首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
罗耀星 《地质论评》1990,36(1):31-41
大石桥菱镁矿区诸矿床已初步查明为蒸发沉积成岩-热液交代富集型,本文进一步研究热液的物质来源。该区青山怀矿床的菱镁矿及蚀变白云岩的稀土总丰度、铺和重稀土均高于未蚀变白云岩。后者的稀土型式反映沉积成因,菱镁矿和蚀变白云岩则反映热液富集交代型式,热液为混合岩化热液。自元古宙混合岩的强烈蚀变中获得稀土,并从长石中获得Eu,并与蚀变混合岩达到稀土平衡。由含碱氯化络合物搬运,在循环过程中淋滤了围岩(白云岩)的物质。菱镁矿通过品格收容和晶问沉淀捕获稀土。显示了高浓度卤水在搬运、沉淀过程中的稀土分馏。物质来源主要来自混合  相似文献   

2.
汤好书  陈衍景  武广  杨涛 《岩石学报》2009,25(11):3075-3093
2.33~2.06Ga期间发生了全球性大气圈充氧作用及其相关的占δ~(13)C_(carb)正异常,被称为Lomagundi事件.2.2~2.174Ga的辽河群大石桥菱镁矿及其围岩显示了δ~(13)C_(carb)正异常,是运用REY(REE+Y)指纹技术研究Lomagundi事件的良好对象.本文研究表明,6件白云岩围岩样品∑REE为0.988×10-6~2.744×10-6;Y/Ho比值为37.9~49.4(平均42.5±4.7);(La/La~*)_(SN)为1.075±0.317,(Gd/Gd~*)_(SN)为1.390±0.166,均为正异常;HREE富集(Nd_(SN)/Yb(_SN)=0.38~0.78).所有上述特征与现代海水REY配分模式一致,表明这些样品记录了Lomagundi时期海水的REY特征.6件菱镁矿样品∑REE为4.549±2.239,高于围岩白云岩;HREE弱亏损(Nd_(SN)/Yb_(SN)=1.141±0.265),Y/Ho平均值为40.2±3.2;(La/La~*)_(SN)为0.657~1.149(平均0.919±0.203),(Gd/Gd~*)_(SN)=1.036±0.081,正异常程度弱于白云岩,但仍显示以海水来源为主.矿体顶板滑石白云岩∑REE含量最高(10.758);页岩标准化稀土配分模式为平坦型,(Eu/Eu~*)_(SN)正异常高达1.97,Gd和Y正异常最小,Y/Ho比值最低(31.3),(Nd/Yb)_(SN)为0.89,显示受后期热流体交代影响.菱镁矿(Sm/Yb)_(CN)值(2.61±0.45)高于白云岩(1.19±0.27),指示海水由深变浅,大石桥菱镁矿及其围岩白云岩REY主要来自陆源溶解物,洋底热液贡献微弱,制约REY特征的主导因素为大气圈-水圈的性质,如fO_2,pCO-2等.白云岩和菱镁矿(Ce/Ce~*)_(SN)值平均分别为1.11±0.13和1.04±0.08,表明2.2~2.174Ga期间大陆风化作用加剧,海水呈碱性,pH值>8.2.2.33Ga前的化学沉积物(Eu/Eu~*)_(SN)>1.53,2.06Ga后的化学沉积物(Eu/Eu~*)_(SN)<1.53,大石桥组白云岩和菱镁矿(Eu/Eu~*)_(SN)均值分别为1.44±0.11和1.58±0.20.表明2.2~2.174Ga时海相沉积物(Eu/Eu~*)_(SN)≈1.53,2.33~2.06Ga是地球水圈-气圈系统由还原向氧化转变的关键时期.  相似文献   

