首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
郯庐断裂带是中国东部板内一条规模最大的强构造变形带与地震活动断裂带,其断裂结构与历史地震活动性具明显的分段活动性。文中通过沿郯庐断裂带中南段的历史地震活动性、精定位背景地震活动性与震源机制解分析,讨论了断裂带的深部几何结构与现今活动习性。现今地震活动在中段主要沿1668年郯城MS 8地震破裂带线性分布,线性条带在泗洪-诸城间延伸约340 km长,为1668年地震长期缓慢衰减的余震序列活动。大震地表破裂遗迹与精定位地震分布都揭示出郯庐断裂带中段的两条全新世活动断裂昌邑-大店断裂与安丘-莒县断裂以右阶斜列的形式共同参与了1668年郯城MS 8地震破裂。精定位震源剖面刻画出两条断裂结构面呈高角度相背而倾,其中昌邑-大店断裂倾向SE,安丘-莒县断裂倾向NW,两条断裂在深部没有合并汇聚。余震活动所代表的1668年地震震源破裂带是郯庐断裂带中现今尚未闭锁的安全段落,对应于高b值段。而未发生破裂的安丘以北段,小震活动不活跃,b值低,现今可能已成为应力积累的闭锁段。震源机制解揭示的断裂应力状态在中段以NE向主压应力为主,表现为右旋走滑活动性质,且存在少量正断分量,南段转为以NEE至近EW向为主,存在少量的逆冲分量。在中段与南段的转折处宿迁-嘉山段,主压应力方向垂直断裂带走向呈NWW向,反映出局部以挤压为主的应力特征,其中泗洪-嘉山段也是历史地震未破裂段,现今小震活动不活跃,因此该段可能更易于应力积累。精定位小震活动在郯庐断裂与北西向断裂相交汇处聚集,反映出北西向断裂的新活动性,以及郯庐断裂带现今的逆冲作用。在断裂带南端,精定位背景地震活动沿与其相交汇的襄樊-广济断裂带东段呈北西向线性分布,表明了该段的现今活动性。  相似文献   

2.
We perform a broadband frequency bedrock strong ground motion simulation in the Marmara Sea region (Turkey), based on several fault rupture scenarios and a source asperity model. The technique combines a deterministic simulation of seismic wave propagation at low frequencies with a semi-stochastic procedure for the high frequencies. To model the high frequencies, we applied a frequency-dependent radiation pattern model, which efficiently removes the effective dependence of the pattern coefficient on the azimuth and take-off angle as the frequency increases. The earthquake scenarios considered consist of the rupture of the closest segments of the North Anatolian Fault System to the city of Istanbul. Our scenario earthquakes involve the rupture of the entire North Anatolian Fault beneath the Sea of Marmara, namely the combined rupture of the Central Marmara Fault and North Boundary Fault segments. We defined three fault rupture scenarios based on the location of the hypocenter, selecting a preferred hypocentral location near a fault bend for each case. We analysed the effect of location of the asperity, within the Central Marmara Fault, on the subsequent ground motion, as well as the influence of anelasticity on the high-frequency attenuation characteristics. The fault and asperity parameters for each scenario were determined from empirical scalings and from results of kinematic and dynamic models of fault rupture. We calculated the resulting time series and spectra for ground motion at Istanbul and evaluated the sensitivity of the predictions to choice of model parameters. The location of the hypocenter is thus shown to be a critical parameter for determining the worst scenario earthquake at Istanbul. We also found that anelasticity has a significant effect on the regional attenuation of peak ground accelerations. Our simulated ground motions result in large values of acceleration response spectra at long periods, which could be critical for building damage at Istanbul during an actual earthquake.  相似文献   

3.
Evidence of right‐lateral offsets associated with the 1912 earthquake (Mw 7.4) along the North Anatolian Fault (Gaziköy–Saros segment) allow us to survey (using DGPS) the co‐seismic and cumulative slip distribution. The damage distribution and surface breaks related with the earthquake show an elongated zone of maximum intensity (X MSK) parallel to the fault rupture on land but this may extend offshore to the north‐east and south‐west. Detailed mapping of the fault using topographic maps and aerial photographs indicates the existence of pull‐apart basins and pressure ridges. At several localities, the average 1912 offset along strike is 3.5–4 m and cumulative slip is 2–6 times that of individual movement. The fault rupture geometry and slip distribution suggest the existence of three subsegments with a combined total length of 110–120 km, a fault length and maximum slip similar to those of the 1999 Izmit earthquake. The amount of slip at the north‐easternmost section and in the coastal region of the Sea of Marmara reaches an average 4 m, thereby implying the offshore extension of the 1912 rupture. The results suggest that the 1912 event generated up to 150 km of surface faulting, which would imply a Mw 7.2–7.4 earthquake and which, added with rupture lengths of the 1999 earthquakes, help to constrain the remaining seismic gap in the Sea of Marmara.  相似文献   

