首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The Polochic fault was a segment of the North American-Caribbean plate boundary across Central America in the Neogene. Its 130 km of left slip was previously determined by matching structures and stratigraphie outcrop patterns of northwest and central Guatemala across the fault. Additional support for the model and the youthfulness of the recorded offset comes from an essentially perfect match of major geomorphic features across the fault. A reconstruction process which eliminates 123 km of left slip brings together rivers and drainage divides that existed before the Polochic became active.With the reconstruction carried across the isthmus on an east-west fault the regional structural geology assumes the coherent pattern of a continuous orogenic belt whose geometry is compatible with the model of collisional tectonics centered on the Motagua “suture zone”. Confined within this belt, narrowed to some 60 km by the reconstruction, lie the major Laramide thrusts, folds and tectonically emplaced serpentinites of Guatemala. Crystalline rocks of Guatemala re-join the Chiapas Massif and Paleozoic sedimentary rocks, exposed in the core of an almost-continuous anticlinorium, extend from southern Chiapas to Lake Izabal.The Polochic does not bend in eastern Guatemala but continues eastward to the Motagua fault where it dies. Westward drift of the northern block resulted in rifting which extended from eastern Guatemala into the Caribbean along the Cayman trough. The Honduras depression may represent an element of a triple junction along with the Polochic and Izabal-Cayman rift.The Polochic continues westward into the Pacific Ocean and offsets the Middle America trench. The Polochic has offset the Miocene volcanic belt of northern Central America, confirming the previous estimate of a Neogene time of movement.About 300 km of relative east-west Neogene displacement has been recorded on the Mid-Cayman rise, only 130 km of which can be accounted for across the Polochic. It is suggested that cumulative extension on north-south faults south of the Motagua fault zone between the trench and the Honduras depression might make up that difference.  相似文献   

2.
Sakhalin Island straddles an active plate boundary between the Okhotsk and Eurasian plates. South of Sakhalin, this plate boundary is illuminated by a series of Mw 7–8 earthquakes along the eastern margin of the Sea of Japan. Although this plate boundary is considered to extend onshore along the length of Sakhalin, the location and convergence rate of the plate boundary had been poorly constrained. We mapped north-trending active faults along the western margin of the Poronaysk Lowland in central Sakhalin based on aerial photograph interpretation and field observations. The active faults are located east of and parallel to the Tym–Poronaysk fault, a terrane boundary between Upper Cretaceous and Neogene strata; the active faults appear to have reactivated the terrane boundary at depth in Quaternary time. The total length of the active fault zone on land is about 140 km. Tectonic geomorphic features such as east-facing monoclinal and fault scarps, back-tilted fluvial terraces, and numerous secondary faults suggest that the faults are west-dipping reverse faults. Assuming the most widely developed geomorphic surface in the study area formed during the last glacial maximum at about 20 ka based on similarities of geomorphic features with those in Hokkaido Island, we obtain a vertical component of slip rate of 0.9–1.4 mm/year. Using the fault dip of 30–60°W observed at an outcrop and trench walls, a net slip rate of 1.0–2.8 mm/year is obtained. The upper bound of the estimate is close to a convergence rate across the Tym–Poronaysk fault based on GPS measurements. A trenching study across the fault zone dated the most recent faulting event at 3500–4000 years ago. The net slip associated with this event is estimated at about 4.5 m. Since the last faulting event, a minimum of 3.5 m of strain, close to the strain released during the last event, has accumulated along the central portion of the active strand of the Tym–Poronaysk fault.  相似文献   

