首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用淮南气候环境综合试验站2015年1月云雷达观测资料,对淮南地区冬季云的宏观特征进行了研究。结果表明:(1)淮南地区冬季云云底高度在0.21~11.0 km,其中0.5 km和2.0 km高度云底出现频率最高,分别占全部云系的16.7%和11.3%;云顶分布在0.36~11.3 km,其中5.0 km和5.5 km处云顶出现频率最高,分别占全部云系的9.25%和10.0%。云层厚度为0.1~8.3 km,73.4%的云层厚度在2.0 km范围内。(2)低云、中云、高云分别占全部云系的44.0%、29.4%和26.6%,平均厚度分别为2.4 km、0.8 km和0.6 km。(3)该地区冬季总云量较少,为13.7%~21.8%。单层云出现频率占总云量的45.2%~77.8%,多层云出现频率随着层数的增加而减小。  相似文献   

2.
本文利用2014年1月至2017年12月Ka毫米波雷达数据对北京地区云宏观特征进行统计分析。云出现率方面,4年平均值约36.3%;冬季最低,夏季最大;月出现率值9月最大,12月最小;出现率日变化有季节差异,春夏两季呈现中午(11:00,北京时间,下同)开始逐步升高至下午17:00后逐步下降的特点,增高幅度大于15%;冬、秋两季日变化特征不显著。高度方面,4年平均云底高约4.9 km,平均云顶高约7.2 km;云顶高和云底高的月变化特征明显,从年初1月开始逐步上升,在6月达到峰值,而后下降到12月达到低值;3~10月,高云(云底高>5 km)占约一半左右比例;厚度小于1 km的云在各月中所占比例最高;厚度1~4 km的云,厚度越大所占比例越低;特别地,厚度大于4 km的云所占比例在4~9月中仅次于厚度小于1 km云的比例。4年期间,北京地区单层云居多约占66.7%,两层云占比约25.2%,两层以上云占8.1%;冬季约80%的云为单层云,而6~9月云层分布变化最多,其中9月单层云比例最低约为40%。本文基于4年高时空分辨率雷达数据对北京地区云分布特征,特别是云垂直分布特征在数值上准确刻画,该项工作在已有云气候研究中尚未见开展,所获得的知识将对了解地区气候特征、区域模式云参数化选择提供参考。  相似文献   

3.
利用Vaisala CL51激光云高仪对厦门地区2016年1月1日至2020年12月31日5年的云探测数据,采用时间占比算法计算出云分数,并对云层、云高以及云分数分布规律进行统计分析。结果表明:中国东南沿海云层结构以单层云为主(占比43.59%),双层云为辅(占比16.42%),三层以上云出现的概率相对较低(占比5.25%)。观测期间以中低云为主,与其他季节相比,夏季的云分布密度的集中度较小,存在较大云底间距。高云更可能出现在18时至次日06时的时段内,夏季尤为显著,表现出明显的日变化特征。  相似文献   

4.
利用宁夏六盘山气象站2017年9月至2018年8月的Ka波段云雷达观测资料,统计分析了六盘山顶不同云的出现频率及宏观特征。结果表明:六盘山顶云出现频率最高值在7月,为61%,最低值在12月,为26%;按云层数划分,六盘山顶出现的云主要以1层云、2层云及3层云为主,相对总云的月平均出现频率分别为68%—86%、14%—27%及0.4%—4.8%;按云底高度及云层厚度划分,六盘山顶低云、中云、高云及直展云相对总云的月平均出现频率分别为29%—53%、14%—58%、6%—22%及2%—20%。云底高度在冬春季节高于夏秋季节,云顶高度在夏秋季节高于冬春季节,云层厚度为1.6—3.6 km,年变化特征与云顶高度类似。整体来看,春、夏、秋季云厚在白天大于夜间,冬季云厚在夜间大于白天,其中夏、秋季云厚日变化特征较为明显。  相似文献   