4.
The cause for prolific seismicity in the Koyna region is a geological enigma. Attempts have been made to link occurrence of these earthquakes with tectonic strain as well as the nearby reservoirs. With a view to providing reliable seismological database for studying the earth structure and the earthquake process in the Koyna region, a state of the art digital seismic network was deployed for twenty months during 1996–97. We present preliminary results from this experiment covering an area of 60 × 80 km2 with twenty seismic stations. Hypocentral locations of more than 400 earthquakes confined to 11×25 km2 reveal fragmentation in the seismicity pattern — a NE — SW segment has a dip towards NW at approximately 45°, whilst the other two segments show a near vertical trend. These seismic segments have a close linkage with the Western Ghat escarpment and the Warna fault. Ninety per cent of the seismicity is confined within the depth range of 3–10 km. The depth distribution of earthquakes delimits the seismogenic zone with its base at 10 km indicating a transition from an unstable to stable frictional sliding regime. The lack of shallow seismicity between 0 and 3 km indicates a mature fault system with well-developed gouge zones, which inhibit shallow earthquake nucleation. Local earthquake travel time inversion for P- and S-waves show ≈ 2% higher velocity in the seismogenic crust (0–10 km) beneath the epicentral tract relative to a lower velocity (2–3%) in the adjoining region. The high P- and S-wave velocity in the seismogenic crust argues against the presence of high pressure fluid zones and suggests its possible linkage with denser lithology. The zone of high velocity has been traced to deeper depths (≈ 70 km) through teleseismic tomography. The results reveal segmented and matured seismogenic fault systems in the Koyna region where seismicity is possibly controlled by strain build up due to competent lithology in the seismic zone with a deep crustal root.  相似文献   

5.
We have carried out seismological observations within the Sea of Marmara (NW Turkey) in order to investigate the seismicity induced after Gölcük–İzmit (Kocaeli) earthquake (Mw 7.4) of August 17, 1999, using ocean bottom seismometers (OBSs). High-resolution hypocenters and focal mechanisms of microearthquakes have been investigated during this Marmara Sea OBS project involving deployment of 10 OBSs within the Çınarcık (eastern Marmara Sea) and Central-Tekirdağ (western Marmara Sea) basins during April–July 2000. Little was known about microearthquake activity and their source mechanisms in the Marmara Sea. We have detected numerous microearthquakes within the main basins of the Sea of Marmara along the imaged strands of the North Anatolian Fault (NAF). We obtained more than 350 well-constrained hypocenters and nine composite focal mechanisms during 70 days of observation. Microseismicity mainly occurred along the Main Marmara Fault (MMF) in the Marmara Sea. There are a few events along the Southern Shelf. Seismic activity along the Main Marmara Fault is quite high, and focal depth distribution was shallower than 20 km along the western part of this fault, and shallower than 15 km along its eastern part. From high-resolution relative relocation studies of some of the microearthquake clusters, we suggest that the western Main Marmara Fault is subvertical and the eastern Main Marmara Fault dips to south at 45°. Composite focal mechanisms show a strike-slip regime on the western Main Marmara Fault and complex faulting (strike-slip and normal faulting) on the eastern Main Marmara Fault.  相似文献   

