首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用政府间气候变化专门委员会第四次评估报告(IPCCAR4)的15个耦合气候模式在不同排放情景下的模拟结果,对我国夏季降水及相关大气环流场的未来时空变化特征与模式之间的不确定性作了研究。结果表明,在全球变暖背景下,我国夏季降水表现出较强的局地特征。其中,我国东部和高原地区的降水在21世纪表现出明显的增加趋势,而且这种趋势随着变暖的加剧而增强,同时模式模拟结果之间的一致性也更好,表明这一结果的可信度较高。在全球变暖背景下,我国新疆南部地区表现为持续的降水减少趋势,而我国西南地区夏季降水的变化则呈现出先减少(21世纪初)后增加的特征,不同模式对降水这些局地特征的模拟也都表现出较好的一致性。其他地区夏季降水在21世纪的变化不大,同时模式模拟的一致性也较差。多模式模拟的我国未来百年夏季降水的这些变化特征在温室气体高、中、低不同排放情景下基本一致,A2情景预估结果变化最大,A1B次之,B1相对最小。东亚夏季大气环流场的预估结果显示,在全球变暖的背景下,大部分模式的模拟结果都表明,东亚夏季风环流有所增强,从而使得由低纬度大洋和南海地区向我国大陆的水汽输送增加,造成该地区大气含水量的增多,从而为我国东部地区夏季降水的增加提供有利条件。此外,随着全球变暖的加剧,西太平洋副热带高压持续增强,其变化对我国东部地区夏季降水的影响程度和范围也明显增大。这些环流场及其不确定性的分析结果进一步加强了我国夏季降水未来变化预估结果的可信度。  相似文献   

2.
利用1880—1999年中国东部35站的观测降水资料、英国Hadley中心的海温和海平面气压资料以及IPCC第4次评估报告(AR4)中20世纪气候模拟试验(20C3M)的模式输出结果,对IPCCAR4中22个耦合模式所模拟的我国东部夏季降水的年代际变化情况以及太平洋年代际涛动(PDO)和北大西洋涛动(NAO)的年代际变化情况进行了分析。结果显示,这些模式对20世纪我国东部夏季降水年代际变化的模拟结果并不理想,但对降水在20世纪70年代中期前后的突变具有一定的模拟能力。其中IAP_FGOALSL_0_G可以大致模拟出20世纪70年代中期前后降水型的突变特征,而BCCR_BCM2_0和UKMO_HadGEM1则可以模拟出华北地区降水在20世纪70年代中期之后减少的现象。对于引起我国东部夏季降水年代际变化的重要因子PDO和NAO,模式对它们年代际变化的模拟效果略好于降水。多数模式都可以模拟出PDO和NAO的空间模态,其中CNRM_CM3和UKMO_HadGEM1对PDO年代际变化(8 a以上)的模拟与实际情况比较相似,并可以模拟出20世纪70年代中期之后PDO由负位相转变为正位相的情况,而模式UKMO_HadGEM1也对NAO的年代际变化以及1980年以来不断加强的趋势模拟较好。  相似文献   

3.
We present climate responses of Representative Concentration Pathways (RCPs) using the coupled climate model HadGEM2-AO for the Coupled Model Intercomparison Project phase 5 (CMIP5). The RCPs are selected as standard scenarios for the IPCC Fifth Assessment Report and these scenarios include time paths for emissions and concentrations of greenhouse gas and aerosols and land-use/land cover. The global average warming and precipitation increases for the last 20 years of the 21st century relative to the period 1986-2005 are +1.1°C/+2.1% for RCP2.6, +2.4°C/+4.0% for RCP4.5, +2.5°C/+3.3% for RCP6.0 and +4.1°C/+4.6% for RCP8.5, respectively. The climate response on RCP 2.6 scenario meets the UN Copenhagen Accord to limit global warming within two degrees at the end of 21st century, the mitigation effect is about 3°C between RCP2.6 and RCP8.5. The projected precipitation changes over the 21st century are expected to increase in tropical regions and at high latitudes, and decrease in subtropical regions associated with projected poleward expansions of the Hadley cell. Total soil moisture change is projected to decrease in northern hemisphere high latitudes and increase in central Africa and Asia whereas near-surface soil moisture tends to decrease in most areas according to the warming and evaporation increase. The trend and magnitude of future climate extremes are also projected to increase in proportion to radiative forcing of RCPs. For RCP 8.5, at the end of the summer season the Arctic is projected to be free of sea ice.  相似文献   