3.
Deformed marine terraces and alluvial deposits record Quaternary crustal deformation along segments of a major, seismically active branch of the San Andreas fault which extends 190 km SSE roughly parallel to the California coastline from Bolinas Lagoon to the Point Sur area. Most of this complex fault zone lies offshore (mapped by others using acoustical techniques), but a 4-km segment (Seal Cove fault) near Half Moon Bay and a 26-km segment (San Gregorio fault) between San Gregorio and Point Ano Nuevo lie onshore.At Half Moon Bay, right-lateral slip and N—S horizontal compression are expressed by a broad, synclinal warp in the first (lowest: 125 ka?) and second marine terraces on the NE side of the Seal Cove fault. This structure plunges to the west at an oblique angle into the fault plane. Linear, joint0controlled stream courses draining the coastal uplands are deflected toward the topographic depression along the synclinal axis where they emerge from the hills to cross the lowest terrace. Streams crossing the downwarped part of this terrace adjacent to Half Moon Bay are depositing alluvial fans, whereas streams crossing the uplifted southern limb of the syncline southwest of the bay are deeply incised. Minimum crustal shortening across this syncline parallel to the fault is 0.7% over the past 125 ka, based on deformation of the shoreline angle of the first terrace.Between San Gregorio and Point Ano Nuevo the entire fault zone is 2.5–3.0 km wide and has three primary traces or zones of faulting consisting of numerous en-echelon and anastomozing secondary fault traces. Lateral discontinuities and variable deformation of well-preserved marine terrace sequences help define major structural blocks and document differential motions in this area and south to Santa Cruz. Vertical displacement occurs on all of the fault traces, but is small compared to horizontal displacement. Some blocks within the fault zone are intensely faulted and steeply tilted. One major block 0.8 km wide east of Point Ano Nuevo is downdropped as much as 20 m between two primary traces to form a graben presently filling with Holocene deposits. Where exposed in the sea cliff, these deposits are folded into a vertical attitude adjacent to the fault plane forming the south-west margin of the graben. Near Point Ano Nuevo sedimentary deposits and fault rubble beneath a secondary high-angle reverse fault record three and possibly six distinct offset events in the past 125 ka.The three primary fault traces offset in a right-lateral sense the shoreline angles of the two lowest terraces east of Point Ano Nuevo. The rates of displacement on the three traces are similar. The average rate of horizontal offset across the entire zone is between 0.63 and 1.30 cm/yr, based on an amino-acid age estimate of 125 ka for the first terrace, and a reasonable guess of 200–400 ka for the second terrace. Rates of this magnitude make up a significant part of the deficit between long-term relative plate motions (estimated by others to be about 6 cm/yr) and present displacement rates along other parts of the San Andreas fault system (about 3.2 cm/yr).Northwestward tilt and convergence of six marine terraces northeast of Ano Nuevo (southwest side of the fault zone) indicate continuous gentle warping associated with right-lateral displacement since early or middle Pleistocene time. Minimum local crustal shortening of this block parallel to the fault is 0.2% based on tilt of the highest terrace. Five major, evenly spaced terraces southeast of Ano Nuevo on the southwest flank of Mt. Ben Lomond (northeast side of the fault zone) rise to an elevation of 240 m, indicating relatively constant uplift (about 0.19 m/ka and southwestward tilt since Early or Middle Pleistocene time (Bradley and Griggs, 1976).  相似文献   

4.
This study aims at the recent activity and development of an active wrench fault, the Touhuanping Fault in northwestern Taiwan. Northwestern Taiwan has been proposed in a current situation between the mature to waning collision in terms of tectonic evolution. The main drainage in this area, the Chungkang River, flows close to the trace of the fault mentioned above. We examined various types of deformation of fluvial terraces along the Chungkang River as a key to understanding the nature and rate of the late Quaternary tectonics. The E–W trending Touhuanping Fault has long been mapped as a geological boundary fault, but its recent activity was suspected. Field survey revealed that its late Quaternary activity is recorded in the offset fluvial terraces. Our result shows dextral slip and vertical offset with upthrown side on the south, and activated at least twice since the emergence of terrace 4 (older terrace 3 with OSL date of ca. 80 ka). Total amount of offset recorded in the Touhuanping terrace sequence is 15 m for dextral and 10 m for vertical offset. Estimated recurrence time of earthquake rupture may be a few tens of thousand years. Uplift on the upthrown side of the Touhuanping Fault also resulted in the formation of drowned valleys which were graded to terrace 4. Other deformation features, such as back-tilting, westward warping, and a range-facing straight scarp, were also identified. A second-order anticline roughly parallel to the Touhuanping Fault is suggested to be the origin of the northward tilting on terrace 3; it could have resulted from a flower structure on the Touhuanping Fault at shallow depth. This may demonstrate that the buried segment of the Touhuanping Fault has also been active since 80 ka. In the northern study area, the westward warping at terrace 2 probably represents late Quaternary activity of another NE–SW trending Hsincheng Fault.  相似文献   