3.
云南澜沧老厂银多金属矿床是“三江”成矿带南段著名的代表性矿床之一。本文系统研究了矿床中黄铁矿(石)的稀土和微量元素地球化学特征。结果表明:老厂矿床黄铁矿(石)稀土元素总量较低,黄铁矿石EREE平均为5.54×10^6,其单矿物EREE平均仅为0.25×10^6;各类样品稀土配分模式均为明显右倾的轻稀土富集模式,轻稀土分异较强、而重稀土元素分异较弱;黄铁矿石、矿物δEu正异常、δCe负异常和轻稀土富集的配分模式与现代海底热液稀土的十分相似,是成矿流体海底喷流沉积的体现,此外黄铁矿石、矿物还发育弱的δEu负异常,可能是后期岩浆成矿热液叠加改造的结果。矿床黄铁矿单矿物除相对富集少量高场强元素外,其它元素均有不同程度的亏损,其Hf/Sm、Th/La、Nb/La值普遍〈1,表明矿床成矿流体可能是以富cl的成矿热液为主;黄铁矿co、Ni含量较低且变化较大,Co/Ni比值显示矿床经历了不同的成矿阶段,利用Y/Ho比值示踪成矿流体表明,黄铁矿Y/Ho比值与海水及海底热液基本一致,为矿床经历海底火山喷流沉积成矿作用提供了新的佐证。  相似文献   

4.
迤纳厂稀土铁铜矿床稀土元素地球化学   总被引:11,自引:1,他引:10  
系统测定了迤纳厂矿床不同类型矿石、围岩和火山角砾岩、岩浆岩的稀土元素组成。研究表明,不同类型矿石均具REE总量高(726X10^6—4633x10^6)、铕正异常(1.邱一5.16)、轻稀土强烈富集[(La/Yb)n=3.98—81.1]等特征,Y/Ho比值(24.4)小于球粒陨石中比值(28),与黑烟囱的比值接近。硅质白云岩及钠长石英斑岩、层状火山角砾岩的稀土特征(稀土总量低,铕负异常,轻重稀土分异不明显等)与矿石完全不同。成矿流体的稀土元素特征与现代大洋中脊热液相似,与裂谷初期的碱性火山岩稀土元素特征较为接近。结合矿床产出的大地构造背景,提出迤纳厂稀土铁铜矿床可能为昆阳裂谷初期碱性火山岩的喷发期间歇,来自地幔富稀土、富挥发份的成矿流体喷流.沉积成矿。  相似文献   

5.
黔东八克金矿床毒砂和黄铁矿微量元素地球化学研究   总被引:2,自引:0,他引:2  
八克金矿床以矿体和围岩广泛出现毒砂为典型特征,毒砂、黄铁矿为金的主要共生矿物。对矿体及其围岩中毒砂、黄铁矿进行稀土和微量元素地球化学研究,结果显示矿体中毒砂和黄铁矿的稀土元素总量明显低于围岩的毒砂、黄铁矿,从矿体—近矿围岩—远矿围岩,毒砂、黄铁矿都出现铕的明显负异常,铈无明显异常,反映成矿流体具弱还原性;毒砂、黄铁矿微量元素含量呈现出随着成矿流体从早期到晚期的演化而减少,并普遍亏损高场强元素,富集LREE的特征;通过对黄铁矿、毒砂Hf/Sm、Nb/La和Th/La比值分析,表明八克金矿床成矿流体为富Cl型流体;从研究毒砂、黄铁矿Y/Ho、Zr/Hf和Nb/Ta比值变化范围,表明作用于围岩、矿体中的成矿流体从早期-晚期发生了改变,推测晚期成矿流体可能遭受了外来热液的混入;应用毒砂、黄铁矿中的Co/Ni比值,结合已有数据,表明成矿热液具有多来源的特点,成矿流体来源于大气降水与岩浆水不均匀混合。八克金矿是岩浆热液型的含金石英脉型金矿床。  相似文献   

