首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We investigate the electrostatic transport of charged dust in the photoelectron layer over the dayside surface of an asteroid. Micron-sized dust particles may be levitated above the surface in the photoelectron layer. Horizontal transport within the layer can then lead to net deposition of dust into shadowed regions where the electric field due to the photoelectron layer disappears. We apply a 2D numerical model simulating charged dust dynamics in the near-surface daytime plasma environment of Asteroid 433 Eros to the formation of dust deposits in craters. We find that dust tends to collect in craters and regions of shadow. This electrostatic dust transport mechanism may contribute to the formation of smooth dust ponds observed by the NEAR-Shoemaker spacecraft at Eros. The size distribution of transported dust depends on the particle density and work function, and the work function of the surface and solar wind electron temperature and density. With reasonable values for these parameters, μm-sized and smaller particles are levitated at Eros. Micrometeoroid bombardment is not a sufficient source mechanism for electrostatic transport to create the Eros dust ponds. Laboratory measurements of dust in a plasma sheath show that dust launched off the surface by direct electrostatic levitation can provide a sufficient source for transport to produce the observed Eros ponds.  相似文献   

2.
Lunar surface potential and electric field   总被引:1,自引:0,他引:1  
The Moon has no significant atmosphere, thus its surface is exposed to solar ultraviolet radiation and the solar wind. Photoemission and collection of the solar wind electrons and ions may result in lunar surface charging. On the dayside, the surface potential is mainly determined by photoelectrons, modulated by the solar wind; while the nightside surface potential is a function of the plasma distribution in the lunar wake. Taking the plasma observations in the lunar environment as inputs, the global potential distribution is calculated according to the plasma sheath theory, assuming Maxwellian distributions for the surface emitted photoelectrons and the solar wind electrons. Results show that the lunar surface potential and sheath scale length change versus the solar zenith angle, which implies that the electric field has a horizontal component in addition to the vertical one. By differentiating the potential vertically and horizontally, we obtain the global electric field. It is found that the vertical electric field component is strongest at the subsolar point,which has a magnitude of 1 V m~(-1). The horizontal component is much weaker, and mainly appears near the terminator and on the nightside, with a magnitude of several mV m~(-1). The horizontal electric field component on the nightside is rotationally symmetric around the wake axis and is strongly determined by the plasma parameters in the lunar wake.  相似文献   

3.
We numerically calculate the probability and area of permanent shadowing as a function of the selenographic latitude as well as the total area of the permanently shadowed surface for various hierarchical models of the lunar surface. The permanently shadowed area is shown to rapidly increase with increasing number of hierarchical surface levels. For a two-level model of the lunar relief, where the surface of craters is complicated by a random small-scale relief with a Gaussian distribution of heights and slopes, the area of the doubly shadowed regions of the lunar surface is approximately an order of magnitude smaller than the area of the singly shadowed regions. A comparison of the permanently shadowed area calculated by using averaged statistical relations and data on the actual distribution of craters near the lunar poles shows almost complete agreement.  相似文献   

4.
We investigate the method by which nearby supernovae – within a few tens of pc of the solar system – can penetrate the solar system and deposit live radioactivities on earth. The radioactive isotopic signatures that could potentially leave an observable geological imprint are in the form of refractory metals; consequently, it is likely they would arrive in the form of supernova-produced dust grains. Such grains can penetrate into the solar system more easily than the bulk supernova plasma, which gets stalled and deflected near the solar system due to the solar wind plasma pressure. We therefore examine the motion of charged grains as they decouple from the supernova plasma and are influenced by the solar magnetic, radiation, and gravitational fields. We characterize the dust trajectories with analytical approximations which display the roles of grain size, initial velocity, and surface voltage. These results are verified with full numerical simulations for wide ranges of dust properties. We find that supernova dust grains traverse the inner solar system nearly undeflected, if the incoming grain velocity – which we take to be that of the incident supernova remnant – is comparable to the solar wind speeds and much larger than the escape velocity at 1 AU. Consequently, the dust penetration to 1 AU has essentially 100% transmission probability and the dust capture onto the earth should have a geometric cross section. Our results cast in a new light the terrestrial deposition of radioisotopes from nearby supernovae in the geological past. For explosions beyond ~10 pc from earth, dust grains can still deliver supernova ejecta to earth, and thus the amount of supernova material deposited is set by the efficiency of dust condensation and survival in supernovae. Turning the problem around, we use observations of live 60Fe in both deep-ocean and lunar samples to infer a conservative lower bound iron condensation efficiency of Mdust,Fe/Mtot,Fe ? 4  × 10?4 for the supernova which apparently produced these species 2–3 Myr ago.  相似文献   