5.
We have identified a 50-km-long active fault scarp, called herewith the Lourdes Fault, between the city of Lourdes and Arette village in the French Pyrénées. This region was affected by large and moderate earthquakes in 1660 (Io = VIII–IX, MSK 64,), in 1750 (Io = VIII, MSK 64) and in 1967 (Md = 5.3, Io = VIII, MSK 64). Most earthquakes in this area are shallow and the few available focal mechanism solutions do not indicate a consistent pattern of active deformation. Field investigations in active tectonics indicate an East–West trending and up to 50-m-high fault scarp, in average, made of 3 contiguous linear fault sub-segments. To the north, the fault controls Quaternary basins and shows uplifted and tilted alluvial terraces. Deviated and abandoned stream channels of the southern block are likely due to the successive uplift of the northern block of the fault. Paleoseismic investigations coupled with geomorphic studies, georadar prospecting and trenching along the fault scarp illustrate the cumulative fault movements during the late Holocene. Trenches exhibit shear contacts with flexural slip faulting and thrust ruptures showing deformed alluvial units in buried channels. 14C dating of alluvial and colluvial units indicates a consistent age bracket from two different trenches and shows that the most recent fault movements occurred between 4221 BC and 2918 BC. Fault parameters and paleoseismic results imply that the Lourdes Fault and related sub-segments may produce a MW 6.5 to 7.1 earthquake. Fault parameters imply that the Lourdes Fault segment corresponds to a major seismic source in the western Pyrénées that may generate earthquakes possibly larger than the 1660 historical event.  相似文献   

6.
The Polochic and Motagua faults define the active plate boundary between the North American and Caribbean plates in central Guatemala. A splay of the Polochic Fault traverses the rapidly growing city of San Miguel Uspantán that is periodically affected by destructive earthquakes. This fault splay was located using a 2D electrical resistivity tomography (ERT) survey that also characterized the fault damage zone and evaluated the thickness and nature of recent deposits upon which most of the city is built. ERT images show the fault as a ~50 m wide, near-vertical low-resistivity anomaly, bounded within a few meters by high resistivity anomalies. Forward modeling reproduces the key aspects of the observed electrical resistivity data with remarkable fidelity thus defining the overall location, geometry, and internal structure of the fault zone as well as the affected lithologies. Our results indicate that the city is constructed on a ~20 m thick surficial layer consisting of poorly consolidated, highly porous, water-logged pumice. This soft layer is likely to amplify seismic waves and to liquefy upon moderate to strong ground shaking. The electrical conductivity as well as the major element chemistry of the groundwater provides evidence to suggest that the local aquifer might, at least in part, be fed by water rising along the fault. Therefore, the potential threat posed by this fault splay may not be limited to its seismic activity per se, but could be compounded its potential propensity to enhance seismic site effects by injecting water into the soft surficial sediments. The results of this study provide the basis for a rigorous analysis of seismic hazard and sustainable development of San Miguel Uspantán and illustrate the potential of ERT surveying for paleoseismic studies.  相似文献   

7.
The NW—SE trending segments of the California coastline from Point Arena to Point Conception (500 km) and from Los Angeles to San Diego (200 km) generally parallel major right-lateral strike-slip fault systems. Minor vertical crustal movements associated with the dominant horizontal displacements along these fault systems are recorded in local sedimentary basins and slightly deformed marine terraces. Typical maximum uplift rates during Late Quaternary time are about 0.3 m/ka, based on U-series ages of corals and amino-acid age estimates of fossil mollusks from the lowest emergent terraces.In contrast, the E–W-trending segments of the California coastline between Point Conception and Los Angeles (200 km) parallel predominantly northward-dipping thrust and high-angle reverse faults of the western Transverse Ranges. Along this coast, marine terraces display significantly greater vertical deformation. Amino-acid age estimates of mollusks from elevated marine terraces along the Ventura—Santa Barbara coast imply anomalously high uplift rates of between 1 and 6 m/ka over the past 40 to 100 ka. The deduced rate of terrace uplift decreases from Ventura to Los Angeles, conforming with a similar trend observed by others in contemporary geodetic data.The more rapid rates of terrace uplift in the western Transverse Ranges reflect N—S crustal shortening that is probably a local accommodation of the dominant right-lateral shear strain along coastal California.  相似文献   