5.
基于CloudSat云分类资料的华北地区云宏观特征分析   总被引:4,自引:0,他引:4  
陈超  孟辉  靳瑞军  王兆宇 《气象科技》2014,42(2):294-301
利用2007年1月至2008年12月的CloudSat 2B-CLDCLASS-LIDAR云分类资料对华北地区(36°~42°N,110°~120°E)各类云在单层及多层云中的出现频率、平均高度及平均厚度进行统计分析。结果表明:华北地区单层云和多层云出现频率存在明显的季节变化,夏季最大,春秋次之,冬季最小。单层云的出现频率远高于多层云,单层云出现频率在春、夏、秋、冬4个季节分别为44.3%、46.1%、37.8%和32.8%,而多层云中2层云所占比例最大。单层云和多层云各云层平均高度、平均厚度分析显示,3层云上层云顶云底高度最高,3层云下层云顶云底高度最低,单层云平均厚度明显大于多层云,云层数越多,各云层的平均厚度越小。对不同类型云出现频率分析显示,卷云主要出现在单层云及多层云中、上层,高层云和高积云在单层云和多层云各云层中均占有一定的比例,层云主要出现在多层云下层,层积云、积云、深对流云主要出现在单层云及多层云下层,雨层云主要出现在夏季单层云中。卷云、高层云、高积云的平均高度及厚度在不同云系统中存在显著的差异。  相似文献   

6.
基于Cloud Sat-CALIPSO(Cloud Sat–Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations)卫星观测资料,分析了全球总云量和8类云的云量、云底高、云顶高、云厚度的水平和垂直分布。分析结果表明,全球平均总云量为66.7%,其中卷云(Ci)和层积云(Sc)云量之和与其他6类云量总和相当,是全球云量最多的两类云。积状云云量呈现从赤道向极地递减的特征,层状云则相反,反映了二者不同的生成环境,同时下垫面地形和天气系统也严重影响云的分布。8类云的高度及厚度特征有显著差异。Ci的云底高度和云顶高度都较高,厚度则较薄;高层云(As)和高积云(Ac)的云底高度和云顶高度都位于大气中层,但As比Ac出现的高度高且厚度大;层云(St)、层积云和积云(Cu)的云底高度和云顶高度都很低,属于薄的低云;雨层云(Ns)和深对流云(DC)云底较低但云顶伸展很高,归属于厚云类。总体而言,海洋上云底高度较陆地低;赤道等大气不稳定地区,云底较高,云厚度较大;高原地区则表现出"高云不高,低云不低,云厚较薄"的特征。  相似文献   

7.
利用CALIPSO激光雷达1km水平分辨率的云层产品,计算了中国及周边地区(0°~55°N,70°~140°E)多层云的出现概率,对不同高度多层云的水平分布及其季节变化特征进行了统计分析。结果表明:多层云的出现概率存在显著的区域差异,青藏高原和蒙古高原出现的概率较低,30°N以南的低纬度地区出现的概率较高;多层云系统中双层云占比最大,并且云层发生概率随着云层数的增多而减小;不同高度双层云和三层云的分布特征类似;多层云出现概率夏季最大,冬季最小,其中夏季双层云中“高云+高云”、“高云+中云”和三层云中“高云+高云+高云”、“高云+高云+中云”的配置在青藏高原主体的出现概率最大,而冬季单层云的低云、双层云中“高云+低云”及三层云中少量的“高云+高云+低云”配置在中国东北部海域、南海北部等30°N以北地区的出现概率高于其它季节。   相似文献   

8.
文章利用2013年内蒙古中部地区呼和浩特、东胜、临河、乌拉特中旗4个高空观测站的L波段探空秒数据,采用相对湿度阈值法,进行云垂直结构气候学特征分析以及降水云系的垂直结构分析。结果表明:呼和浩特地区平均云底高度为2680m,平均云顶高度为6433m,平均云厚为3753m。在全年中有60.2%的时间是无云天气;在有云时候,单层云约占24.1%;多层云中以双层云居多,约占总数的10.1%。云底高度低于2.5km、云层厚度在3.5km以上、云顶高度高于5.0km且连续无夹层是内蒙古中部地区降水云系的垂直结构特征。  相似文献   

