首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
利用常规观测资料、区域自动站资料和“葵花8号”气象卫星资料,对2016年4—9月甘肃省陇东南地区出现的43次强对流天气过程展开分析,确立了强对流云团识别指标、追踪方法及预报指标,并对2018年部分个例进行了效果检验。结果表明:(1)利用卫星B13通道(10.4 μm)亮温值TBB≤238 K或B08通道(6.2 μm)与B13通道亮温差△TBB<0 K双阈值作为强对流云团识别指标,可以准确识别出陇东南地区的强对流天气云团;(2)利用“逆向搜索法”、“面积重叠法”及对云团重心的计算,可以准确对强对流云团进行定位、追踪及移动路径外推预报;(3)建立的强对流天气落区判别指标对该地区短时强降水及冰雹落区具有一定的预报能力。  相似文献   

2.
利用FY-2G静止卫星资料,采用多光谱综合分析方法,对2016年6月23日江苏盐城特大龙卷强对流灾害天气进行分析,重点分析强对流云微物理特征和识别强对流的卫星信号,并与雷达、TRMM卫星观测资料进行了对比分析。结果表明:(1)静止卫星RGB合成图能够可视化、便捷显示云微物理特征与发展趋势,对流云2区云团是产生龙卷的主云团,云系移动缓慢、位置基本保持不变是本次龙卷的特点,致使龙卷始终维持在盐城。(2)归纳出龙卷强对流云微物理特征和卫星信号为云顶高、云顶温度(T_(top))达到-80℃,存在过顶现象;云顶粒子有效半径(Re_(top))小、以小冰粒子为主,云砧结构明显,上部存在云粒子有效半径(Re)随温度(T)递减带;晶化温度(T_g)冷,达到同质冻结温度,对应有效半径(Re_g)小。08:00(北京时) FY-2G已探测到1、2、4区云团具有强对流发展潜势,通过卫星跟踪云团强弱变化,及时发现灾害性强对流天气发生云团,加强对该云团监测,提前预警强对流灾害性天气发生,为静止卫星应用于强对流天气监测预警提供新途径。  相似文献   

3.
徐双柱  吴涛  张萍萍  王继竹  董良鹏 《气象》2015,41(9):1159-1165
根据2010—2014年风云2号(FY 2)和风云3号(FY 3)气象卫星资料,结合雷达资料、常规观测资料和数值预报产品等,利用多阈值法、面积重叠法进行了湖北省暴雨云团的识别跟踪方法研究;利用配料法进行了湖北省6 h暴雨短时预报方法研究。建立了以网页形式的风云系列卫星资料的暴雨监测预报业务系统,定量监测和预预暴雨的发生、发展。2014年应用检验结果表明,该系统对于湖北省暴雨的监测和预报有指导作用。  相似文献   

4.
肖笑  魏鸣 《大气科学学报》2018,41(1):135-144
使用FY-2E静止气象卫星的红外1(10.3~11.3μm)和水汽波段(6.3~7.6μm)时序图像,对强对流云进行识别和短时预测。亮温阈值法是将强对流云和其他高云区分开的常用方法,但是合适的亮温阈值是随着时间和空间而变化的,过高的阈值会将许多卷云包括进来,太低的阈值会排除掉云顶发展还不是很高的强对流云。水汽波段所在的位置是水汽的一个强吸收带,而高度在400 h Pa上下的大气层是水汽波段的一个强吸收层,大气在垂直方向上的对水汽波段辐射吸收的分布模式使得卫星接收到的水汽波段辐射主要来自于400 h Pa以上的大气中高层,而卫星接收到的红外波段辐射主要来自于大气中低层,两个波段间辐射来源的差异使得不同光学厚度的高云的辐射观测值在红外—水汽光谱空间中的分布具有明显差别,并且这种差异具有时空的稳定性。本文将一定范围内的云团的象元测值在红外—水汽光谱空间中的分布的拟合直线斜率作为强对流云识别的依据,结果表明相对于亮温阈值法,本文的识别方法不仅能够较好地区别卷云和强对流云,同时也能更有效地识别未达到旺盛阶段的对流云。在对强对流云进行识别后,根据相邻时间段的卫星图像,利用交叉相关法反演得到强对流云团顶部的位移矢量场,并根据后向轨迹法对强对流云团位置形状进行短时预测,预报结果在短时间内(0~1 h)较好,并且对面积较大的云团的预报效果要优于较小的对流云团。此外文中还利用逐半小时的云顶黑体温度(Temperature of Black Body,TBB)资料分析了云顶亮温的分布变化,得到了整个强对流过程的演变特征。  相似文献   