8.
This review of geological, seismological, geochronological and paleobotanical data is made to compare historic and geologic rates and styles of deformation of the Sierra Nevada and western Basin and Range Provinces. The main uplift of this region began about 17 m.y. ago, with slow uplift of the central Sierra Nevada summit region at rates estimated at about 0.012 mm/yr and of western Basin and Range Province at about 0.01 mm/yr. Many Mesozoic faults of the Foothills fault system were reactivated with normal slip in mid-Tertiary time and have continued to be active with slow slip rates. Sparse data indicate acceleration of rates of uplift and faulting during the Late Cenozoic. The Basin and Range faulting appears to have extended westward during this period with a reduction in width of the Sierra Nevada.The eastern boundary zone of the Sierra Nevada has an irregular en-echelon pattern of normal and right-oblique faults. The area between the Sierra Nevada and the Walker Lane is a complex zone of irregular patterns of hörst and graben blocks and conjugate normal-to right- and left-slip faults of NW and NE trend, respectively. The Walker Lane has at least five main strands near Walker Lake, with total right-slip separation estimated at 48 km. The NE-trending left-slip faults are much shorter than the Walker Lane fault zone and have maximum separations of no more than a few kilometers. Examples include the 1948 and 1966 fault zone northeast of Truckee, California, the Olinghouse fault (Part III) and possibly the almost 200-km-long Carson Lineament.Historic geologic evidence of faulting, seismologic evidence for focal mechanisms, geodetic measurements and strain measurements confirm continued regional uplift and tilting of the Sierra Nevada, with minor internal local faulting and deformation, smaller uplift of the western Basin and Range Province, conjugate focal mechanisms for faults of diverse orientations and types, and a NS to NE—SW compression axis (σ1) and an EW to NW—SE extension axis (σ3).  相似文献   

9.
We found active faults in the fold and thrust belt between Tunglo town and the Tachia River in northwestern Taiwan. The surface rupture occurred in 1999 and 1935 nearby the study area, but no historical surface rupture is recorded in this area, suggesting that the seismic energy has been accumulated during the recent time. Deformed fluvial terraces aid in understanding late Quaternary tectonics in this tectonically active area. This area contains newly identified faults that we group as the Tunglo Fault System, which formed after the area's oldest fluvial terrace and appears at least 16 km long in roughly N–S orientation. Its progressive deformations are all recorded in associated terraces developed during the middle to late Quaternary. In the north, the system consists of two subparallel active faults, the Tunglo Fault and Tunglo East Fault, striking N–S and facing each other from opposite sides of the northward flowing Hsihu River, whose course may be controlled by interactions of above-mentioned two active faults. The northern part of the Tunglo Fault, to the west of the river, is a reverse fault with upthrown side on the west; conversely the Tunglo East Fault, to the east, is also a reverse fault, but with upthrown side on the east. Both faults are marked by a flexural scarp or eastward tilting of fluvial terraces. Considering a Quaternary syncline lies subparallel to the east of this fault system, the Tunglo Fault might be originated as a bending moment fault and the Tunglo East Fault as a flexural slip fault. However, they have developed as obvious reverse faults, which have progressive deformation under E–W compressive stress field of Taiwan. Farther south, a west-facing high scarp, the Tunglo South Fault, strikes NNE–SSW, oblique to the region's E–W direction of compression. Probably due to the strain partitioning, the Tunglo South Fault generates en echelon, elongated ridges and swales to accommodate right-lateral strike–slip displacement. Other structures in the area include eastward-striking portion of the Sanyi Fault, which has no evidence for late Quaternary surface rupture on this fault; perhaps slip on this part of Sanyi Fault ceased when the Tunglo Fault System became active.  相似文献   