6.
史料记载1901年4月26日西藏尼木发生M 6?级地震,其发震构造尚未有报道,对其发震构造的厘定有助于理解尼木地堑群的地震复发规律,科学评价周边地区的未来强震危险性。遥感解译与地质调查表明,尼木地堑群内部的庞刚地堑西边界断裂长约30 km,走向近北西—北北西,以彭刚玛曲为界分为南北两段。北段断裂地貌线性特征显著,陡坎发育,断错了多级冰碛物及河流阶地。位移恢复结果显示,河流阶地垂直断距T0约1.0 m,T1约2.6 m,T2约5.0 m。南段断裂沿虾庆曲展布,地貌线性特征显著,陡坎发育,断错了多期冲洪积扇体。尼木县城北部发现断裂错动T2阶地剖面,显示该断裂延伸至尼木县城北部。根据位移-震级经验公式计算,庞刚地堑西边界断裂最新一次地震的矩震级约为MW 6.8,这与尼木地震比较吻合。遥感解译、地质调查与震级表明,庞刚地堑可能为1901年尼木地震的发震构造。结合历史地震记录分析认为,尼木地堑群中各个地堑具有独立发生中强地震的能力,其地震复发模式及其与亚东-谷露裂谷南北两段的地震活动差异等尚需进一步研究。   相似文献   

7.
The seismicity of Israel has been evaluated from documented earthquake records of the present century and two years of routine monitoring of microearthquake activity by means of eleven stations spreading from the Gulf of Elat to northern Galilee.

The Dead Sea rift asserts itself as the tectonic feature that accounts for the seismicity of our region. The activity peaks at zones where the fault branches sideways or at a junction with other fault systems. In particular, the crescent fault of Wadi Faria seems to be a zone of high strain accumulation. This is probably the site of many historical earthquakes which caused inland and coastal damage. It is thus found that the most active fault today which constitutes the greatest seismic risk to Israeli metropolitan areas extends along the Dead Sea rift from 31.2°N to 33.4°N.

The seismicity around the Dead Sea conforms with the proposed movement along en-echelon faults. While the southwest segment is presently inactive, most of the seismic activity there is limited to the neighbourhood of its eastern shore with extreme seismicity at its southern tip near the prehistorical site of Bab-a-Dara'a. The seismicity of the Arava is much lower than the Jordan-Dead Sea section. The seismicity of the Israeli coast was found to be somewhat higher than that of the Arava.  相似文献   


8.
We performed a probabilistic analysis of earthquake hazard input parameters, NW Turkey covers Gelibolu and Biga Peninsulas, and its vicinity based on four seismic sub-zones. The number of earthquakes with magnitude M ≥ 3.0 occurred in this region for the period between 1912 and 2007 is around 5130. Four seismic source sub-zones were defined with respect to seismotectonic framework, seismicity and fault geometry. The hazard perceptibility characterization was examined for each seismic source zone and for the whole region. The probabilities of earthquake recurrences were obtained by using Poisson statistical distribution models. In order to determine the source zones where strong and destructive earthquakes may occur, distribution maps for a, b and a/b values were calculated. The hazard scaling parameters (generally known as a and b values) in the computed magnitude–frequency relations vary in the intervals 4.28–6.58 and 0.59–1.13, respectively, with a RMS error percentage below 10 %. The lowest b value is computed for sub-zone three indicating the predominance of large earthquakes mostly at Gelibolu (Gallipoli) and north of Biga Peninsula (southern Marmara region), and the highest b value is computed for sub-zone two Edremit Bay (SW Marmara region). According to the analysis of each seismic sub-zone, the greatest risk of earthquake occurrence is determined for the triangle of Gelibolu–Tekirda? western part of Marmara Sea. Earthquake occurrence of the largest magnitude with 7.3 within a 100-year period was determined to be 46 % according to the Poisson distribution, and the estimated recurrence period of years for this region is 50 ± 12. The seismic hazard is pronounced high in the region extending in a NW–SE direction, north of Edremit Bay, west of Saros Bay and Yenice Gönen (southern Marmara region) in the south. High b values are generally calculated at depths of 5–20 km that can be expressed as low seismic energy release and evaluated as the seismogenic zone.  相似文献   