5.
利用FY-2E卫星数据获取的强对流云团面积、重心、长短轴比、重心与形心距离、移动速度、移动角度和最低亮温等属性的变化可作为动态特征,利用慢特征分析方法提取云团中具有一定连续性和稳定性的动态特征对强对流云团不同阶段进行识别和追踪.结果表明,动态特征与强对流云团的不同发展阶段具有很好的对应关系:在初生阶段,云团的移动方向和速度不稳定,但是面积呈现出缓慢增长态势,云顶亮温缓慢下降,此时云团的慢特征为面积和云顶亮温;在成熟阶段,云团的移动路径趋于稳定,云顶亮温达到最低,云团重心和形心基本重合;在消散阶段,存在云团分裂和云团的重心与形心分离特征.云团长短轴比的变化与云团最低亮温的变化趋势一致,移速缓慢的对流云团更容易造成集中强降水,快速移动的对流云团大多造成地面大风.  相似文献   

6.
根据大雾在可见光、长波红外波段的反射及辐射特征差异,基于高时空分辨率的FY2E静止卫星开展白天大雾识别方法研究。统计分析白天大雾的卫星特征并提取多通道动态阈值,并与自动站观测数据相结合,利用阈值叠加可以实现大雾的自动识别。研究发现,白天大雾的反射率一般介于20%~50%,红外亮温一般集中在270~285 K的范围,通过双通道阈值的结合,基本可以滤除海洋、地表和厚云,达到粗判识大雾的目的。另外,由于地表温度和长波红外亮温的正相关,分季节设定阈值可以适当提高识别准确率,并且同一时刻的大雾反射率和亮温存在像元的均一性特征,因此,实时动态提取双通道阈值,缩小阈值区间,有利于降低虚报率;大雾的细判识需要结合相对湿度的观测数据,滤除低湿区,可以使TS评分增加20%以上。通过对16天大雾样本的检验表明,探测率达到92%,漏报率为8%,但虚报率较高,达到32%,TS评分达到62。可见,卫星双通道和自动站数据的结合应用,在大雾的自动识别中可以达到较高的准确率,但是低云覆盖下的大雾识别存在高虚报的情况,精细分离低云、轻雾和大雾仍然存在困难。  相似文献   

7.
一次锋面气旋云系中强对流云团的识别   总被引:3,自引:0,他引:3       下载免费PDF全文
利用NOAA-16/AMSU-B微波亮温资料和GOES-9光学遥感资料对2004年6月16日一次锋面气旋云系中的强对流云团进行识别, 尝试了NOAA-16/AM SU-B微波两窗区通道亮温、3个微波水汽通道间亮温差, GOES-9红外亮温阈值、水汽和红外通道亮温差、红外和水汽通道亮温多光谱逐个修改聚类等方法, 通过比较各种方法的识别结果, 分析各种识别技术的特点, 同时采用地面常规观测资料进行叠加, 对识别方法进行了验证。结果表明:微波对强对流云团均能较好识别, 但89 GHz通道亮温受地表影响较大, 不能很好剔除过冷水体, 150 GHz通道亮温与微波水汽通道间亮温差的识别结果较一致, 3个微波水汽通道间亮温差对阈值的依赖性相对较小; GOES-9红外亮温阈值因其随时空变化对识别结果会造成较大差别, 而水汽和红外通道亮温差对强对流云团能进行较好定位, 但识别范围较小, 多光谱逐个修改聚类方法对积雨云的识别效果较好, 且和NOAA-16/AMSU-B识别结果有较好的对应关系; 地面常规观测资料的叠加结果也说明, 多波段遥感资料对强对流云团的识别结果与当时的天气现象及积雨云状均有较好的对应关系。  相似文献   