6.
茂租铅锌矿床位于扬子地台西南缘,是滇东北矿集区内的一个大型矿床,矿体主要呈似层状产于震旦系灯影组白云岩中;矿石矿物以闪锌矿为主,次为方铅矿;脉石矿物主要为白云石、方解石和萤石。本文对该矿床中与铅锌矿密切共生的团块状白云石、方解石和萤石以及围岩灯影组白云岩的REE地球化学特征和C、O、Sr同位素进行了对比研究。结果表明:团块状白云石和方解石的稀土配分模式、C同位素和Sr同位素比值与围岩灯影组白云岩比较接近,表明形成团块状白云石和方解石的成矿流体主要来源于围岩灯影组白云岩的溶解;但这两种矿物的稀土总量ΣREE高于灯影组白云岩,说明成矿流体除了主要由围岩提供REE外,还有部分其他富含REE流体的加入。萤石则具有LREE亏损和分配曲线相对平缓的稀土配分模式特征,表明萤石形成于成矿的晚阶段,有更多的外部流体的加入。团块状白云石、方解石和萤石表现出明显的Eu正异常,且团块状白云石和方解石的O同位素低于灯影组白云岩,反映了存在较高温度的流体活动,这3种脉石矿物是由高温热液流体形成的。灯影组白云岩和3种脉石矿物都具有明显的Ce负异常,说明成矿流体可能主要来源于地层循环水,继承了围岩的Ce负异常特征。方解石和萤石的Sr同位素比值高于围岩震旦系灯影组白云岩和峨眉山玄武岩,但小于基底岩石昆阳群和会理群,说明成矿流体主要由赋矿围岩等沉积地层中的循环流体与流经了基底岩石的深部流体混合形成。  相似文献   

7.
萤石经常以脉石矿物存在于各类金属矿床中,但以矿石矿物与金属矿物共存较为少见。布拖小洞子铅锌矿体和萤石矿体是赋存在震旦系灯影组不同部位的典型矿床,受四开-交际河断裂的次级断层带控制,是该区较为特殊,研究程度较低的一类矿床。其中萤石矿床产于与黑色燧石条带白云岩相关的断裂构造,矿石矿物以萤石为主。本文通过对震旦系灯影组下部萤石矿床开展稀土元素地球化学研究,结果表明轻稀土元素富集,重稀土元素略亏损,LREE/HREE介于0.96~1.61,(La/Yb)_N为1.19~3.23,稀土元素配分图表现出略微右倾的特征,具Eu正异常和Ce负异常特征。Tb/Ca-Tb/La、Y/Ho-La/Ho及La/Yb-∑REE等图解表明小洞子萤石矿床主要为同一体系不同阶段的热液产物,破碎带充填交代型矿床成因,其成矿物质来源与灯影组地层和峨眉山玄武岩热液有关。  相似文献   

8.
郑杰 《地质与勘探》2015,51(6):1096-1106
小红山铜矿位于阿勒泰塔拉特-大东沟-莫尤勒特金属成矿带中,是与英安质-流纹质火山活动相关的铜矿床。文章利用黄铁矿中的稀土元素、微量元素组成示踪了该矿床成矿物质及成矿流体的来源和性质。研究结果表明小红山铜矿黄铁矿和霏细岩稀土元素总量较高,黄铁矿ΣREE总量均值为168.81×10~(-6),霏细岩略低,ΣREE总量均值为154.10×10~(-6);黄铁矿和霏细岩样品稀土配分模式均为明显右倾的轻稀土富集模式,轻稀土分异较强、而重稀土元素分异较弱;黄铁矿具明显δEu负异常、而δCe无明显异常,表明该矿床产出于具还原性的活动大陆边缘环境,并在后期遭受变质热液的叠加改造。矿床黄铁矿富集LREE,亏损HFSE,Hf/Sm、Nb/La和Th/La比值小于1,推断小红山铜矿床成矿流体为富Cl流体。黄铁矿杂质元素Co/Ni比值表明,矿床成因以变质热液为主,矿床形成于中温。Y/Ho比值示踪成矿流体表明,矿床成矿流体与弧后盆地的成矿热液相似,黄铁矿与霏细岩Y/Ho比值的高度相似性也为围岩(霏细岩)提供了部分成矿物质或两者都受到了相同成矿热液的影响提供了新的证据。  相似文献   

9.
从几个地质特征初步探讨大石桥晶质菱镁矿矿床成因   总被引:4,自引:1,他引:4  
大石桥晶质菱镁矿产于含方柱石及微含沉积菱镁质的中元古代硅质白云岩中,受区域挤压带控制,与元古代混合岩有空间联系。受千枚岩遮挡层和层间断裂控制时,矿体成层状,否则成不规则状。围岩具脱硅化、菱镁矿化及滑石化等蚀变,具热晕。成矿温度介于240—370℃之间。因白云石变成菱镁矿时体积有收缩,故出现收缩构造,如张性角砾岩和张性断裂等。角砾岩胶结物中有菱镁矿和滑石。成矿热液为贫硅富镁碱性热液,晚期转为含硅酸性热液。矿床成因为(蒸发)沉积-热液富集。  相似文献   

