危害,但是对于重要的伴生元素硫的研究较少。特别是在硫化物矿区中,AMD灌溉稻田中硫酸根作为最重要的阴离子之一。硫酸根的迁移转化对于土壤  相似文献   

19.
采矿活动影响较小的范围,但对环境会有大的局部影响,采矿场金属主要以酸性矿山排水、废石堆和尾矿堆积的侵蚀等形式释放。对预测酸性矿山排水释放金属的有效方法进行了简单回顾。  相似文献   

20.
通过重金属含量分析,分级提取化学形态分析,结合矿物成分和化学成分分析,对黄龙铺矿区1号尾矿库重金属元素在风化过程中的地球化学行为进行了研究。研究结果表明在横向上,尾矿库中心排水口处地势低洼,铜、铁因相对活泼易于迁移而流失,铅、锌、铬、镉在尾矿库四周的地表浅部淋失,在尾矿库中心则相对富集。化学形态分析表明尾砂中各重金属元素赋存状态各有不同,一般以T6原生硫化物态和T7残渣态为主,铜、锌、铁迁移性较强;其他则较弱,表明对环境威胁不是很大。重金属的迁移明显的分为氧化带和次氧化带,研究结果显示尾矿覆盖方法也不一定能够有效地阻滞污染元素的迁移。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号