8.
以FY-3可见光与红外辐射计(VIRR)为主要数据,利用FY3\VIRR 1、6、10通道数据,以指数法和光谱阈值相结合的多光谱积雪监测算法对2013年阿勒泰地区卫星数据进行积雪监测处理。处理结果与MODIS积雪监测业务产品对比分析得出:利用FY3\VIRR可以实现对研究区的积雪遥感监测,监测结果与现有MODIS积雪监测业务产品较一致,具有可比性。  相似文献   

9.
通过对FY静止气象卫星和多普勒天气雷达资料的分析,发现对流发展各阶段卫星云团和雷达回波均有不同特征,卫星红外通道最小亮温与雷达最大反射率因子强度存在明显的反相关性,均能够反映强对流发展的过程。  相似文献   

10.
根据2008年闪电定位资料,结合FY2C卫星云图和吉林省高密度自动观测站网的降雨资料,分析强对流天气中正、负地闪变化特征。结果表明:当强对流发展到最旺盛的时候,地闪强度和数量也达到最大值(地闪以负闪为主);地闪主要发生在云团主体的左侧上风区,随着强降水的开始,地闪强度开始减弱;比较密集的地闪发生,通常预示着强对流天气的发生。一般在云团发展和消亡阶段以及降雹过程中,正闪在总地闪中的比例相对较大。在雷暴过程中闪电定位资料比卫星云图资料有1h的提前量,对雷暴天气短时预警工作有较好的参考作用和应用价值。  相似文献   

11.
FY-2E资料空间响应订正及对强对流监测改进   总被引:3,自引:1,他引:2       下载免费PDF全文
建立空间响应匹配滤波 (spatial-response matched filter, SRMF) 方法,针对强对流低温研究目标,开展我国风云二号E星 (FY-2E) 红外亮温订正计算,并选取2013—2014年典型对流天气进行统计分析,从对流的空间分布、发展过程、云团结构等多角度进行方法性能评估。结果表明:对于对流云团结构,SRMF方法可改进FY-2E卫星红外波段对对流云团识别的准确度,减小高温背景对低温对流云团的邻近像元效应,增加了FY-2E卫星对中尺度对流内部小尺度精细化结构的揭示能力;对于对流空间分布,SRMF方法降低了对流判识空间分布统计误差,减少极短时间、极小范围强对流天气的漏判;对于对流识别时间响应,SRMF方法能够正确且提前显现出云团由弱对流向强对流的发展潜势,提高FY-2E卫星探测仪器对强对流天气的临近预警能力。  相似文献   

12.
强对流天气是福建汛期最主要的气象灾害之一,利用我国自主研制的风云系列气象卫星资料,结合天气雷达和自动站雨量资料,采用多阈值法、面积重叠法、统计法对福建省对流云团的识别、跟踪、未来3h短时降水预报等方法进行研究,在此基础上建立福建省对流云团卫星遥感监测预报业务软件系统。根据2015年5—9月福建省4次典型对流天气过程的业务试运行,结果表明该业务软件系统能准确识别跟踪对流云团的发生发展,对流云团移动过程的降水落区与地面气象观测的实际降水分布一致,对流云团最大降水量的预报准确率为61%,空报率为33%,漏报率为6%。研究成果对对流云团的监测和预报有较好的指导作用。  相似文献   