4.
松花江流域气候变化及ECHAM5模式预估   总被引:5,自引:0,他引:5       下载免费PDF全文
 根据松花江流域1961-2000年观测气温、降水量资料和ECHAM5/MPI-OM模式对该流域21世纪前50 a气候变化的预估结果,分析了松花江流域1961-2000年年平均气温和年降水量变化,并对21世纪前50 a气温和降水量变化趋势进行了预估。结果表明,在全球变暖的背景下,作为中国气候变暖区域响应的先锋,松花江流域年平均气温自1980年代初持续升高,升温幅度比较显著;年降水量在1961-2000年无明显增加或减少趋势,年代际差异也不大。相对于1961-1990年的气候场,21世纪前半叶,年平均气温仍将呈明显增加趋势,到2040年代升温幅度达1℃以上,年降水量变化趋势不显著,可能微弱增加,但冬季平均气温和冬季降水量都呈增加趋势,春季降水量也为增加趋势。  相似文献   

5.
Pacific Northwest (PNW) hydrology is particularly sensitive to changes in climate because snowmelt dominates seasonal runoff, and temperature changes impact the rain/snow balance. Based on results from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4), we updated previous studies of implications of climate change on PNW hydrology. PNW 21st century hydrology was simulated using 20 Global Climate Models (GCMs) and 2 greenhouse gas emissions scenarios over Washington and the greater Columbia River watershed, with additional focus on the Yakima River watershed and the Puget Sound which are particularly sensitive to climate change. We evaluated projected changes in snow water equivalent (SWE), soil moisture, runoff, and streamflow for A1B and B1 emissions scenarios for the 2020s, 2040s, and 2080s. April 1 SWE is projected to decrease by approximately 38–46% by the 2040s (compared with the mean over water years 1917–2006), based on composite scenarios of B1 and A1B, respectively, which represent average effects of all climate models. In three relatively warm transient watersheds west of the Cascade crest, April 1 SWE is projected to almost completely disappear by the 2080s. By the 2080s, seasonal streamflow timing will shift significantly in both snowmelt dominant and rain–snow mixed watersheds. Annual runoff across the State is projected to increase by 2–3% by the 2040s; these changes are mainly driven by projected increases in winter precipitation.  相似文献   

6.
Future climate in the Pacific Northwest   总被引:4,自引:2,他引:2  
Climate models used in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) on the whole reproduce the observed seasonal cycle and twentieth century warming trend of 0.8°C (1.5°F) in the Pacific Northwest, and point to much greater warming for the next century. These models project increases in annual temperature of, on average, 1.1°C (2.0°F) by the 2020s, 1.8°C (3.2°F) by the 2040s, and 3.0°C (5.3°F) by the 2080s, compared with the average from 1970 to 1999, averaged across all climate models. Rates of warming range from 0.1°C to 0.6°C (0.2°F to 1.0°F) per decade. Projected changes in annual precipitation, averaged over all models, are small (+1% to +2%), but some models project an enhanced seasonal cycle with changes toward wetter autumns and winters and drier summers. Changes in nearshore sea surface temperatures, though smaller than on land, are likely to substantially exceed interannual variability, but coastal upwelling changes little. Rates of twenty-first century sea level rise will depend on poorly known factors like ice sheet instability in Greenland and Antarctica, and could be as low as twentieth century values (20 cm, 8) or as large as 1.3 m (50).  相似文献   

