首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deformation of rubble-mound breakwaters under cyclic loads   总被引:1,自引:0,他引:1  
Rubble-mound breakwaters usually consist of a core of small quarry-run rock protected by one or more intermediate layers or underlayers that separate the core from the cover layers, which are composed of large armor units. Failure of rubble-mound breakwaters may be due to effects such as removal or damage of the armor units, overtopping leading to scouring, toe erosion, loss of the core material, or foundation problems under waves. However, whether rubble mounds fail under seismic loads is unknown. High seismic activity can lead to large settlements and even to failure of the breakwaters. The design of coastal structures should take into account the most relevant factors in each case, including seismic loading. The objective of this study is to understanding the failure mechanisms of conventional breakwater structures under seismic loads on rigid foundations. Hence, an experimental study was carried out on conventional breakwater structures with and without toes, subjected to different dynamic loadings of variable frequencies and amplitudes, in a shaking tank. A shaking tank with a single degree of freedom was developed to study the simple responses of conventional rubble-mound breakwaters under cyclic loads. For each test, an automatic raining crane system was used to achieve the same relative density and porosity of the core material. The input motion induced horizontal accelerations of different magnitudes during the tests. The accelerations and the deformation phases of the model were measured by a data acquisition system and an image processing system. The experiments on the conventional rubble-mound type breakwater model were performed under rigid-bottom conditions. The model's scale was 1:50. Cyclic responses of breakwaters with toes and without toes were examined separately, and their behaviors were compared. The results were compared with a numerical study, and the material properties and failure modes were thus defined.  相似文献   

2.
Stability formulae for armour layers of rubble mound breakwaters are usually being applied assuming perpendicular wave attack. Often the effects of oblique waves are neglected. This is however a conservative assumption since the stability of armour slopes generally increases for oblique waves. New wave basin tests have been performed to assess the effects of oblique waves on the stability of rock slopes and the stability of cube armoured rubble mound breakwaters. The physical model tests were focussed on wave directions between perpendicular (0°) and parallel (90°). The test programme included tests with long-crested waves and tests with short-crested waves. The results show that for rock slopes the influence of oblique waves is larger for long-crested waves. Based on the test results a design guideline is provided to account for effects of oblique waves on the stability of rock slopes, armour layers with a double layer of cubes, and armour layers with a single layer of cubes.  相似文献   

3.
The geometrical properties of the armor layer of rubble mound breakwaters were investigated by observations made on two cases. The first case is a laboratory-scaled model of natural rock, designed with a composite slope. The second is a breakwater in the sea, constructed with a uniform slope of tetrapods. In both cases the cross-section underwent changes, resulting in an apparently stable profile of composite slope. This implied that for stability the optimal armour layer should be of composite slope. The general nature of this profile was implied by the geometrical similarity between the two cases which were basically so different.  相似文献   

4.
Coastal protective structures, such as composite breakwaters, are generally vulnerable to earthquake. It was observed that breakwaters damage mainly due to failure of their foundations. However, the seismically induced failure process of breakwater foundation has not been well understood. This study describes failure mechanism of breakwater foundation as well as a newly developed reinforcing model for breakwater foundation that can render resiliency to breakwater against earthquake-related disasters. Steel sheet piles and gabions were used as reinforcing materials for foundation. The experimental program consisted of a series of shaking table tests for conventional and reinforced foundation of breakwater. Numerical analyses were conducted using finite difference method, and it was observed that the numerical models were capable to elucidate the seismic behavior of soil–reinforcement–breakwater system. This paper presents an overview of the results of experimental and numerical studies of the seismic response of breakwater foundation. Overall, the results of these studies show the effectiveness of the reinforced foundation in mitigating the earthquake-induced damage to the breakwater. Moreover, numerical simulation was used for parametric study to determine the effect of different embedment depths of sheet piles on the performance of breakwater foundation subjected to seismic loading.  相似文献   