10.
阿尔金断裂新生代大规模走滑起始时间的厘定   总被引:4,自引:1,他引:3  
吴磊  巩庆霖  覃素华 《岩石学报》2013,29(8):2837-2850
至今仍在活动的阿尔金左旋走滑断裂构成了青藏高原地质意义上的北界,是世界上规模最大、也是最重要的巨型断裂之一,其新生代的快速走滑是吸收印藏碰撞变形的重要途径.对其新生代大规模走滑的起始时间目前尚无一个统一认识,主要受其本身复杂性的限制,也很难找到一个确切的直接证据来限定其走滑时间.本文从阿尔金断裂走滑作用相关的一系列地质现象入手,从多个角度综合阐述这一科学问题,包括柴达木盆地西缘的物源变化、塔里木盆地东南缘走滑挤压挠曲盆地的形成、青藏高原北缘上地壳强烈的NE-SW向缩短变形、走滑相关盆地的形成以及与走滑断裂相伴生的线性隆起形成等等.结果表明与阿尔金断裂左旋走滑相关的地质现象大量出现在中中新世以后,约束得出阿尔金断裂新生代大规模的走滑始于约15±2Ma.此外还分析了本文结果所得出的阿尔金断裂新生代长期滑移速率与实测第四纪滑移速率相互矛盾的原因,并讨论了阿尔金断裂左旋走滑与阿尔金山的隆升以及青藏高原东北缘在中中新世的构造应力转换之间的关系.  相似文献   

11.
Franck A. Audemard   《Tectonophysics》2006,424(1-2):19-39
This paper discusses the surface rupture of the Cariaco July 09, 1997 Ms 6.8 earthquake in northeastern Venezuela – located at 10.545°N and 63.515°W and about 10 km deep. The field reconnaissance of the ground breaks confirms that this event took place on the ENE–WSW trending onshore portion of the dextral El Pilar fault (between the Gulfs of Cariaco and Paria), which is part of the major wrenching system within the Caribbean–South America plate boundary zone. Dextral slip along this fault was further supported by the structural style of this rupture (en echelon right-lateral R shears connected by mole tracks at restraining stepovers) and by larger geometric complexities (pop-ups at Las Manoas and Guarapiche), as well as by the focal mechanism solutions determined for the event by several authors. This 1997 surface ruptre comprised two distinct sections, from west to east: (a) a main very conspicuous, continuous, 30-km-long, rather straight, 075°N-trending alignment of en echelon surface breaks, with a rather constant, purely dextral coseismic slip of about 25  cm, but reaching a maximum value of 40 cm slightly northwest of Pantoño; and (b) a secondary discontinuous, 10-km-long, boomerang-shaped rupture, with a maximum coseismic slip of 20 cm at Guarapiche. The onshore extent of the surface rupture totalled 36 km, but may continue westward underwater, as suggested by the very shallow aftershock seismicity. This aftershock activity also clearly defined the steep north dip of the fault plane along the western rupture, suggesting tectonic inheritance on this major fault.From many locals' accounts, the rupture seems to have propagated from Pantoño to the west (highly asymmetric bidirectionality). This suggests that earthquake nucleation happened at or near the Casanay–Guarapiche restraining bend and rupture quickly propagated westward, allowing only a small fraction to progress eastwards beyond the bend. Additionally, the large fraction of after-slip (or creep) released is to be related to such restraining bend, which seems to have partly locked slip during rupture.  相似文献   