9.
东亚地区云垂直结构的CloudSat卫星观测研究   总被引:16,自引:5,他引:11  
彭杰  张华  沈新勇 《大气科学》2013,37(1):91-100
本文利用卫星CloudSat同时结合了与其同轨道的卫星CALIPSO(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations)2007至2009年3年的观测资料,将东亚地区划分为六个研究区域,着重研究了东亚地区云垂直分布的统计特征.结果表明:东亚地区不同高度的云量之和具有明显的季节变化趋势,夏季最大,春秋次之,冬季最小.海洋上空的单层云量最大值出现在冬季,而在陆地上空则出现在夏季.从云出现概率来看,东亚地区单层云出现的概率在春、夏、秋、冬季节依次为52.2%,48.1%,49.2%和51.9%,而多层(2层和2层以上)云出现的概率在春、夏、秋、冬季节分别为24.2%,31.0%,19.7%,15.8%.云出现的总概率和多层云出现的概率,在六个区域都呈现出夏季最大,冬季最小;对4个季节都呈现出东亚南部比东亚北部大,海洋上空比陆地上空大的特点,表明云出现的总概率的季节变化主要由多层云出现的概率的变化决定.东亚地区云系统中最高层云云顶的高度,在夏季最高,为15.9 km,在冬季最低,为8.2 km;在东亚南部和海洋上空较高,平均为15.1 km;在东亚北部较低,平均为12.1 km,且呈现东亚南北部之间差异较大的特点.东亚地区云系统的云层厚度基本位于1 km到3 km之间,且夏季大,冬季小;对同一季节,不同区域的云层厚度差别较小;当多层云系统中的云层数目增加时,云层的平均厚度减少,且较高层的云层平均厚度大于较低层的.云层间距的概率分布基本呈单峰分布,出现峰值范围的云层间距在1到3 km之间,各区域之间没有明显差别,季节变化也不大.本文的研究为在气候模式中精确描述云的垂直结构提供了有用的参数化依据.  相似文献   

10.
吴翀  刘黎平  翟晓春 《大气科学》2017,41(4):659-672
激光云高仪和云雷达是探测云底的两种设备,但其探测能力和探测结果有一定的差异,对比分析两种设备的测云效果有助于正确认识它们的探测优势,推进我国云雷达在云探测中的应用。本文提出了基于云雷达数据的云底和云顶高度分析方法,利用2014年夏季第三次青藏高原大气科学试验云雷达、激光雷达和激光云高仪数据,统计了三种设备探测青藏高原低云、中云和高云的云底高度偏差、探测率,分析了激光云高仪探测云底偏高的原因,根据探测结果提出了固态发射机体制雷达探测青藏高原低云的优化观测模式,模拟分析了探测效果。结果表明:(1)云雷达对高云的探测能力要明显优于激光云高仪,但其对低云的探测能力有待改进,激光云高仪探测云底下部的边界层内的云雷达回波信号可能是非云降水回波;低层云的遮挡作用明显降低了激光云高仪对多层云的观测能力;与激光云高仪相比,云雷达仍然会漏掉一些高云和中云。(2)激光云高仪探测的中云和高云的云底很多在云雷达回波内部,云雷达和激光云高仪观测的云底的时空对应关系比较差。(3)增大激光发射功率和优化固态发射机体制云雷达观测模式可提高云的观测能力,微波和激光雷达数据融合可全面了解不同类型云的宏观特征。这一工作为云雷达和激光雷达数据的应用,评估激光云高仪和云雷达探测青藏高原云的能力,讨论设计优化的云观测方案,为推进我国云观测技术的发展提供了重要参考依据。  相似文献   

11.
利用星载激光雷达资料研究东亚地区云垂直分布的统计特征   总被引:23,自引:6,他引:17  
已有研究表明: 云的垂直结构(简称CVS)是一个在卫星资料反演和气候模式预测中很重要的云特征。本文通过利用美国2006年刚发射的卫星CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) 所负载的激光雷达Level 2_05km的云数据, 研究了东亚地区(18°N~53°N, 74°E~144°E) 云的垂直分布特征。结果表明: 东亚地区多层云云量在夏季、秋季、冬季、春季分别为43.6%、29.6%、21.1%、33.3%, 而多层云分布中双层云比例最大。云顶和云底高度除了随季节变化显著外, 还有明显的区域特征。单层云、 双层云以及三层云的云顶和云底高度的数据显示, 三层云中最上层的云顶和云底最高, 并始终高于两层云中最上层云的云顶和云底高度。平均云层厚度季节变化不明显, 其值普遍在0.9~2 km范围之间。而云层间距同样没有明显的季节和区域变化, 其出现的概率随距离的增大而减小。其中, 间距在0.35 km的概率最大, 占到将近50%。而间距在1.45 km附近的概率大约为15%, 高一点的可达到20%。  相似文献   

12.
利用2007年3月2008年2月CloudSat与CALIPSO卫星相结合的云分类产品2B-CLDCLASS-LIDAR数据,分析了中国西部及周边地区云的垂直结构特征。研究结果表明,各地区单层云出现频率均大于多层云,天山山脉、祁连山脉中西段多层云出现频率全年均大于周围地区;所有云的云顶和云底高度在不同高度的出现频率具有明显的区域和季节变化特征,且云顶高度的季节变化较云底高度显著;西北地区各云层高度的季节变化不明显,青藏高原(下称高原)地区各云层高度在冬、夏季反差较大;单层云的平均厚度超过2 km,2层云和3层云的厚度基本在1~2 km;云层间距以2层云最大,且高原地区云层间距季节变化较西北地区明显;高原南坡夏季冰云出现频率较多,其他地区冬、春季冰云出现较多,除高原南坡外,冬季冰云出现频率均在80%以上。  相似文献   