10.
韩银学  李忠  韩登林  彭守涛  刘嘉庆 《岩石学报》2009,25(10):2405-2416
白云岩成因机制的核心问题之一是白云石化流体的来源.本文选择塔北东部地区下奥陶统蓬莱坝组白云岩、云质灰岩作为研究对象,在沉积学和岩石学基础上对基质白云岩的稀土元素地球化学特征进行了分析研究.结果表明,白云岩、云质灰岩中Sc、Th、Hf、Zr等元素的含量远远低于这些元素在陆源沉积物中的含量,并且Th、Zr的含量与Y/Ho比值间不具有明显的正相关关系,La的正异常、较高的Y/Ho比值等特征均表明塔北东部下奥陶统蓬莱坝组碳酸盐岩形成的环境为未受陆源物质混染的浅海相沉积.而白云岩负Ce异常、正La异常、轻微富集的Gd正异常以及La正异常与Y异常的正相关性等典型稀土元素特征均反映了白云石化流体具有典型的海水来源特征;而基质白云岩与白云质灰岩之间的ΣREE+Y,ΣLREE和∑HREE含量差异表明,在白云石化过程中稀土元素发生了一定程度的流失,且HREE较之于LREE更易于发生流失,因此白云石化过程中成岩流体对HREE的移出量大于LREE的移出量是塔北东部下奥陶统白云岩具有相对富集的LREE及相对较低的Y/Ho比值的主要原因.结合岩石学、沉积学、微量元素以及稳定同位素特征的综合分析认为,塔北东部地区下奥陶统蓬莱坝组基质白云岩是海水白云石化作用的结果.个别白云岩样品的Eu正异常以及同层位构造裂隙方解石的δ~(18O) 、~(87)Sr/~(86)Sr以及流体包裹体均表明下奥陶统蓬莱坝组受到后期热液流体的影响,但其对研究样品基质白云岩的影响程度比较弱.  相似文献   

11.
In the Bashkir mega-anticline (western Urals) stratabound magnesite, siderite, fluorite and base-metal deposits are hosted by a sequence of Riphean sediments with a thickness of more than 12 km. The giant deposits of siderite (Bakal) and sparry magnesite (Satka) belong to the largest known mineral deposits of this type on Earth but are still disputed with respect to their origin. Both the Fe- and Mg-carbonate ores are clearly characterized by mimetic preservation of sedimentary and diagenetic textures of the host carbonate sediments, giving evidence of epigenetic metasomatic replacement. In the stratiform magnesite deposits of Satka, O- and C-isotopes, REE pattern and the lithostratigraphic position of the ore, point to the reflux of early diagenetic Mg-rich brines being responsible for the selective replacement of brecciated dolomite. The Bakal siderite deposits are hosted by Lower Riphean carbonate rocks and are controlled by a Lower to Middle Riphean unconformity marked by deep erosion and subsequent transgression-related sedimentation of coarse clastics. Their independence of carbonate lithofacies and their trace element distribution are indicative of metasomatic processes. Fe-bearing fluids have probably been generated by low-grade metamorphic (catagenetic) devolatization from underlying argillites, causing the metasomatic formation of large siderite ore bodies in the Bakal carbonates due to the focusing of the fluid flow by the overlying Mid-Riphean coarse clastics.  相似文献   

12.
Three stratificated levels of magnesite-bearing dolomites—Lower Riphean (Bakal-Satka-Suran), Middle Riphean (Avzyan), and Upper Riphean (Min’yar)—are recognized in the Riphean section of the Bashkir Anticlinorium of the southern Urals. Dolomites contain submicroscopic (~1 μm) magnesite dissemination (MgO/CaO > 0.714). The Lower and Middle Riphean magnesite-bearing dolomites host metasomatic magnesite stocks, lenses, pockets, and large stratiform lodes formed as products of hydrothermal activity. No metasomatic magnesite bodies are known in areas without indications of the hydrothermal reworking of magnesite-bearing dolomites. Magnesite deposits of the southern Urals are typical elisional-hydrothermal products related to sedimentation and lithogenesis of carbonate rocks in isochemical system of sedimentary basin. Juvenile components did not participate in the formation of magnesite deposits in the southern Urals.  相似文献   