7.
The atmosphere?Cocean general circulation models (AOGCMs) used for the IPCC 4th Assessment Report (IPCC AR4) are evaluated for the Greenland ice sheet (GrIS) current climate modelling. The most suited AOGCMs for Greenland climate simulation are then selected on the basis of comparison between the 1970?C1999 outputs of the Climate of the twentieth Century experiment (20C3M) and reanalyses (ECMWF, NCEP/NCAR). This comparison indicates that the representation quality of surface parameters such as temperature and precipitation are highly correlated to the atmospheric circulation (500?hPa geopotential height) and its interannual variability (North Atlantic oscillation). The outputs of the three most suitable AOGCMs for present-day climate simulation are then used to assess the changes estimated by three IPCC greenhouse gas emissions scenarios (SRES) over the GrIS for the 2070?C2099 period. Future atmospheric circulation changes are projected to dampen the zonal flow, enhance the meridional fluxes and therefore provide additional heat and moisture to the GrIS, increasing temperature over the whole ice sheet and precipitation over its northeastern area. We also show that the GrIS surface mass balance anomalies from the SRES A1B scenario amount to ?300?km3/year with respect to the 1970?C1999 period, leading to a global sea-level rise of 5?cm by the end of the 21st century. This work can help to select the boundaries conditions for AOGCMs-based downscaled future projections.  相似文献   

8.
Based on a high-resolution regional climate model (RegCM3) simulation over East Asia, future climate changes over the Miyun Reservoir in the 21st century under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario are analyzed. The model simulation extends from 1951 to 2100 at a grid spacing of 25 km and is one-way nested within a global model of MIROC3.2_ hires (the Model for Interdisciplinary Research on Climate). The focus of the analysis is on the Watershed of Miyun Reservoir, the main water supply for Beijing in northern China. The results show that RegCM3 reproduces the observed temperature well but it overestimates precipitation over the region. Significant warming in the 21st century is simulated in the annual mean, December-January-February (DJF) and June-July-August (JJA), although with differences concerning the spatial distribution and magnitude. Changes in precipitation for the annual mean, DJF, and JJA also show differences. A prevailing increase of precipitation in DJF and a decrease of it in JJA is projected over the region, while little change in the annual mean is projected. Changes of the difference between precipitation and evapotranspiration to measure the potential water availability are also presented in the paper.  相似文献   

9.
朱丽华  范广洲  华维 《大气科学》2015,39(6):1250-1262
本文利用NCEP/NCAR月平均再分析资料及中国596个测站月降水资料,采用线性倾向估计、经验正交函数分解(EOF)、相关分析、合成分析等方法,对青藏高原夏季对流层气温垂直变化及其与降水和环流的关系进行了分析。气温垂直变化特征分析表明:自1971年以来,青藏高原夏季对流层低层至对流层中上部气温呈现显著增暖趋势,对流层上部气温呈现显著变冷趋势,高原对流层低层至中上部气温及对流层上部气温在年际、年代际尺度上均呈较显著负相关,且均存在2~4 a及8~13 a的周期;夏季青藏高原地区沿27.5°N~40°N平均的气温距平垂直分布的EOF分解第一模态特征向量在对流层表现为"下降温上增温"的反相变化,其时间系数呈显著负趋势,且存在1978年及1994年的突变点。高原夏季气温在对流层的上下反相变化与我国夏季降水的关系在年际、年代际尺度上均显示:当高原对流层低层至对流层中上部升温而对流层上部降温时,我国夏季降水表现为南方型,其中以江南至华南地区降水显著偏多而我国东北地区降水显著偏少为主要分布特征;另外,长江流域的局部地区及我国西北的部分地区降水也明显偏少,而华北东部的局部地区、青藏高原中部及东部地区以及新疆西北部地区降水明显偏多;降水异常分布在年代际尺度上比年际尺度更显著。环流分析显示:当高原对流层低层至对流层中上部升温而对流层上部降温时东亚中高纬度地区为异常高压控制,中低纬度地区受异常低压影响。环流场与降水分布有较好的配置关系。  相似文献   