12.
Recent studies on the Xianshuihe-Xiaojiang fault system suggest that the Late Quaternary strike-slip rate is approximately uniform along the entire length of the fault zone, about 15±2 mm/a. This approximately uniform strike slip rate strongly supports the clockwise rotation model of the southeastern Tibetan crust. By approximating the geometry of the arc-shaped Xianshuihe-Xiaojiang fault system as a portion of a small circle on a spherical Earth, the 15±2 mm/a strike slip rate corresponds to clockwise rotation of the Southeastern Tibetan Block at the (5.2±0.7)×10-7 deg/a angular velocity around the pole (21°N, 88°E) relative to the Northeast Tibetan Block. The approximately uniform strike slip rate along the Xianshuihe-Xiaojiang fault system also implies that the Longmenshan thrust zone is not active, or at least its activity has been very weak since the Late Quaternary. Moreover, the total offset along the Xianshuihe-Xiaojiang fault system suggests that the lateral extrusion of the Southeastern Tibetan Block relative to Northeastern Tibetan Block is about 160 km and 200-240 km relative to the Tarim-North China block. This amount of lateral extrusion of the Tibetan crust should have accommodated about 13-24% convergence between India and Eurasia based on mass balance calculations. Assuming that the slip rate of 15±2 mm/a is constant throughout the entire history of the Xianshuihe-Xiaojiang fault system, 11±1.5 Ma is needed for the Xianshuihe-Xiaojiang fault system to attain the 160 km of total offset. This implies that left-slip faulting on the Xianshuihe-Xiaojiang fault system might start at 11±1.5 Ma.  相似文献   

13.
This paper reviews recent studies of Holocene coastal uplift in tectonically active areas near the plate boundaries of the western Pacific Rim. Emergent Holocene terraces exist along the coast of North Island of New Zealand, the Huon Peninsula of Papua New Guinea, the Japanese Islands, and Taiwan. These terraces have several features in common. All comprise series of subdivided terraces. The highest terrace is a constructional terrace, underlain by estuarine or marine deposits, and the lower terraces are erosional, cutting into transgressive deposits or bedrock. The highest terrace records the culmination of Holocene sea-level rise at ca. 6–6.5 ka BP. Lower terraces were coseismically uplifted. Repeated major earthquakes have usually occurred at ka intervals and meter-scale uplift. The maximum uplift rate and number of terraces are surprisingly similar, about 4 m/ka and seven to four major steps in North Island, Huon Peninsula, and Japan. Taiwan, especially along the east coast of the Coastal Range, is different, reaching a maximum uplift rate of 15 m/ka with 10 subdivided steps. They record a very rapid uplift. Comparison between short-term (Holocene) and long-term since the last interglacial maximum (sub-stage 5e) uplift rates demonstrates that a steady uplift rate (Huon Peninsula) or accelerated uplift toward the present (several areas of Japan and North Island) has continued at least since isotope sub-stage 5e. Rapid uplift in eastern Taiwan probably started only in the early Holocene, judging from the absence of any older marine terraces. Most of the causative faults for the coastal uplift may be offshore reverse faults, branched from the main plate boundary fault, but some of them are onshore faults, which deformed progressively with time.  相似文献   

14.
The NW—SE trending southern California coastline between the Palos Verdes Peninsula and San Diego roughly parallels the southern part and off-shore extension of the dominantly right-lateral, strike-slip, Newport—Inglewood fault zone. Emergent marine terraces between Newport Bay and San Diego record general uplift and gentle warping on the northeast side of the fault zone throughout Pleistocene time. Marine terraces on Soledad Mt. and Point Loma record local differential uplift (maximum 0.17 m/ka) during middle to late Pleistocene time on the southwest side of the fault (Rose Canyon fault) near San Diego.The broad Linda Vista Mesa (elev. 70–120 m) in the central part of coastal San Diego County, previously thought to be a single, relatively undeformed marine terrace of Plio—Pleistocene age, is a series of marine terraces and associated beach ridges most likely formed during sea-level highstands throughout Pleistocene time. The elevations of the terraces in this sequence gradually increase northwestward to the vicinity of San Onofre, indicating minor differential uplift along the central and northern San Diego coast during Pleistocene time. The highest, oldest terraces in the sequence are obliterated by erosional dissection to the northwest where uplift is greatest.Broad, closely spaced (vertically) terraces with extensive beach ridges were the dominant Pleistocene coastal landforms in central San Diego County where the coastal slope is less than 1% and uplift is lowest. The beach ridges die out to the northwest as the broad low terraces grade laterally into narrower, higher, and more widely spaced (vertically) terraces on the high bluffs above San Onofre where the coastal slope is 20–30% and uplift is greatest. At San Onofre the terraces slope progressively more steeply toward the ocean with increasing elevation, indicating continuous southwest tilt accompanying uplift from middle to late Pleistocene time. This southwest tilt is also recorded in the asymmetrical valleys of major local streams where strath terraces occur only on the northeast side of NW—SE-trending valley segments.The deformational pattern (progressively greater uplift to the northwest with slight southwest tilt) recorded in the marine and strath terraces of central and northern coastal San Diego County conforms well with the historic pattern derived by others from geodetic data. It is not known how much of the Santa Ana structural block (between the Newport—Inglewood and the Elsinore fault zones) is affected by this deformational pattern.  相似文献   