9.
The Vienna Basin Transfer Fault (VBTF) is a slow active fault with moderate seismicity (I max~8–9, M max~5.7) passing through the most vulnerable regions of Austria and Slovakia. We use different data to constrain the seismic potential of the VBTF including slip values computed from the seismic energy release during the 20th century, geological data on fault segmentation and a depth-extrapolated 3-D model of a generalized fault surface, which is used to define potential rupture zones. The seismic slip of the VBTF as a whole is in the range of 0.22–0.31 mm/year for a seismogenic fault thickness of 8 km. Seismic slip rates for individual segments vary from 0.00 to 0.77 mm/year. Comparing these data to geologically and GPS-derived slip velocities (>1 mm/year) proofs that the fault yields a significant seismic slip deficit. Segments of the fault with high seismic slip contrast from segments with no slip representing locked segments. Fault surfaces of segments within the seismogenic zone (4–14 km depth) vary from 55 to 400 km2. Empirical scaling relations show that these segments are sufficiently large to explain both, earthquakes observed in the last centuries, and the 4th century Carnuntum earthquake, for which archeo-seismological data suggest a magnitude of M ≥ 6. Based on the combination of all data (incomplete earthquake catalog, seismic slip deficits, locked segments, potential rupture areas, indications of strong pre-catalog earthquakes) we argue, that the maximum credible earthquake for the VBTF is in the range M max = 6.0–6.8, significantly larger than the magnitude of the strongest recorded events (M = 5.7).  相似文献   

10.
Large earthquakes in strike-slip regimes commonly rupture fault segments that are oblique to each other in both strike and dip. This was the case during the 1999 Izmit earthquake, which mainly ruptured E–W-striking right-lateral faults but also ruptured the N60°E-striking Karadere fault at the eastern end of the main rupture. It will also likely be so for any future large fault rupture in the adjacent Sea of Marmara. Our aim here is to characterize the effects of regional stress direction, stress triggering due to rupture, and mechanical slip interaction on the composite rupture process. We examine the failure tendency and slip mechanism on secondary faults that are oblique in strike and dip to a vertical strike-slip fault or “master” fault. For a regional stress field well-oriented for slip on a vertical right-lateral strike-slip fault, we determine that oblique normal faulting is most favored on dipping faults with two different strikes, both of which are oriented clockwise from the strike-slip fault. The orientation closer in strike to the master fault is predicted to slip with right-lateral oblique normal slip, the other one with left-lateral oblique normal slip. The most favored secondary fault orientations depend on the effective coefficient of friction on the faults and the ratio of the vertical stress to the maximum horizontal stress. If the regional stress instead causes left-lateral slip on the vertical master fault, the most favored secondary faults would be oriented counterclockwise from the master fault. For secondary faults striking ±30° oblique to the master fault, right-lateral slip on the master fault brings both these secondary fault orientations closer to the Coulomb condition for shear failure with oblique right-lateral slip. For a secondary fault striking 30° counterclockwise, the predicted stress change and the component of reverse slip both increase for shallower-angle dips of the secondary fault. For a secondary fault striking 30° clockwise, the predicted stress change decreases but the predicted component of normal slip increases for shallower-angle dips of the secondary fault. When both the vertical master fault and the dipping secondary fault are allowed to slip, mechanical interaction produces sharp gradients or discontinuities in slip across their intersection lines. This can effectively constrain rupture to limited portions of larger faults, depending on the locations of fault intersections. Across the fault intersection line, predicted rakes can vary by >40° and the sense of lateral slip can reverse. Application of these results provides a potential explanation for why only a limited portion of the Karadere fault ruptured during the Izmit earthquake. Our results also suggest that the geometries of fault intersection within the Sea of Marmara favor composite rupture of multiple oblique fault segments.  相似文献   

11.
The Elat fault (a segment of the Dead Sea Transform) runs along the southern Arava valley (part of the Dead Sea Rift, Israel) forming a complex fault zone that displays a time-dependent seismic behaviour. Paleoseismic evidence shows that this fault zone has generated at least 15 earthquakes of magnitude larger than M 6 during the late Pleistocene and the Holocene. However, at present the Elat fault is one of the quietest segments of the Dead Sea Transform, lacking even microsesimicity. The last event detected in the southern Arava valley occurred in the Avrona playa and was strong enough to have deformed the playa and to change it from a closed basin with internal drainage into an open basin draining to the south.Paleoseismological, geophysical and archaeological evidences indicate that this event was the historical devastating earthquake, which occurred in 1068 AD in the eastern Mediterranean region. According to the present study this event was strong enough to rupture the surface, reactivate at least two fault branches of the Elat fault and vertically displace the surface and an early Islamic irrigation system by at least 1 m. In addition, the playa area was uplifted between 2.5 and 3 m along the eastern part of the Elat fault shear zone. Such values are compatible with an earthquake magnitude ranging between M 6.6 and 7. Since the average recurrence interval of strong earthquakes during the Holocene along the Elat fault is about 1.2 ± 0.3 ky and the last earthquake occurred more about 1000 years ago, the possibility of a very strong earthquake in this area in the future should be seriously considered in assessing seismic hazards.  相似文献   