13.
利用2007-2013年新疆的十场强对流天气过程以及与之相应的FY-2D静止气象卫星数据,分析了强对流云红外一通道、红外二通道、水汽通道及通道差的光谱特征,提取强对流云团样本点,采用统计方法确定判识指标的阈值范围,构建多通道多阈值判识方法。利用三场天气过程的地面实测降水资料分别验证了单时次和整场天气过程强对流云判识的准确性,结果表明:单时次强对流云的识别区域与发生降雨台站一致的准确率为83%;在整个天气过程中,强对流频次分布与降水实况吻合度较高,说明随着对流云团的移动和发展,判识区域与地面降水区域保持一致,验证了判识方法有效,阈值选取合理,可以为监测暴雨天气系统的发生、发展提供支持。  相似文献   

14.
强对流天气综合监测业务系统建设   总被引:12,自引:4,他引:8  
强对流天气监测是其预报的基础.国家气象中心强天气预报中心利用多源观测资料(常规和非常规资料)建设了强对流天气综合监测业务系统.强对流天气的监测对象包括积云、地面高温、雷暴、地闪、冰雹、龙卷、大风、雷暴大风、短时强降水、雷暴反射率因子、对流风暴(基于雷达资料)、深对流云及中尺度对流系统(Mesoscale Convective Systems,MCS,基于静止卫星红外1通道资料)等不同时段的分布.发展的监测技术主要包括自动站资料质量控制技术、强对流信息提取和统计技术、直角坐标交叉相关雷达回波追踪(Cartesian Tracking Radar Echoes by Correlation,CTREC)技术、雷暴识别追踪分析和临近预报(Thunderstorm Identification Tracking Analysis and Nowcasting,TITAN)技术、深对流云识别技术、中尺度对流系统识别和追踪技术,以及闪电密度监测技术等.强对流天气监测系统自动定时运行,其输出数据与MICAPS业务平台完全兼容.该监测系统在国家气象中心的强对流天气预报业务中发挥了重要作用.  相似文献   

15.
风云二号静止卫星上装载有可见光、水汽、中长波红外等探测通道,其中红外通道资料可提供卫星云顶温度数据。基于FY-2F静止卫星云顶温度资料,结合局地实时探空数据对北京南郊和朝阳站点上空云层进行云高反演,并展开与地基毫米波云雷达探测云顶高关系的对比,分析3种不同云厚(薄云、适中、厚云)条件下的云高观测结果。研究结果表明,二者云顶高匹配度受几何云厚的影响,其吻合度呈现出厚云最佳,薄云最差的特征。  相似文献   

16.
王雪芹  徐卫红 《气象科技》2019,47(6):969-975
利用FY-2E静止气象卫星的云图资料,对2012—2018年夏季(6—9月)发生在四川盆地眉山市内的35次区域性暴雨过程进行分析,探索研究暴雨过程中对流云合并现象的特征。结果表明:暴雨过程中有88%出现了对流云合并,对流云合并是造成暴雨强对流天气过程的重要影响因素;按照合并云团的数目以及合并次数,可将合并过程分为两个对流云团合并、多个对流云团同时合并和多个对流云团多次合并三大类;同时暴雨过程里的合并现象与合并云团之间的距离、面积比例、最低亮温差及最低亮温平均值有密切的联系。  相似文献   