15.
The Fish Springs fault is a primary strand in the northern end of the Owens Valley fault zone (OVFZ). The Fish Springs fault is the northwest strand in a 3-km-wide left echelon step of the OVFZ which bounds the Poverty Hills bedrock high. The Fish Springs fault strikes approximately north-south, dips steeply to the east, and is marked by a prominent east-facing scarp. No other faults in the OVFZ have prominent east-facing scarps at the latitude of Fish Springs, which indicates that the Fish Springs fault has accommodated virtually all of the local late Quaternary vertical displacement on the OVFZ.

The Fish Springs fault exhibits normal dip slip with no measurable lateral slip. Vertical displacements of a Late Pleistocene (0.314 ± 0.036 Ma, 2σ) cinder cone and of an overlying Tahoe-age (0.065–0.195 m.y.) alluvial fan are 76±8 m and 31±3 m, respectively. The maximum vertical 3.3. m. Two nearly equal vertical displacements of the active stream channel in the Tioga-age fan total 2.2. m. Vertical displacement of a stream terrace incised into the cinder cone is 1.2 ± 0.3 m. The minute amount of incision into that terrace indicates that uplift of the terrace probably occurred during the 1872 Owens Valley earthquake.

Three displacements of 1.1 ± 0.2 m each apparently have occurred at the Tioga-age fan since the midpoint of the Tioga interval, allowing an average recurrence interval of 3500 to 9000 years. Based on the age and displacement of the cinder cone, the average late Quaternary vertical displacement rate is 0.24 ± 0.04 mm/yr (2σ). At this rate, and assuming an average vertical displacement of 1.1 ± 0.2 m per event, the average recurrence interval would be 4600 ± 1100 years (2σ). The recurrence interval for the Fish Springs fault is similar to that for a strand in the southern part of the OVFZ which also ruptured in 1872.

Right-lateral, normal oblique slip characterizes the OVFZ. The location of the Poverty Hills bedrock high at a left step in the north-northwest-striking fault zone is consistent with the style of slip of the zone. The pure normal slip on the north-striking Fish Springs fault and the alignment of local cinder cones along north-striking normal faults indicate that the late Quaternary maximum horizontal compression has been oriented north-south at the north end of the OVFZ. Data from southern Owens Valley indicate a similar stress regime there. Late Quaternary slip on the OVFZ is consistent with north-south maximum horizontal compression.  相似文献   


16.
色尔腾山山前断裂位于阴山山脉的中西段,控制着临河凹陷的北缘,在晚第四纪以来有着强烈的活动。通过对色尔腾山山前断裂大后店—瓦窑滩段进行地貌调查和测量,认为该段并不是一条向NE方向突出的单一弧形断裂,而是由走向为EW向的红旗村段(大后店—乌不浪口)和走向为NW向的圐圙补隆段(乌不浪口—瓦窑滩)组成。整条断裂共发育4级台地,T3台地的形成时代在距今5万至7万年以前,是河套古大湖的湖滨相沉积;T2的形成时代在距今2万至3万年以前。而全新世T1台地在该两段上的分布并不相同,红旗村段和圐圙补隆段T1台地的平均高度分别为537 m和81 m,测得的台地年龄分别为623 ka和1236 ka,沉积物均为冲洪积砂砾。两段断裂全新世的滑动速率分别为086 mm/a和065 mm/a。这两段在几何展布、构造地貌、断层运动学性质方面有不同的特征,属于不同的活动断裂分段,其分段边界的类型为断裂交汇处的T型结点。  相似文献   