13.
基于卫星资料的中国西部地区云垂直结构分析   总被引:1,自引:0,他引:1  
利用2007年3月2008年2月CloudSat与CALIPSO卫星相结合的云分类产品2B-CLDCLASS-LIDAR数据,分析了中国西部及周边地区云的垂直结构特征。研究结果表明,各地区单层云出现频率均大于多层云,天山山脉、祁连山脉中西段多层云出现频率全年均大于周围地区;所有云的云顶和云底高度在不同高度的出现频率具有明显的区域和季节变化特征,且云顶高度的季节变化较云底高度显著;西北地区各云层高度的季节变化不明显,青藏高原(下称高原)地区各云层高度在冬、夏季反差较大;单层云的平均厚度超过2 km,2层云和3层云的厚度基本在1~2 km;云层间距以2层云最大,且高原地区云层间距季节变化较西北地区明显;高原南坡夏季冰云出现频率较多,其他地区冬、春季冰云出现较多,除高原南坡外,冬季冰云出现频率均在80%以上。  相似文献   

14.
李琦  蔡淼  周毓荃  唐雅慧  欧建军 《大气科学》2021,45(6):1161-1172
云的垂直结构特征作为云重要的宏观特征之一,直接决定了云的类型,进而通过发射和吸收辐射的方式影响着地气系统的能量收支平衡,因此对云垂直结构特征的研究一直都是云物理研究的一个重要方向。作为观测云垂直结构特征的一种方式,探空气球通过获取沿路径方向高分辨率的廓线信息,采用一定反演方法从而能够较为准确的识别云的垂直结构。本文即利用我国业务布网探空站的观测资料,采用相对湿度阈值法识别云垂直结构,并同激光云高仪、“风云四号”静止卫星和毫米波云雷达对识别的云结构特征量进行了一致性检验。在此基础上,统计分析了2015~2017年单层、两层和三层云的垂直结构分布特征、日变化和季节变化特征以及全国区域分布特征,结果表明:(1)整体分布上,单层云在垂直方向上出现的高度范围介于多层云的高度范围内,并且随着云层数的增加,云在垂直方向上更为伸展,即高层云越高,低层云越低;(2)在日变化中,中午单层和多层云中最低层云的云底高度均高于早晨,而夜间单层和多层云中最高层云的云顶高度则高于早晨和中午,同时中间层云厚的变化要小于最上层和最下层云厚的变化;(3)在季节变化中,夏季云量较其他季节更多,云体发展也更为深厚,表明温暖的大气条件更有利于云的形成和发展;(4)我国云垂直结构分布特征具有明显的纬向变化趋势,从以青藏高原为中心的西南地区的云底较高云体较薄的云,逐步过渡到以东南沿海地区为中心的云底较低云体较为深厚的云,表明不同地形和气候带的差异与不同云类型的分布直接相关。  相似文献   

15.
利用2006—2015年辽宁沈阳站的L波段探空数据,探讨了相对湿度阈值法对沈阳地区云识别的可靠性,并基于该方法对云的垂直结构进行定量分析。结果表明:相对湿度阈值法识别沈阳地区云的正确率可达75%以上,与地面观测有较好的一致性。60.7%的探空曲线识别到云的存在,云的出现频率夏季最高,为75.7%,秋季最低,为52.6%。有云条件下,沈阳地区以单层云为主,只有夏季多层云的出现频率较单层云高,多层云的出现频率随层数增加而减小。云层的垂直分布随云层数目及季节变化差异显著。云层及云夹层的厚度主要在2 km以下,且随云层数目的增加而减小。  相似文献   

16.
坐标旋转是涡动协方差(EC)通量观测数据后处理当中必须进行的步骤,本文利用塔克拉玛干沙漠腹地塔中西面标校站自然沙丘上3 m高度和塔中本站32 m高度2009年4—10月湍流通量数据,对比分析了不同坐标旋转方法在塔中通量观测数据中的应用。结果表明,塔克拉玛干沙漠腹地塔中湍流各通量在旋转订正前后差别不显著,不订正造成的通量计算误差1%。塔中32 m和塔中西站3 m通量计算误差,与两个站点的采集仪器架设高度差别较大有关。即使对于相对平坦的下垫面,也必须要进行倾斜校正,以修正地势、仪器振动、安装倾斜等产生的虚假信息。本研究对塔中涡动资料进行旋转时采用了二次坐标旋转方法。此结果为塔克拉玛干沙漠腹地EC通量观测的风速仪倾斜校正提供参考。  相似文献   