10.
Climate change is projected to result, on average, in earlier snowmelt and reduced summer flows in the Pacific Northwest, patterns not well represented in historical observations used in water planning. We evaluate the sensitivities of water supply systems in the Puget Sound basin cities of Everett, Seattle, and Tacoma to historical and projected future streamflow variability and water demands. We simulate streamflow for the 2020s, 2040s, and 2080s using the distributed hydrology–soil–vegetation model (DHSVM), driven by downscaled ensembles of climate simulations archived from the 2007 IPCC Fourth Assessment Report. We use these streamflow predictions as inputs to reservoir system models for the three water supply systems. Over the next century, under average conditions all systems are projected to experience declines and eventual disappearance of the springtime snowmelt peak. How these shifts affect management depends on physical characteristics, operating objectives, and the adaptive capacity of each system. Without adaptations, average seasonal drawdown of reservoir storage is projected to increase in all three systems throughout the 21st century. Reliability of all systems in the absence of demand increases is robust through the 2020s however, and remains above 98% for Seattle and Everett in the 2040s and 2080s. With demand increases, however, reliability of the systems in their current configurations and with current operating policies progressively declines through the century.  相似文献   

11.
利用IPCC发布的5个全球气候模式在高(SRES A2)、低(SRES B1)两种不同排放情景下的预报集成结果,对21世纪大尺度环境进行分析,进而对西北太平洋夏季热带气旋(TC)的频数进行预估。结果表明:两种情景下热带西北太平洋均呈现500 hPa位势高度偏高、太平洋东部海表温度偏高、低层菲律宾以东为异常反气旋性环流控制的特征。这种大尺度环境不利于TC生成,在高排放情景下或21世纪中叶后该环境特征更显著。未来TC频数总体呈减少的趋势,低排放情景下的TC频数变化趋势比高排放情境下平缓,TC频数存在年代际和年际变化。  相似文献   

12.
青藏高原未来气候变化预估:CMIP5模式结果   总被引:14,自引:2,他引:12  
胡芩  姜大膀  范广洲 《大气科学》2015,39(2):260-270
本文使用国际耦合模式比较计划第5阶段(CMIP5)中对青藏高原气候模拟较优的气候模式, 在RCP4.5中等偏低辐射强迫情景下对青藏高原未来气候变化进行了预估研究。结果表明, 青藏高原年均地表气温在2006~2100年的线性趋势平均为0.26℃/10a, 增暖幅度与海拔高度大体成正比;相比于1986~2005年参考时段, 2090年代平均升温2.7℃, 21世纪末期增温幅度明显高于早期和中期;在早、中和末期, 年均增温分别为0.8~1.3℃、1.6~2.5℃和2.1~3.1℃;各季节也均为变暖趋势, 其中冬季增温最大。对于年均降水来说, 未来百年将小幅增加, 集合平均趋势为1.15%/10a, 2090年代较参考时段增加10.4%;在早、中和末期的变化范围分别为-1.8%至15.2%、-0.9%至17.8%和1.4%至21.3%;季节降水也呈增加趋势, 夏季增幅明显高于其余三个季节且在21世纪末期较大, 青藏高原未来年均降水增加主要来自于夏季。需要指出的是, 上述预估结果在气候模式间存在着一定的差异, 未来气候变化的不确定性范围较大, 地表气温的可信度相对较高, 而降水的则偏低。  相似文献   

13.
Simulations of the Regional Climate Model Version 3 (RegCM3) under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario were employed to investigate possible decadal changes and long-term trends of annual mean atmospheric water balance components over China in the 21st century with reference to the period of 1981-2000. An evaluation showed that RegCM3 can reasonably reproduce annual evapotranspiration, precipitation, and water vapor transport over China, with a better performance for March-June. It was found that the water vapor exchange between the land surface and atmosphere would be significantly intensified in Northwest China by the mid-to late-21st century and that the region would possibly shift to a wetter or drought-mitigated state under global warming. Conversely, the water vapor exchange evidently weakened over the Tibetan Plateau and South-west China by the mid-to late-21st century. In addition, there appears to be a drier state for Northeast China and the middle and lower reaches of the Yangtze River valley by the mid-to late-21st century, with slight mitigation by the end compared with the mid-21st century. The westerly and southwesterly water vapor transport over China generally presents an increasing trend, with increasing diver-gence over the Tibetan Plateau and Northeast China, corresponding to a loss of atmospheric water vapor by water vapor transport.  相似文献   