5.
The dayside near-surface lunar plasma environment is electrostatically complex, due to the interaction between solar UV-induced photoemission, the collection of ambient ions and electrons, and the presence of micron and sub-micron sized dust grains. Further complicating this environment, although less well understood in effect, is the presence of surface relief, typically in the form of craters and/or boulders. It has been suggested that such non-trivial surface topography can lead to complex electrostatic potentials and fields, including “mini-wakes” behind small obstacles to the solar wind flow and “supercharging” near sunlit-shadowed boundaries (Criswell, D.R., De, B.R. [1977]. J. Geophys. Res. 82 (7); De, B.R., Criswell, D.R. [1977]. J. Geophys. Res. 82 (7); Farrell, W.M., Stubbs, T.J., Vondrak, R.R., Delory, G.T., Halekas, J.S. [2007]. Geophys. Res. Lett. 34; Wang, X., Horányi, M., Sternovsky, Z., Robertson, S., Morfill, G.E. [2007]. Geophys. Res. Lett. 34, L16104). In this paper, we present results from a three-dimensional, self-consistent, electrostatic particle-in-cell code used to model the dayside near-surface lunar plasma environment over a variety of local times with the presence of a crater. Additionally, we use the particle-in-cell model output to study the effect of surface topography on the dynamics of electrostatic dust transport, with the goal of understanding previous observations of dust dynamics on the Moon and dust ponding on various asteroids.  相似文献   

6.
A rich set of new measurements has greatly expanded our understanding of the Moon–plasma interaction over the last sixteen years, and helped demonstrate the fundamentally kinetic nature of many aspects thereof. Photon and charged particle impacts act to charge the lunar surface, forming thin Debye-scale plasma sheaths above both sunlit and shadowed hemispheres. These impacts also produce photoelectrons and secondary electrons from the surface, as well as ions from the surface and exosphere, all of which in turn feed back into the plasma environment. The solar wind interacts with sub-ion-inertial-scale crustal magnetic fields to form what may be the smallest magnetospheres in the solar system. Proton gyro-motion, solar wind pickup of protons scattered from the dayside surface, and plasma expansion into vacuum each affect the dynamics and structure of different portions of the lunar plasma wake. The Moon provides us with a basic plasma physics laboratory for the study of fundamental processes, some of which we cannot easily observe elsewhere. At the same time, the Moon provides us with a test bed for the study of processes that also operate at many other solar system bodies. We have learned much about the Moon–plasma interaction, with implications for other space and planetary environments. However, many fundamental problems remain unsolved, including the details of the coupling between various parts of the plasma environment, as well as between plasma and the surface, neutral exosphere, and dust. In this paper, we describe our current understanding of the lunar plasma environment, including illustrative new results from Lunar Prospector and Kaguya, and outstanding unsolved problems.  相似文献   

7.
We discuss the formation of strong local electric fields near minicraters or hills in the vicinity of the terminator. Electrons, having large thermal velocity compared to the solar wind speed can easily penetrate into the shadowed part of a minicrater. At the same time only protons with velocities much higher than their thermal speed can reach such regions. This results in the formation of a strong local negative potential whose magnitude depends on the steepness of the shadowed slope of the minicrater. The extremely small conductivity of the lunar regolith at the shadowed side of the crater prevents any significant electric discharge and thus supports the formation of a strong potential difference at scales much smaller than the Debye radius. Our estimates show that the created local electric fields are sufficiently strong enough to elevate dust grains with the sizes of the order of above the surface. The suggested mechanism is efficient only after sunset rather close to the terminator. Far away from the terminator at the dark side the fluxes of charged particles hitting the surface are so small that the process of dust elevation becomes too weak.  相似文献   

8.
When the moon enters the plasma sheet of the earth, high energy electron fluxes are incident upon the lunar surface. Some regions are in the shadow of these fluxes due to topographic features. Large electric fields were found at similar shadow boundaries created by the electron beams incident upon an obstacle in the laboratory. Potentials on the beam-illuminated surface follow beam energies and were negative relative to potentials on the shadowed surface. Charged dust particles in the beam-illuminated region were observed to move into the shadow due to these electric fields. The oblique incidence of the electron fluxes upon craters can lead to a portion of the crater surface in the beam-illumination and another portion in the shadow. Dust particles on the slopes of the craters can thus experience large electric fields and transport downhill to fill the bottom of the craters. This mechanism may contribute to the formation of dust ponds observed by the NEAR-Shoemaker spacecraft at Eros, and might be at work on the lunar surface as well. In the laboratory, we used electron fluxes with energies up to 90 eV to bombard an insulating half-pipe. An angle of incidence was chosen so that the impact occurred on farside of the slope and left the bottom and the nearside slope in the shadow. Dust particles on the beam-illuminated slope moved down along the surface toward the bottom of the half-pipe and hopped to the bottom as well, while particles on the shadowed slope remained at rest.  相似文献   