5.
The short communication presents application of the conventional Van der Meer stability formula for low-crested breakwaters for the prediction of front slope erosion of statically stable berm breakwaters with relatively high berms. The method is verified (Burcharth, 2008) by comparison with the reshaping of a large Norwegian breakwater exposed to the North Sea waves. As a motivation for applying the Van der Meer formula a discussion of design parameters related to berm breakwater stability formulae is given. Comparisons of front erosion predicted by the use of the Van der Meer formula with model test results including tests presented in Sigurdarson and Van der Meer (2011) are discussed. A proposal is presented for performance of new model tests with the purpose of developing more accurate formulae for the prediction of front slope erosion as a function of front slope, relative berm height, relative berm width, method of armour stone placement, and hydraulic parameters. The formulae should cover the structure range from statically stable berm breakwaters to conventional double layer armoured breakwaters.  相似文献   

6.
A new empirical stability criterion for dolos-armoured, rubble-mound breakwaters is proposed. This criterion is based on an analysis of the energy level at which dolos armour units fracture and break in a breakwater environment. The input information has been obtained from ten different prototype breakwaters. The present analysis indicates the ratio of the wave energy to size (mass) of the armour units at which dolos units break.  相似文献   

7.
Through hydraulic model experiment and site investigation, this paper has derived a calculation formula of dry-laid stone armour layer thickness of rubble mound breakwaters for fishery harbours. The influences of the friction force between stone blocks and the variations of wave length or period and water depth are considered in the formula. The calculated results of several existing structures are in good agreement with field data. This formula is more practical than those ever published both at home and abroad, and has been adoptted by the technical standards of aquatic projects published by the Ministry of Agriculture of China. It is applicable for the calculation of dry-laid stone armour layer of breakwater for small- or medium-size harbours.  相似文献   

8.
-The construction of breakwaters in China in more than 40 years since the founding of the People's Republic of China is reviewed. The construction of two main types of breakwater, upright breakwaters and rubble mound breakwaters, and the way in which they are built are expounded. Recommendations to improve the technology for future breakwater construction are presented.  相似文献   

9.
A systematic armour stability and the hydraulic performance, including wave reflection, wave transmission, experimental study in the twin-wave flumes of Leichtweiss-Institute (LWI) is performed on a geocore breakwater and a conventional rubble mound breakwater in order to comparatively determine the wave run-up and wave overtopping. The geocore breakwater consists of a core made of sand-filled geotextile containers (GSC) covered by an armour made of rock. The geocore is more than an order of magnitude less permeable than the quarry run core of a conventional breakwater. As expected, the core permeability substantially affects the armour stability on the seaside slope, the wave transmission and the wave overtopping performance. Surprisingly, however, wave reflection and hydraulic stability of the rear slope are less affected. Formulae for the armour stability and hydraulic performance of the geocore breakwater are proposed, including wave reflection, transmission, run-up and overtopping.  相似文献   

10.
- Rubble mound breakwater, one of the protection structures, has been widely used in coastal and port engineering. Block stones were first used as its armor layer, and its use was limited to shallow sea areas where there is no large waves. Since the specially-shaped armor unit was developed, the rubble mound breakwater has become the main sort of the protection structures, which can be used in deep water zones where storm sometimes occurs. Owing to severe and complex surrounding conditions, the rubble mound breakwater failure sometimes occurs, thus the study on the causes of failure is of great importance. In the present study some breakwater failures at home and abroad are illustrated and the causes of failure are investigated from the point of view of design, test, construction and maintenance.  相似文献   

11.
Risk Assessment for Tuzla Naval Base Breakwater   总被引:5,自引:0,他引:5  
1 .IntroductionTurkeywasstruckbytwomajorearthquakeeventsonAugust 1 7thandNovember 1 2th ,1 999,namedIzmit (Mw=7.4 )andD櫣zce (Mw=7.2 )earthquakes,respectively .ThestationsoperatedbytheGeneralDirectorateofDisasterAffairs,theKandilliObservatoryandEarthquakeResearchInstituteofIstanbulTechnicalUniversitymeasuredatleast 2 7stronggroundmotionsfortheIzmitearthquakewithin 2 0 0kmofthefault.AsignificantsegmentofthefaultrupturedintheareabetweenthewestofGolcukandtheeastofLakeSapanca .Inthesou…  相似文献   