12.
2021年5月22日2时4分在青海省果洛藏族州玛多县境内发生MS7.4级地震,此次玛多MS7.4级地震是2008年汶川MS8.0级大地震之后中国震级最大的一次地震,及时查明其同震地表破裂展布及特征,对于正确认识发震构造和区域防震减灾具有重要意义。根据震后现场调查,结合高分辨率卫星遥感图像的解译分析、余震数据和典型地震地表破裂的无人机低空摄影测量等结果,初步获得了此次地震6处典型地震地表破裂的特征。结果发现:此次玛多地震的地表破裂主要沿已知的东昆仑断裂带的南侧分支断裂昆仑山口-江错断裂的东南段分布,分析表明其中的江错断裂应是此次地震的发震断层;同震破裂的西段总体走向275°~300°,主要表现为挤压鼓包和雁列式张裂隙的斜列组合,其中江错贡麻段至江多村段出现了明显的1.4~0.8 m的垂直位移,指示该段可能具有较明显的正断层成分;中部黄河乡段主要由一系列呈左阶斜列的北西向P剪切裂缝和右阶雁行排列的北东向张裂隙构成,走滑位移较小;而东段地表破裂出现了多个分支,其中北支昌马河段主要由一系列雁行排列的张裂隙组成,总体走向为260°,与断裂西段的走向明显不同;地震造成的最大左旋位移出现在西段的错尔加拉破裂段,约2.8 m,指示此次地震地表破裂带的走滑位移主要呈从西向东的单侧扩展-衰减特征。考虑到此次玛多地震出现在东昆仑主干断裂南侧的巴颜喀拉地块内部,表明该地块内部具有发生7级以上大地震的能力,因此,巴颜喀拉地块内部强震活动的孕震条件和机理应该是未来需要进一步关注的科学问题。   相似文献   

13.
This study analyzed the rupture directivity of the 2011 Tohoku earthquake by using 100-s Rayleigh-wave travel-times, influenced by the finite source, to derive the fault parameters of the earthquake. The results demonstrated that the earthquake exhibited a slow rupture propagation with a rupture velocity of approximately 1.5–2.0 km/s and asymmetric bilateral faulting. The two rupture directions were N60°E and N127°E, with rupture lengths of approximately 276 km and 231 km, respectively. The rupture toward N60°E had a source duration of approximately 183 s, longer than that toward N127°E (approximately 156 s). Overall, the entire source duration of the earthquake faulting lasted approximately 183 s. Regarding historical seismicity in eastern Japan, the 2011 Tohoku earthquake not only ruptured a locked area in which large earthquakes have rarely occurred, but also ruptured the source regions of several historical earthquakes. With the exception of its slow rupture velocity and generation of a tsunami, the rupture features of the 2011 Tohoku earthquake were inconsistent with those of typical tsunami earthquakes.  相似文献   

14.
A paleo-seismological study was conducted at Jaflong, Sylhet, Bangladesh, which is on the eastern part of the Dauki fault. The geomorphology around Jaflong is divided into the Shillong Plateau, the foothills, the lower terraces, and the alluvial plain from north to south. Because the foothills and lower terraces are considered to be uplifted tectonically, an active fault is inferred to the south of the lower terraces. This fault, which branches from the Dauki fault as a foreland migration, is known as the Jaflong fault in this paper. The trench investigation was conducted at the southern edge of the lower terrace. The angular unconformity accompanied by folding, which is thought to be the top of the growth strata, was identified in the trench. An asymmetric anticline with a steep southern limb and gentle northern limb is inferred from the back-tilted lower terrace and the folding of the gravel layer parallel to the lower terrace surface. The timing of the seismic event which formed the folding and unconformity is dated to between AD 840 and 920.The trench investigation at Gabrakhari, on the western part of the Dauki fault, revealed that the Dauki fault ruptured in AD 1548 (Morino et al., 2011). Because the 1897 great Indian earthquake (M  8.0; Yeats et al., 1997) was caused by the rupture of the Dauki fault (Oldham, 1899), it is clear that the Dauki fault has ruptured three times in the past one thousand years. The timing of these seismic events coincides with that of the paleo-liquefactions confirmed on the Shillong Plateau. It is essential for the paleo-seismological study of the Dauki fault to determine the surface ruptures of the 1897 earthquake. The Dauki fault might be divided into four rupture segments, the western, central, eastern, and easternmost segments. The eastern and western segments ruptured in AD 840–920 and in 1548, respectively. The 1897 earthquake might have been caused by the rupture of the central segment.  相似文献   