9.
10.
Spectral properties, magnetic fields, and dust transport at lunar swirls   总被引:1,自引:0,他引:1  
Lunar swirls are albedo anomalies associated with strong crustal magnetic fields. Swirls exhibit distinctive spectral properties at both highland and mare locations that are plausibly explained by fine-grained dust sorting. The sorting may result from two processes that are fairly well established on the Moon, but have not been previously considered together. The first process is the vertical electrostatic lofting of charged fine dust. The second process is the development of electrostatic potentials at magnetic anomalies as solar wind protons penetrate more deeply into the magnetic field than electrons. The electrostatic potential can attract or repel charged fine-grained dust that has been lofted. Since the finest fraction of the lunar soil is bright and contributes significantly to the spectral properties of the lunar regolith, the horizontal accumulation or removal of fine dust can change a surface’s spectral properties. This mechanism can explain some of the spectral properties of swirls, accommodates their association with magnetic fields, and permits aspects of weathering by micrometeoroids and the solar wind.  相似文献   

11.
We present observations of what may be the inner region of a lunar mini-magnetosphere. If so, these likely represent the first such observations. Previous studies of solar wind interaction with lunar crustal magnetic fields found increased particle fluxes associated with magnetic amplifications, suggesting a shock/sheath region. The central density cavity expected in the inner mini-magnetosphere (if analogous to other planetary magnetospheres) has proven elusive. We now present Lunar Prospector fly-throughs of a density cavity near a strong crustal magnetic source in the solar wind, and compare these unique observations with typical orbits in the solar wind and wake. We observed the density cavity on two consecutive orbits on July 14, 1999 with optimal viewing geometry, downstream from one of the strongest lunar crustal sources (an anomaly centered at 235E, 20S), during very unusual solar wind conditions. We found no other similar features in the solar wind in 7 months of low-altitude orbits, suggesting that fully formed lunar mini-magnetospheres are rare and/or difficult to observe from orbit.  相似文献   

12.
Each year the Moon is bombarded by about 106 kg of interplanetary micrometeoroids of cometary and asteroidal origin. Most of these projectiles range from 10 nm to about 1 mm in size and impact the Moon at 10–72 km/s speed. They excavate lunar soil about 1000 times their own mass. These impacts leave a crater record on the surface from which the micrometeoroid size distribution has been deciphered. Much of the excavated mass returns to the lunar surface and blankets the lunar crust with a highly pulverized and “impact gardened” regolith of about 10 m thickness. Micron and sub-micron sized secondary particles that are ejected at speeds up to the escape speed of 2300 m/s form a perpetual dust cloud around the Moon and, upon re-impact, leave a record in the microcrater distribution. Such tenuous clouds have been observed by the Galileo spacecraft around all lunar-sized Galilean satellites at Jupiter. The highly sensitive Lunar Dust Experiment (LDEX) onboard the LADEE mission will shed new light on the lunar dust environment. LADEE is expected to be launched in early 2013.Another dust related phenomenon is the possible electrostatic mobilization of lunar dust. Images taken by the television cameras on Surveyors 5, 6, and 7 showed a distinct glow just above the lunar horizon referred to as horizon glow (HG). This light was interpreted to be forward-scattered sunlight from a cloud of dust particles above the surface near the terminator. A photometer onboard the Lunokhod-2 rover also reported excess brightness, most likely due to HG. From the lunar orbit during sunrise the Apollo astronauts reported bright streamers high above the lunar surface, which were interpreted as dust phenomena. The Lunar Ejecta and Meteorites (LEAM) Experiment was deployed on the lunar surface by the Apollo 17 astronauts in order to characterize the lunar dust environment. Instead of the expected low impact rate from interplanetary and interstellar dust, LEAM registered hundreds of signals associated with the passage of the terminator, which swamped any signature of primary impactors of interplanetary origin. It was suggested that the LEAM events are consistent with the sunrise/sunset-triggered levitation and transport of charged lunar dust particles. Currently no theoretical model explains the formation of a dust cloud above the lunar surface but recent laboratory experiments indicate that the interaction of dust on the lunar surface with solar UV and plasma is more complex than previously thought.  相似文献   