14.
气候变化和水的最新科学认知   总被引:5,自引:0,他引:5       下载免费PDF全文
政府间气候变化专门委员会(IPCC)于2008年4月8日正式通过了"气候变化和水"技术报告。该报告建立在IPCC 3个工作组第四次评估报告的基础上,客观、全面而审慎地评估了与水有关的气候变化以及对水的过去、现在和未来的认知。最重要的进展是:过去几十年观测到全球变暖已经与大尺度水文循环的大规模变化联系在一起;气候模型对21世纪的模拟结果一致显示出降水在高纬和部分热带地区将增加,而在部分亚热带和中低纬地区将减少的结果;预计到21世纪中期,河流年平均径流和水量可能会因为高纬和部分湿润热带地区的气候变化而增加,而在中低纬和干旱热带将可能减少;许多地方降水强度和变率的增加将使洪旱危险性上升;预计冰雪储藏的水的补给将在本世纪减少;预计较高的水温和极端变化,包括洪旱等,将影响水质并加剧水污染;对全球而言,气候变化对淡水系统负面影响将超过收益;预计由于气候变化导致的水量-水质变化将影响食物的产量、稳定性、流通和利用;气候变化影响现有水的基础设施的功能和运行,包括水电、防洪、排水、灌溉系统,同时影响到水的管理;目前的水管理措施不足以应对气候变化的影响;气候变化挑战"过去水文上的经验能得到未来的情况"的传统说法;为保障平水和干旱情况所设计的适应选择,必须综合需水和供水双方的战略;减缓措施可以降低升温对全球水资源的影响程度,进而减低适应的需求;水资源管理明显地影响到很多其他政策领域。  相似文献   

15.
This study investigates projected changes in rainfall and temperature over Malaysia by the end of the 21st century based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2, A1B and B2 emission scenarios using the Providing Regional Climates for Impacts Studies (PRECIS). The PRECIS regional climate model (HadRM3P) is configured in 0.22° × 0.22° horizontal grid resolution and is forced at the lateral boundaries by the UKMO-HadAM3P and UKMOHadCM3Q0 global models. The model performance in simulating the present-day climate was assessed by comparing the modelsimulated results to the Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE) dataset. Generally, the HadAM3P/PRECIS and HadCM3Q0/PRECIS simulated the spatio-temporal variability structure of both temperature and rainfall reasonably well, albeit with the presence of cold biases. The cold biases appear to be associated with the systematic error in the HadRM3P. The future projection of temperature indicates widespread warming over the entire country by the end of the 21st century. The projected temperature increment ranges from 2.5 to 3.9°C, 2.7 to 4.2°C and 1.7 to 3.1°C for A2, A1B and B2 scenarios, respectively. However, the projection of rainfall at the end of the 21st century indicates substantial spatio-temporal variation with a tendency for drier condition in boreal winter and spring seasons while wetter condition in summer and fall seasons. During the months of December to May, ~20-40% decrease of rainfall is projected over Peninsular Malaysia and Borneo, particularly for the A2 and B2 emission scenarios. During the summer months, rainfall is projected to increase by ~20-40% across most regions in Malaysia, especially for A2 and A1B scenarios. The spatio-temporal variations in the projected rainfall can be related to the changes in the weakening monsoon circulations, which in turn alter the patterns of regional moisture convergences in the region.  相似文献   

16.
通过分析北半球和青藏高原地面平均气温与它们上空500hPa平均温度、200一500hPa平均厚度在不同时期和不同纬度带的趋势变化特征,了解其地面气温和其对流层中上层温度的年代际变化趋势以及相互关系。可以看到近50a地面气温和500hPa温度年代际变化大致相同,20世纪70年代中期之前都为降温,70年代中期以后为不同程度的升温。200—500hPa厚度代表的对流层上层温度与对流层下层温度变化趋势相反,70年代前明显升温,70年代后明显降温。分析还表明,对流层各层温度在不同纬度和不同季节的变化也不同。  相似文献   