15.
The epicentral tract of the great Assam earthquake of 1897 of magnitude 8·7 was monitored for about 6 months using an array of portable seismographs. The observed seismicity pattern shows several diversely-oriented linear trends, some of which either encompass or parallel known geological faults. A vast majority of the recorded micro-earthquakes had estimated focal depths between 8–14 km. The maximum estimated depth was 45 km. On the basis of a seismic velocity model for the region reported recently and these depth estimates we suggest that the rupture zone of the great 1897 earthquake had a depth of 11–12 km under the western half of the Shillong massif. Four composite fault plane solutions define the nature of dislocation in three of the seismic zones. Three of them show oblique thrusting while one shows pure dip slip reverse faulting. The fault plane solutions fit into a regional pattern of a belt of earthquakes extending in NW-SE direction across the north eastern corner of the Bengal basin. The maximum principle stress axis is approximately NS for all the solutions in conformity with the inferred direction of the Indian-EuroAsian plate convergence in the eastern Himalaya.  相似文献   

16.
The Manyas fault zone (MFZ) is a splay fault of the Yenice Gönen Fault, which is located on the southern branch of the North Anatolian Fault System. The MFZ is a 38 km long, WNW–ESE-trending and normal fault zone comprised of three en-echelon segments. On 6 October 1964, an earthquake (Ms = 6.9) occurred on the Salur segment. In this study, paleoseismic trench studies were performed along the Salur segment. Based on these paleoseismic trench studies, at least three earthquakes resulting in a surface rupture within the last 4000 years, including the 1964 earthquake have been identified and dated. The penultimate event can be correlated with the AD 1323 earthquake. There is no archaeological and/or historical record that can be associated with the oldest earthquake dated between BP 3800 ± 600 and BP 2300 ± 200 years. Additionally, the trench study performed to the north of the Salur segment demonstrates paleoliquefaction structures crossing each other. The surface deformation that occurred during the 1964 earthquake is determined primarily to be the consequence of liquefaction. According to the fault plane slip data, the MFZ is a purely normal fault demonstrating a listric geometry with a dip of 64°–74° to the NNE.  相似文献   

17.
Evaluating the hazard potential of the Makran subduction zone requires understanding the previous records of the large earthquakes and tsunamis. We address this problem by searching for earthquake and tectonic proxies along the Makran Coast and linking those observations with the available constraints on historical seismicity and the tell-tale characteristics of sea floor morphology. The earthquake of Mw 8.1 of 1945 and the consequent tsunami that originated on the eastern part of the Makran are the only historically known hazardous events in this region. The seismic status of the western part of the subduction zone outside the rupture area of the 1945 earthquake remains an enigma. The near-shore shallow stratigraphy of the central part of Makran near Chabahar shows evidence of seismically induced liquefaction that we attribute to the distant effects of the 1945 earthquake. The coastal sites further westward around Jask are remarkable for the absence of liquefaction features, at least at the shallow level. Although a negative evidence, this possibly implies that the western part of Makran Coast region may not have been impacted by near-field large earthquakes in the recent past??a fact also supported by the analysis of historical data. On the other hand, the elevated marine terraces on the western Makran and their uplift rates are indicative of comparable degree of long-term tectonic activity, at least around Chabahar. The offshore data suggest occurrences of recently active submarine slumps on the eastern part of the Makran, reflective of shaking events, owing to the great 1945 earthquake. The ocean floor morphologic features on the western segment, on the contrary, are much subdued and the prograding delta lobes on the shelf edge also remain intact. The coast on the western Makran, in general, shows indications of progradation and uplift. The various lines of evidence thus suggest that although the western segment is potentially seismogenic, large earthquakes have not occurred there in the recent past, at least during the last 600?years. The recurrence period of earthquakes may range up to 1,000?years or more, an assessment based on the age of the youngest dated coastal ridge. The long elapsed time points to the fact that the western segment may have accumulated sufficient slip to produce a major earthquake.  相似文献   