13.
The most striking feature in the spatial distribution of the smallest dust grains observed at Halley's comet by the VEGA-1 spacecraft is the sharp glitch at a cometocentric distance of about 180 000 km, which approximately corresponds to the so-called cometopause inside which the contaminated solar wind plasma was rapidly cooled. We propose that this glitch was caused by the electrostatic disruption of larger composite grains which rapidly charged up as they traversed the cometopause. The clear asymmetry in the distribution between the inbound and outbound portion of the spacecraft trajectory is also consistent with the dynamical effects of grain charging although other causes are not excluded.  相似文献   

14.
While the surface missions to the Moon of the 1970s achieved a great deal, scientifically much was also left unresolved. The recent plethora of lunar missions (flown or proposed) reflects a resurgence in interest in the Moon, not only in its own right, but also as a record of the early solar system including the formation of the Earth. Results from recent orbiter missions have shown evidence of ice or at least hydrogen within shadowed craters at the lunar poles.  相似文献   

15.
太阳系尘埃等离子体研究   总被引:1,自引:0,他引:1  
综述了太阳系尘埃等离子体中的充电机制和波动过程以及与之有关的若干空间物理现象,内容包括太阳系等离子体中尘埃表面的平衡电势,带电尘埃在空间环境中的受力与运动,行星环内沿的弥漫扩散,轮辐结构的成困,彗星环境中尘埃的静电爆裂,尘埃彗尾的形态演化,天王星窄环的稳定性等问题.  相似文献   

16.
Our interest is to study the sheath formation in an inhomogeneous plasma coexisting with an interaction of weak ionization. Pseudopotential analysis has been employed to derive the coherent structures of sheath in plasma. It has shown that the ionization affects the growth of sheath in plasma and nature depends fully on plasma constituents as well. After getting a robust sheath, dynamical behaviors of a levitated dust grain into the robust sheath has been studied which, in fact, leads to find the variation of dust potential, dust sizes along with the net force generated on grains. Results are obtained numerical for some typical plasma parameters. It has demonstrated that the plasma constituent effects the clustering of dust grains in different region within the sheath as a result of which dust agglomeration forms nebulons: patches of dust cloud-like structures with changing fleece.  相似文献   

17.
Imaging of low-energy neutral atoms (LENAs) in the vicinity of the Moon can provide wide knowledge of the Moon from the viewpoint of plasma physics and planetary physics. At the surface of the Moon, neutral atoms are mainly generated by photon-stimulated desorption, micrometeorite vaporization and sputtering by solar wind protons. LENAs, the energetic neutral atoms with energy range of 10-500 eV, are mainly created by sputtering of solar wind particles. We have made quantitative estimates of sputtered LENAs from the Moon surface. The results indicate that LENAs can be detected by a realistic instrument and that the measurement will provide the global element maps of sputtered particles, which substantially reflect the surface composition, and the magnetic anomalies. We have also found that LENAs around dark regions, such as the permanent shadow inside craters in the pole region, can be imaged. This is because the solar wind ions can penetrate shaded regions due to their finite gyro-radius and the pressure gradient between the solar wind and the wake region. LENAs also extend our knowledge about the magnetic anomalies and associated mini-magnetosphere systems, which are the smallest magnetospheres as far as one knows. It is thought that no LENAs are generated from mini-magnetosphere regions because no solar wind may penetrate inside them. Imaging such void areas of LENAs will provide another map of lunar magnetic anomalies.  相似文献   