17.
葵花8号卫星在暴雨对流云团监测中的应用分析   总被引:3,自引:1,他引:2  
张夕迪  孙军 《气象》2018,44(10):1245-1254
高时空分辨率的葵花8号卫星(简称H8卫星)2016年在我国得到应用,而该年是我国暴雨过程频繁、极端性强的一年,H8卫星到底在暴雨对流云团监测方面有何优势也是预报员所关心的。目前的业务中H8、FY-2卫星和雷达资料到达业务平台的平均延迟时间分别为15、35、6 min左右。本文利用H8卫星红外云图结合地面降水,在2016年汛期27次暴雨过程中每个过程选定一个主要的目标对流云团分析其初生情况,并与FY-2卫星和雷达探测的情况进行对比,结果表明:H8和FY-2卫星在同时刻云顶黑体亮温(TBB)观测数值上差别不大,时间变化趋势也基本一致,但H8卫星由于高频次观测的优势对暴雨对流强弱的变化刻画得更加细致,在监测暴雨对流云团方面具有明显时间上的优势,即H8卫星较FY-2卫星平均提前23 min发现对流云团,较雷达平均提前达33 min。通过结合地面小时和10 min降水量对2016年华北"7·20"极端暴雨过程进行分析,发现TBB与地面降水量之间有很好的反相关关系,同时降水量的变化幅度明显大于TBB的变化;当TBB峰值向低温一侧移动时,与之对应的地面降水量级也增大,降水逐渐转为冷云降水为主。  相似文献   

18.
利用地面气象观测资料、ERA5再分析资料、FY-2E卫星和多普勒雷达资料,对2011年7月17日发生在巢湖地区的一次强对流暴雨过程进行诊断分析。结果显示:500hPa深槽、850hPa切变线及地面低压是此次暴雨过程的天气尺度影响系统,强降水发生在湿层和暖云层深厚、较低的抬升凝结高度、中等强度对流不稳定及弱垂直风切变条件下;FY-2E卫星云图分析表明,此次强降水过程主要是多个中尺度对流系统在巢湖合并所致,短时强降水落区主要落在中尺度对流系统TBB等值线密集区附近,TBB中心强度越强,TBB等值线梯度越大,对应的1h降水量越强;多普勒雷达分析揭示,短时强降水发生在两个对流回波合并期间,对流风暴移动缓慢,大于45dBz强回波均在6km以下,呈低层强烈气旋式辐合、高层辐散特征;地面中尺度辐合线是此次风暴的触发因子;湿位涡诊断结果表明,600hPa以下对流不稳定,600hPa以上对称不稳定,有利于暴雨和中尺度系统的发生发展。  相似文献   

19.
况祥  银燕  陈景华  肖辉 《气象科学》2018,38(3):331-341
利用Cloud Sat卫星资料和WRF中尺度模式,结合NCEP再分析资料及FY2G静止气象卫星资料,研究了发生在黄淮地区的一次深对流天气过程,分析了此次过程的天气特征、动力结构,重点分析了该次强对流过程中各水成物的时空演变特征。结果表明:(1)黄淮下游地区处于副高西北边缘,温度高,湿度大,对流潜势好。在地面冷锋和低层切变线的抬升触发下,气流不断辐合上升,同时高层冷平流与低层暖湿空气为强对流的发展提供了热力不稳定条件;(2)使用静止卫星TBB产品可以很好的定位、追踪深对流系统,但单一的TBB产品无法分辨深对流云和较厚的高云。本文结合Cloud Sat卫星资料和TBB产品把剖面上的云分为3种:非对流云(NDC),一般深对流云(DC),深对流核(DCC);(3)深对流云核(DCC)位于对流系统南部边缘,在3种云中DCC中冰相粒子粒径大、数浓度多、冰水含量大,且其最大值区域都位于12 km高度附近,这一区域可能是对流云内冰晶凝华增长、凇附增长、聚并增长形成大冰相粒子的关键发生区;(4)耦合了NSSL双参方案的WRF模式对于本次过程体现了较好的模拟效果,并通过模拟再现了此次天气过程中水成物的分布特征,发现本次过程深对流云中存在过冷水累积带特征。冰核核化形成的冰晶通过碰并过程形成雪晶,霰又由雪晶碰撞冻结过冷水滴以及过冷雨滴冻结产生,之后不断增长转化形成冰雹,雹增长到足够大后降落,其中雪晶和过冷水累积带对霰(雹胚)及雹的产生及增长至关重要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号