18.
The 1515 M7? Yongsheng earthquake is the strongest earthquake historically in northwest Yunnan. However, its time, magnitude and the seismogenic fault have long been a topic of dispute. In order to accurately define those problems, a 1:50000 active tectonic mapping was carried out along the northern segment of the Chenghai–Binchuan fault zone. The result shows that there is an at least 25 km–long surface rupture and a series of seismic landslides distributed along the Jinguan fault and the Chenghai fault. Radiocarbon dating of the ~(14) C samples indicates that the surface rupture should be a part of the deformation zone caused by the Yongsheng earthquake in the year 1515. The distribution characteristics of this surface rupture indicate that the macroscopic epicenter of the 1515 Yongsheng earthquake may be located near Hongshiya, and the seismogenic fault of this earthquake is the Jinguan–Chenghai fault, the northern part of the Chenghai–Binchuan fault zone. Striations on the surface rupture show that the latest motion of the fault is normal faulting. The maximum co–seismic vertical displacement can be 3.8 m, according to the empirical formula for the fault displacement and moment magnitude relationship, the moment magnitude of the Yongsheng earthquake was Mw 7.3–7.4. Furthermore, combining published age data with the ~(14) C data in this paper reveals that at least four large earthquakes of similar size to the 1515 Yongsheng earthquake, have taken place across the northern segment of the Chenghai–Binchuan fault zone since 17190±50 yr. BP. The in–situ recurrence interval of Mw 7.3–7.4 characteristic earthquakes in Yongsheng along this fault zone is possibly on the order of 6 ka.  相似文献   

19.
Abstract: On May 12th, 2008, the Mw7.9 Wenchuan earthquake ruptured the Beichuan, Pengguan and Xiaoyudong faults simultaneously along the middle segment of the Longmenshan thrust belt at the eastern margin of the Tibetan plateau. Field investigations constrain the surface rupture pattern, length and offsets related to the Wenchuan earthquake. The Beichuan fault has a NE-trending right-lateral reverse rupture with a total length of 240 km. Reassessment yields a maximum vertical offset of 6.5±0.5 m and a maximum right-lateral offset of 4.9±0.5 m for its northern segment, which are the largest offsets found; the maximum vertical offset is 6.2±0.5 m for its southern segment. The Pengguan fault has a NE-trending pure reverse rupture about 72 km long with a maximum vertical offset of about 3.5 m. The Xiaoyudong fault has a NW-striking left-lateral reverse rupture about 7 km long between the Beichuan and Pengguan faults, with a maximum vertical offset of 3.4 m and left-lateral offset of 3.5 m. This pattern of multiple co-seismic surface ruptures is among the most complicated of recent great earthquakes and presents a much larger danger than if they ruptured individually. The rupture length is the longest for reverse faulting events ever reported.  相似文献   

20.
Ali. O. Oncel  Tom Wilson   《Tectonophysics》2006,418(3-4):205-218
Seismotectonic parameters including the Gutenberg-Richter b-value and multifractal dimensions D2 and D15 of seismicity patterns (both spatial and temporal) were compared to GPS-derived maximum shear and dilatation strains measured in the Marmara Sea region of western Turkey along the Northern Anatolian Fault Zone (NAFZ). Comparisons of seismotectonic parameters and GPS-derived maximum shear and dilatation strain along the NAFZ in the vicinity of the 1999 M7.4 Izmit earthquake reveal a positive correlation (r = 0.5, p = 0.05) between average dilatation and the Gutenberg-Richter b-value. Significant negative correlation (r = − 0.56, p = 0.03 and r = − 0.56, p = 0.02) was also observed between the spatial fractal dimension D2 and GPS-derived maximum geodetic and shear strain. This relationship suggests that, as maximum geodetic and shear strains increase, seismicity becomes increasingly clustered.Anomalous interrelationships are observed in the Marmara Sea region prior to the Izmit event along a bend in the NAFZ near the eastern end of the Marmara Sea known as the Northern Boundary Fault (NBF). An asperity is located near the northwest end of the NBF. Along the 50-km length of the NBF, GPS strains become slightly compressive. The correlation between b-value and GPS-derived dilatation suggests that regions in compression have increased probability of larger magnitude rupture. The NBF appears to serve as an impediment to the transfer of strain from east to west along the NAFZ. Recurrence times for large earthquakes along the NBF are larger than in surrounding areas. Temporal clustering of seismicity in the vicinity of the NBF may represent foreshocks of an impending rupture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号