13.
The metasomatic nature of magnesite formation, sequence and timing of geological processes, and solution sources have been established by comprehensive geological and geochemical study of the typical Satka and Ismakaevo deposits of sparry magnesite in the South Ural province. The hydrothermal metasomatic formation of magnesite is related to injection of high-Mg evaporite brine into heated carbonate rocks within permeable rift zones. The numerical physicochemical simulation of solution–rock interaction allowed us to determine the necessary prerequisites for sparry magnesite formation: the occurrence of marine salt solutions with a high Mg/Ca ratio and heating of solutions before or during their interaction with host carbonate rocks. The contribution of compositionally various solution sources, the temperature variation regime, proportions of CO2 and H2S concentrations in solution created specific features of particular deposits.  相似文献   

14.
辽宁营口后仙峪硼矿区超镁橄榄岩的控矿作用   总被引:3,自引:0,他引:3  
为了研究辽宁营口后仙峪硼矿区超镁橄榄岩与硼矿的关系,作者通过硼矿与超镁橄榄岩两者在产出空间关系、岩石学和地球化学方面的比较,发现:①硼矿体与超镁橄榄岩空间关系上具一致性;②硼矿体与超镁橄榄岩在岩石学上具继承性;③硼矿石、超镁橄榄岩的地球化学特征具相似性,从而得出超镁橄榄岩不仅是该区硼矿的容矿岩石,而且对硼矿的形成有决定性的岩控作用,进一步认为辽东硼矿的容矿岩石不全是镁质大理岩,其他富镁岩石在一定条件下也可成为硼矿的容矿岩石。  相似文献   

15.
Seven pockets of variable dimensions of strata-bound sparry magnesite within the Middle Proterozoic Gangolihat Formation around Bauri in the Almora district, Kumaun, Lesser Himalaya, have been investigated petrographically and geochemically. The lenses and pockets of megacrystalline, bladed, occasionally stellate, magnesite aggregates invariably enclosed by stromatolitic or massive dolostones, often exhibit a concordant relationship with the latter. Besides the sharp contrast in crystal-linity of magnesite and dolostones and the patches of the latter in the former, relict features such as layers of chert, cryptocrystalline silica veins and stromatolitic structures are discernible in the magnesite. There is a gradual increase in MgO and FeO with a corresponding decrease in CaO, and a striking depletion in Sr from dolostone to magnesite but no noteworthy variation in other major or minor elements nor in insoluble contents. Both the dolostones and magnesites are characterised by the same range of oxygen isotope ratios. However, a marked enrichment of lighter carbon isotopes in magnesites is noted. Based on these observations, it is inferred that the magnesite around Bauri is a product of diagenetic magnesitisation of penecontemporaneous dolomite in a restricted biohermal tidal flat environment.  相似文献   

16.
In the area of the magnesite deposits of Eugui (Navarra, Spain) studies on illite crystallinity, the degree of graphitization of carbonaceous material, measurements of vitrinite reflectivity, and fluid inclusions have been carried out on dolomites, magnesites, schists, and carbonaceous matter. These rocks have suffered metamorphism of very low to low grade.The magnesite appears generally concordant with the Namurian dolomitic rocks showing a typically banded structure. The genetic model proposed involves an early Mg concentration during sedimentation (syndiagenetic dolomitization), lateral circulation of saline solutions, and formation of diagenetically crystallized rhythmites (DCR), and final compaction. The formation of magnesite took place under the conditions of low pressure and temperatures close to 150°C, very similar to all strata-bound ore deposits. Deformation and regional metamorphism only caused minor removal, recrystallization, and transformation of the clay minerals and carbonaceous matter.  相似文献   