17.
We describe an active right-lateral strike-slip fault zone along the southern margin of the Japan Sea, named the Southern Japan Sea Fault Zone (SJSFZ). Onshore segments of the fault zone are delineated on the basis of aerial photograph interpretations and field observations of tectonic geomorphic features, whereas the offshore parts are interpreted from single-/multichannel seismic data combined with borehole information. In an effort to evaluate late Quaternary activity along the fault zone, four active segments separated by uplifting structures are identified in this study. The east–northeast-trending SJSFZ constitutes paired arc-parallel strike-slip faults together with the Median Tectonic Line (MTL), both of which have been activated by oblique subduction of the Philippine Sea plate during the Quaternary. They act as the boundaries of three neotectonic stress domains around the eastern margin of the Eurasian plate: the near-trench Outer zone and NW–SE compressive Inner zone of southwest Japan arc, and the southern Japan Sea deformed under E–W compression from south to north.  相似文献   

18.
The Olinghouse fault zone is one of several NE—ENE-trending fault zones and lineaments, including the Midas Trench and the Carson—Carson Sink Lineament, which exhibit left-lateral transcurrent movement conjugate to the Walker Lane in western Nevada. The active portion of this fault zone extends for approximately 23 km, from 16 km east of Reno, Nevada, to the southern extent of Pyramid Lake. The fault can be traced for most of its length from its geomorphic expression in the hilly terrain, and it is hidden only where overlain by recent alluvial sediments. Numerous features characteristic of strike-slip faulting can be observed along the fault, including: scarps, vegetation lines, sidehill and shutter ridges, sag ponds, offset stream channels and stone stripes, enclosed rhombohedral and wedge-shaped depressions, and en-echelon fractures.A shear zone having a maximum observable width of 1.3 km is defined principally by Riedel shears and their symmetrical P-shears, with secondary definition by deformed conjugate Riedel shears. Several continuous horizontal shears, or principal displacement shears, occupy the axial portion of the shear zone. The existence of P-shears and principal displacement shears suggests evolution of movement along the fault zone analogous to the “Post-Peak” or “Pre-Residual Structure” stage.Historic activity (1869) has established the seismic potential of this zone. Maximum intensities and plots of the isoseismals indicate the 1869 Olinghouse earthquake had a magnitude of 6.7. Field study indicates the active length of the fault zone is at least 23 km and the maximum 1869 displacement was 3.65 m of left-slip. From maximum fault length and maximum fault displacement to earthquake magnitude relations, this corresponds to an earthquake of about magnitude 7.  相似文献   

19.
The Late Quaternary slip rate along the Maqu segment of the eastern Kunlun Fault was estimated using a combination of high-resolution remote sensing imagery interpretation, field observations and differential Global Positioning System(GPS) measurements of offset river terraces, and 14 C dating of snail shells collected from offset risers. The results show that the left-slip rate along the segment is 3–5 mm/a, and that the vertical slip rate is 0.3–0.5 mm/a. Both the horizontal and vertical slips on the segment remain consistent over a distance of ~100 km. It means that no slip gradient as previously suggested occurred along the Maqu segment, and which thus might behave as an independent seismogenic fault. Judging from multiple relationships among young terrace offsets, we infer that co-seismic surface rupture produced by a characteristic earthquake with a magnitude of Ms7.0–7.5 on the Maqu fault could generate a horizontal slip of 4.5–5 m and a vertical slip of 0.45–0.5 m, with a corresponding ratio(Dh/Dv) of about 9. Two surface rupture events must have occurred over the past 3300 years, the latest one possibly between 1485 cal BP and 1730 cal BP.  相似文献   

20.
THE LATE QUATERNARY RIGHT LATERAL STRIKE-SLIPPING OF ZHONGDIAN—DAJU FAULT IN NORTHWEST YUNNAN, CHINAthesubject“TherecentdisplacementandDynamicsoflithosphereintheQinghai XizangPlateau”ofnation alclimbingproject“Therecentdisp  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号