17.
Evaluating the projection capability of climate models is an important task in climate model development and climate change studies. The projection capability of the Beijing Climate Center (BCC) Climate System Model BCC CSM1.0 is analyzed in this study. We focus on evaluating the projected annual mean air temperature and precipitation during the 21st century under three emission scenarios (Special Report on Emission Scenarios (SRES) B1, A1B, and A2) of the BCC CSM1.0 model, along with comparisons with 22 CMIP3 (Coupled Model Intercomparison Project Phase 3) climate models. Air temperature averaged both globally and within China is projected to increase continuously throughout the 21st century, while precipitation increases intermittently under each of the three emission scenarios, with some specific temporal and spatial characteristics. The changes in globally-averaged and China-averaged air temperature and precipitation simulated by the BCC CSM1.0 model are within the range of CMIP3 model results. On average, the changes of precipitation and temperature are more pronounced over China than over the globe, which is also in agreement with the CMIP3 models. The projection capability of the BCC CSM1.0 model is comparable to that of other climate system models. Furthermore, the results reveal that the climate change response to greenhouse gas emissions is stronger over China than in the global mean, which implies that China may be particularly sensitive to climate change in the 21st century.  相似文献   

18.
基于1961~2017年青藏高原腹地雅鲁藏布江河谷地区4个站(拉萨、日喀则、泽当和江孜)夏季(6~8月)月平均气温、降水和相对湿度等观测资料,分析了该地区夏季气候年际和年代际演变特征,并探讨了气温、降水和相对湿度在年际和年代际时间尺度上的相互关系以及与总云量和地面水汽压的联系。结果表明:(1)1961~2017年该地区夏季气候出现了暖干化趋势。气温(相对湿度)显著升高(下降),降水趋势变化不明显;本世纪初气温(相对湿度)均发生了显著的突变。(2)该地区夏季气候因子间在年际和年代际时间尺度上存在密切关系:气温与相对湿度和降水均存在明显的负相关,降水与相对湿度为正相关。(3)该地区夏季气候因子间的年际和年代际变化与同期总云量和地面水汽变化有关。1961~2017年总云量持续减少是气温显著升高的主要原因之一,气温的显著升高和降水变化不明显又造成了相对湿度的显著下降。  相似文献   

19.
Evaluating the projection capability of climate models is an important task in climate model development and climate change studies. The projection capability of the Beijing Climate Center (BCC) Climate System Model BCC_CSM1.0 is analyzed in this study. We focus on evaluating the projected annual mean air temperature and precipitation during the 21st century under three emission scenarios (Special Report on Emission Scenarios (SRES) B1, A1B, and A2) of the BCC_CSM1.0 model, along with comparisons with 22 CMIP3 (Coupled Model Intercomparison Project Phase 3) climate models. Air temperature averaged both globally and within China is projected to increase continuously throughout the 21st century, while precipitation increases intermittently under each of the three emission scenarios, with some specific temporal and spatial characteristics. The changes in globally-averaged and China-averaged air temperature and precipitation simulated by the BCC_CSM1.0 model are within the range of CMIP3 model results. On average, the changes of precipitation and temperature are more pronounced over China than over the globe, which is also in agreement with the CMIP3 models. The projection capability of the BCC_CSM1.0 model is comparable to that of other climate system models. Furthermore, the results reveal that the climate change response to greenhouse gas emissions is stronger over China than in the global mean, which implies that China may be particularly sensitive to climate change in the 21st century.  相似文献   

20.
21世纪中国极端降水事件预估   总被引:40,自引:6,他引:34  
摘 要:全球变暖背景下极端降水事件的变化一直受到广泛关注,本文从观测、理论及模拟预估等方面对近十多年来国内外极端降水气候事件的研究作一综述,并给出IPCC第四次评估报告对我国21世纪极端降水指数变化的预估结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号