17.
Sparry and microcrystalline magnesite are minor constituents of the Upper Triassic Burano Evaporite Formation of the northern Apennines in Italy. Petrography and geochemistry of magnesite suggest three modes of formation. (1) Evaporitic precipitation of stratified microcrystalline magnesite layers associated with sulfate and carbonate rocks. Most REE are below ICP-MS detection limits. '18O is +20.2‰ (SMOW) and '13C is -2.6‰ (PDB). (2) Hydrothermal infill of Fe-rich (9.78 wt% FeO) lenticular sparry magnesite. This type of magnesite is characterized by very low LREE concentrations, whereas HREEs are relatively high. The fluid inclusion composition is NaCl-MgCl2-H2O, salinity is ~30 wt% NaCl equiv., and total homogenization temperatures range from 204-309 °C; '18O is +17.5‰ and '13C is +1‰. (3) The partial or total replacement of dolostones by lenticular sparry magnesite. LREEs are lower in magnesite compared with the partly replaced dolostones. Magnesite yields '18O and '13C compositions of +17.3 to +23.6‰ and +0.5 to +1.4‰, respectively, whereas the partly replaced dolostones yield '18O and '13C values of +25.0 to +26.2 and +1.3 to +1.9, respectively. Complete replacement of dolostones produced massive lenticular sparry magnesite rock containing ooids and axe-head anhydrite relicts; LREEs are depleted compared to unaffected dolostones; '18O and '13C compositions range from +16.4 to +18.4‰ and +0.4 to +0.9‰, respectively. These data and the association between fracture-filling and replacive magnesite suggests a metasomatic system induced by hydrothermal circulation of hot and saline Mg-rich fluids. These processes probably occurred in the Oligocene-Miocene, when the Burano Formation acted as main detachment horizon for the Tuscan Nappe during the greenschist facies metamorphism of the Apuane complex. Thrusting over the Apuane zone produced large scale fluid flow focused at the Tuscan Nappe front. Sources of Mg-rich fluids were metamorphic reactions in the Apuane complex and dissolution of Mg-salts at the thrust front. Considering a maximum tectonic burial depth of 10 km, as inferred from the geometry of the chain, the pressure-corrected temperature of magnesite precipitation (380 to 400 °C) and the calculated fluid composition ('18O=+13.3ǃ.2‰) are in the range of the published Apuane metamorphic temperatures (300-450 °C) and fluid compositions ('18O=7-16‰). The results of this study support the hydrothermal-metasomatic model for the formation of sparry magnesite deposits at the expense of dolostone units involved in thrusting and low-grade metamorphism, as proposed for the Northern Graywacke Zone (Alps) and the Eugui deposit (western Pyrenees).  相似文献   

18.
《Resource Geology》2018,68(4):352-372
Talc deposits in Nangarhar Province, are hosted by Paleoproterozoic carbonate rocks, metamorphosed to amphibolite facies in the east–west (E–W) trending Spinghar Fault Block. Many deposits in this province have potential economic importance. However, detailed geologic and petrological studies on ore genesis are still lacking. In this study, eight talc deposits and two prospects of the Spinghar Fault Block were investigated. Talc is mainly formed by alteration of the host dolomite marble, magnesite rocks, and tremolitite. Talc ore bodies occur parallel to subparallel to the beddings of the host carbonate rocks. Dolerite occur as dikes and sills and are mostly metamorphosed to amphibolite. Although the amphibolite occurs mostly parallel to subparallel to the beddings of the host carbonate rocks, and talc orebodies, it partly crosscuts the host rocks. Massive layers of tremolitite were observed with most of the talc ore bodies. Quartz veins occur along the gneissosity of gneiss all over the study area. SiO2 and MgO content in talc rocks from all deposits ranged from 49.1 to 65.1 wt% and from 26.1 to 32.9 wt%, respectively. CaO content in talc rocks and magnesite rocks are less than 1 wt%. ƩREE content in talc rocks ranged from 0.1 to 8.9 ppm. Chemical compositions of host carbonate rocks are close to the ideal composition. Concentrations of Al, Ta, Hf, Zr, Th, Cr, Ni, Co, and ƩREE in talc ores and host carbonate rocks were very low and inconsistent with mafic and ultramafic rocks protolith. Therefore, the metamorphosed sedimentary carbonate rocks were likely to be the protolith of the talc ores. The occurrence of parallel to subparallel quartz veins to the gneissosity of gneiss, as well as the presence of hydrous minerals in host carbonate rocks, suggested that hydrothermal fluids were most probably supplied through the gneiss.  相似文献   