17.
两种探空仪判别云垂直结构的对比研究   总被引:1,自引:1,他引:0  
吴昊  黄兴友  杨荣康  李伟 《气象科学》2014,34(3):267-274
利用广东省阳江地区2010年7—8月WMO组织的国际高性能探空系统对比试验数据,对Vaisala RS92型探空仪和国产长峰探空仪的测云性能进行对比分析,并利用同步观测的Vaisala云高计和毫米波雷达数据进行了分析和验证。结果表明:两种探空仪判别的云层垂直结构都能较好地反映阳江的实际的云层情况。对于低云,两种探空仪的探测结果比较接近;对于不密实的云层,两种探空仪都会误判为多层云;对于高云,两种探空仪的判别效果均不理想,长峰探空仪还容易漏判云层。RS92探空仪探测的高云的云底和云顶的平均高度要高于长峰探空仪的探测结果。  相似文献   

18.
青藏高原上空云宏观参数的日变化受大尺度环流、当地太阳辐射和地表过程的联合作用,对辐射收支、辐射传输及感热、潜热的分布等有重要影响。由于缺乏持续定量的观测,对各类天气系统云宏观参数日变化特征的了解还十分不足。多波段多大气成分主被动综合探测系统APSOS(Atmospheric Profiling Synthetic Observation System)的Ka波段云雷达是首部在青藏高原实现长期观测云的雷达。本文基于2019年全年APSOS的Ka波段云雷达资料,采用统计和快速傅里叶变换方法研究了西风槽、切变线和低涡三类重要天气系统影响下的有云频率、单层非降水云或者降水云非降水时段的云顶高度、云底高度和云厚日变化的时域和频域特征,得到了统计回归方程。主要结论有:(1)西风槽系统日均有云频率为56.9%,切变线系统为50.8%,低涡系统达73%。(2)尽管西风槽和切变线系统的成因不同,但两类系统云宏观参数的日变化趋势和主要谐波周期相似:日变化趋势基本为单峰单谷型,日出前最低,日落前最高。有云频率表现为日变化和半日变化,单层云云顶高度、云底高度和云厚主要表现为日变化。(3)低涡系统云宏观参数的日变化特征与前两类系统明显不同:日变化趋势表现为多峰多谷型,虽然有云频率和单层云云顶高度、云底高度主要谐波中均以日变化振幅最大,但频谱分布分散,云厚主要变化中振幅最大的是周期为4.8 h的波动。(4)得到了各系统有云频率、单层云云顶高度、云底高度和云厚日变化的统计回归方程。  相似文献   

19.
黄萍  李刚  韩迁立 《贵州气象》2014,38(4):13-16
该文利用云南蒙自、腾冲探空站的高空气象观测资料进行云垂直结构分析,得出了较合理的云层垂直结构判定方法,并统计了云频率、云厚和云高等相关要素,得到以下主要结论:1通过探空相对湿度和温度露点差阈值,能够有效分辨云底、云顶和云夹层。2蒙自、腾冲夏季云天出现的频率达到100%,冬、春季节频率不到50%;冬季云状以低云为主,其他季节低云和高云同时存在的情况较多。3各类云高度没有显著的季节变化,而云厚度表现为夏半年明显高于冬半年,其中中云、低云较厚、高云较薄,云夹层厚度冬春季节较大。4低云云底高度01时和07时较低,云顶高度07时和13时较高,云厚度19时较小;中云01时和07时云底低、云顶高,相应的云厚度大于13时和19时,具有一定的日变化规律。  相似文献   

20.
利用敦煌、酒泉、张掖、民勤探空站2014—2019年的探空数据,对祁连山北坡云的发生频率及云垂直结构特征进行分析。结果表明:祁连山北坡全年云的发生频率为20%~40%,以1~3层云为主,且单层云的发生频率高于多层云,多层云以2层云为主;云的发生频率夏高冬低,夏季单层云和2层云出现的频率较为接近,而春、秋、冬季节单层云出现频率远高于2层云和3层云;全年平均云高度2层云的下层云厚度明显大于上层云,3层云的底层云与中层云之间晴空夹层厚度大于中层云与顶层云之间的晴空厚度;祁连山北坡云层高度季节变化显著,单层云和多层云的高度都表现为夏高冬低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号