18.
It is suspected that the lunar exosphere has a dusty component dispersed above the surface by various physical mechanisms. Most of the evidence for this phenomenon comes from observations of “lunar horizon glow” (LHG), which is thought to be produced by the scattering of sunlight by this exospheric dust. The characterization of exospheric dust populations at the Moon is key to furthering our understanding of fundamental surface processes, as well as a necessary requirement for the planning of future robotic and human exploration.We present a model to simulate the scattering of sunlight by complex lunar dust grains (i.e. grains that are non-spherical and can be inhomogeneous in composition) to be used in the interpretation of remote sensing data from current and future lunar missions. We numerically model lunar dust grains with several different morphologies and compositions and compute their individual scattering signatures using the Discrete Dipole Approximation (DDA). These scattering properties are then used in a radiative transfer code to simulate the light scattering due to a dust size distribution, as would likely be observed in the lunar exosphere at high altitudes 10's of km. We demonstrate the usefulness and relevance of our model by examining mode: irregular grains, aggregate of spherical monomers and spherical grains with nano-phase iron inclusions. We subsequently simulate the scattering by two grain size distributions (0.1 and radius), and show the results normalized per-grain. A similar methodology can also be applied to the analysis of the LHG observations, which are believed to be produced by scattering from larger dust grains within about a meter of the surface.As expected, significant differences in scattering properties are shown between the analyses employing the widely used Mie theory and our more realistic grain geometries. These differences include large variations in intensity as well as a positive polarization of scattered sunlight caused by non-spherical grains. Positive polarization occurs even when the grain size is small compared to the wavelength of incident sunlight, thus confirming that the interpretation of LHG based on Mie theory could lead to large errors in estimating the distribution and abundances of exospheric dust.  相似文献   

19.
The mechanism of ion-stimulated erosion of atmosphereless solar system bodies is suggested and investigated. A theoretical model for the brittle surface erosion resulting under the effect of multicharge ion cosmic rays is analyzed. It is shown that the thermoelastic waves originated in the energetic track of a very heavy ion can result in the near-surface stresses exceeding the dynamic tensile strength of the surface material for any atmosphereless solar system body. The thermoelastic wave surface arrival yields brittle erosion of the material and ejection of this latter fragments (the track-breaking process). Thus ejected dust grains have plano-oblong shape, average mass on the order of 10–17 g and velocity up to 400 m/sec providing the surface erosion rate of 10–1 ÷ 3 · 102 »/year (near the Earth orbit) which depends upon the surface material (rock or ice). Possible track-breaking consequences, in particular, presence of the dust fraction of ultramicron grains and their aggregates on the lunar surface are discussed. Near the bodies with the radii from 10 to 300 km predicted is the existence of extended dust cocoons consisting of ultramicron and submicron grains. Smaller objects (asteroids, comets, smallest satellites of planets, meteoroids, etc.) can serve sources of permanent dust wind of ultramicron and submicron sized grains escaping from their surfaces. The interplanetary dust yield owing to the ion-stimulated erosion of these bodies is not less than 1012 g/year. Possible interpreting in the frames of track-breaking process some observational data and effects, including existence of dust grains with the mass of 10–18 ÷ 10–17 g near the Halley's comet and the nature of 2060 Chiron dust coma is discussed. To prove the theory, observational identification and investigation of dust phenomena complex related to the ion-stimulated erosion of atmosphereless bodies, suggested is employing extreme ultraviolet and far infrared/submillimeter wavelengths, as well as polarimetric methods.  相似文献   

20.
Conspicuous excess brightness, exceeding that expected from coronal and zodiacal light (CZL), was observed above the lunar horizon in the Apollo 15 coronal photographic sequence acquired immediately after orbital sunset (surface sunrise). This excess brightness systematically faded as the Command Module moved farther into shadow, eventually becoming indistinguishable from the CZL background. These observations have previously been attributed to scattering by ultrafine dust grains (radius ∼0.1 microns) in the lunar exosphere, and used to obtain coarse estimates of dust concentration at several altitudes and an order-of-magnitude estimate of ∼10−9 g cm−2 for the column mass of dust near the terminator, collectively referred to as model “0”.We have reanalyzed the Apollo 15 orbital sunset sequence by incorporating the known sightline geometries in a Mie-scattering simulation code, and then inverting the measured intensities to retrieve exospheric dust concentration as a function of altitude and distance from the terminator. Results are presented in terms of monodisperse (single grain size) dust distributions. For a grain radius of 0.10 microns, our retrieved dust concentration near the terminator (∼0.010 cm−3) is in agreement with model “0” at z=10 km, as is the dust column mass (∼3–6×10−10 g cm−2), but the present results indicate generally larger dust scale heights, and much lower concentrations near 1 km (<0.08 cm−3 vs. a few times 0.1 cm−3 for model “0"). The concentration of dust at high altitudes (z>50 km) is virtually unconstrained by the measurements. The dust exosphere extends into shadow a distance somewhere between 100 and 200 km from the terminator, depending on the uncertain contribution of CZL to the total brightness. These refined estimates of the distribution and concentration of exospheric dust above the lunar sunrise terminator should place new and more rigorous constraints on exospheric dust transport models, as well as provide valuable support for upcoming missions such as the Lunar Atmosphere and Dust Environment Explorer (LADEE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号