19.
World-class deposits of magnesite and siderite occur in Riphean strata of the Southern Urals, Russia. Field evidence, inclusion fluid chemistry, and stable isotope data presented in this study clearly proof that the replacement and precipitation processes leading to the formation of the epigenetic dolomite, magnesite and hydrothermal siderite were genetically related to evaporitic fluids affecting already lithified rocks. There is, however, a systematic succession of events leading to the formation of magnesite in a first stage. After burial and diagenesis the same brines were modified to hot and reducing hydrothermal fluids and were the source for the formation of hydrothermal siderite. The magnesites of the Satka Formation as well as the magnesites and the siderites of the Bakal Formation exhibit low Na/Br (106 to 222) and Cl/Br (162 to 280) ratios plotting on the seawater evaporation trend, indicating that the fluids acquired their salinity by evaporation processes of seawater. Temperature calculations based on cation exchange thermometers indicate a formation temperature of the magnesites of?~?130 °C. Considering the fractionation at this temperature stable isotope evidence shows that the magnesite forming brines had δ18OSMOW values of?~?+1 ‰ thus indicating a seawater origin of the original fluid. Furthermore it proves that these fluids were not yet affected by appreciable fluid-rock interaction, which again implies magnesite formation in relatively high crustal levels. In contrast to the magnesites, the siderite mineralization was caused by hydrothermal fluids that underwent more intense reactions with their host rocks in deeper crustal levels compared to the magnesite. The values of 87Sr /86Sr in the siderites are substantially higher compared to the host rock slates. They also exceed the 87Sr /86Sr ratios of the magnesites and the host rock limestones indicating these slates as the source of iron as a consequence of water-rock interaction. The siderites were formed at temperatures of?~?250 °C indicating a relatively heavy fluid in equilibrium with siderite of 13 ‰ δ18OSMOW, which is in the range of diagenetic/metamorphic fluids and reflects the?±?complete equilibration with the host rocks. Carbon isotope evidence shows that the fluid forming the siderites underwent a much higher interaction with the host rocks resulting in a lowering of the δ13C numbers (?3,3 to ?3,7 ‰). The light carbon was most probably derived from decaying hydrocarbons in the Riphean sediments. In a very early stage after sedimentation of the Satka Formation (~1,550 Ma) magnesite was formed by seepage reflux of evaporitic bittern brines at the stage of riftogenic activity in the region (1,380–1,350 Ma). Sedimentation of the Bakal Formation (~1,430 Ma) and intrusion of diabase dykes (1,386?±?1,4 Ma) followed. Diagenetic/epigenetic mobilization of these buried fluids at?~?1,100 Ma resulted in the formation of hydrothermal siderite bodies.  相似文献   

20.
The Upper Permian Gröden Formation of the Northern Calcareous Alps (Austria) is composed of alluvial fan and playa lake sediments that were deposited in intramontane basins. A conspicuous feature of these redbeds is the abundance of magnesite in the form of nodules and discrete layers in mudstones as well as intergranular cement in sandstones. Sedimentological observations indicate that the bulk of these carbonates formed during early diagenesis and were probably syndepositional. Petrographically, most magnesites consist of micrite or, less commonly, microspar. An early non-ferroan magnesite is post-dated by later stage ferroan magnesites. Nodules consisting of recrystallized, sparry magnesite were observed only at one location. The general absence of relics of a non-magnesite precursor mineral and the occurrence of shrinkage features suggest that the fine grained magnesites formed by transformation of a hydrated magnesium carbonate mineral, e.g. hydromagnesite. Carbon, oxygen, sulphur and strontium isotope ratios in conjunction with sedimentological criteria support a model of (hydro)magnesite precipitation in an inland playa lake system, which was fed by run-off from the surrounding hinterland. The scarcity of evaporites and the dominance of magnesite over calcite and dolomite suggest that the playa lake brines were low in sulphate and had high Mg/Ca ratios. The source for the high magnesium concentrations is thought to be the weathering of Devonian dolostones and associated massive magnesite deposits in the catchment area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号