12.
The toe structure of a breakwater provides support to the armour layer and protects the structure from damage due to scour at the toe. Often a toe structure consists of rock material. Several design formulae exist to predict the amount of damage to the toe structure under wave loading. These design formulae for the required rock size include effects of the wave height and the water depth above the toe structure. Here, rock toe stability has been studied by means of physical model tests to provide information on the required rock size in the toe structure. The tests and analysis are focussed not only on the influence of the wave height and the water depth above the toe structure, but also on the influence of the width of the toe structure, the thickness of the toe and the wave steepness. The wave steepness, width of the toe and the thickness of the toe appear to affect the damage to the toe; these parameters need to be taken into account in order to derive accurate predictions of the damage to the toe structure. Based on the test results a prediction formula has been derived including these effects. The formula can be used to determine the required rock size in the toe of rubble mound breakwaters within the ranges of the performed tests.  相似文献   

13.
抛石防波堤人工护面块体强度模拟研究   总被引:1,自引:0,他引:1  
本文主要研究了混凝土人工护面块体在模型试验中的强度模拟问题,根据不同比尺要求的强度指标,确定新型材料组成成份及其配比,并针对已有防波堤护面块体的破坏情况,进行了水槽模型验证试验。  相似文献   

14.
The application of directional waves in design processes has clearly received much interest during recent years. Thus, in model testing with moored ships and offshore structures, significant deviations have been revealed between results obtained in traditional uni-directional wave trains and those obtained in directional wave fields. Whether the same tendency is valid in connection with the design of rubble mound breakwaters is studied in the present project. A breakwater with a front slope of 1:2 is tested at the scale 1:40. The weight and diameter of the stones in the core, filter and armour layers were carefully selected, and the sources of scatter in repeated tests were minimized. Furthermore, the incident wave energy was accurately adjusted to keep the same level in both uni-directional and directional waves. For the actual rubble-mound breakwater unambiguous results were obtained. When uni-directional waves were applied, the damage increased by 30–50% relative to the directional wave situation.  相似文献   

15.
《Coastal Engineering》1999,37(2):149-174
Crown walls are primarily built to reduce wave overtopping of mound breakwaters. Several methods have been proposed to calculate wave loads on the crown wall, e.g., Iribarren and Nogales [Iribarren, R., Nogales, C., 1964. Obras Marı́timas. Dossat (Ed.), Madrid, 376 pp.], Jensen [Jensen, O.J., 1984. A Monograph on Rubble Mound Breakwaters. Danish Hydraulic Institute] and Günbak and Gökce [Günbak, A.R., Gökce, T., 1984. Wave screen stability of rubble-mound breakwaters. International Symposium of Maritime Structures in the Mediterranean Sea. Athens, Greece, pp. 2.99–2.112]. In this paper, a new method based on those previous results, and on further experimental work, using monochromatic waves, is presented. The application of the new method requires waves breaking on the armour layer; i.e., only broken waves will reach the crown wall. The method is extended to irregular waves via the hypothesis of equivalence introduced by Saville [Saville, T., 1962. An approximation of the wave run-up frequency distribution. Proc. 8th International Conference on Coastal Engineering, Mexico City] and is applied to the crown walls of Gijón and Bilbao breakwaters in Spain. The comparison of the probability force distributions obtained by the present method to that measured by Burcharth et al. [Burcharth, H.F., Frigaard, P., Berenguer, J.M., Gonzalez, B., Uzcanga, J., Villanueva, J., 1995. Design of the Ciervana breakwater, Bilbao. In: T. Telford (Ed.), Proc. 4th Coastal Structures and Breakwaters, Chap. 3. Institution of Civil Engineers] and Jensen (1984) is relatively good.  相似文献   

16.
Most previous investigations related to composite breakwaters have focused on the wave forces acting on the structure itself from a hydrodynamic aspect. The foundational aspects of a composite breakwater under wave-induced cyclic loading are also important in studying the stability of a composite breakwater. In this study, numerical simulations were performed to investigate the wave-induced pore water pressure and flow changes inside the rubble mound of the composite breakwater and seabed foundation. The validity and applicability of the numerical model were demonstrated by comparing numerical results with existing experimental data. Moreover, the present model clearly has shown that the instantaneous directions of pore water flow motion inside the seabed induced by surface waves are in good agreement with the general wave-induced pore water flow inside the seabed. The model is further used to discuss the stability of a composite breakwater, i.e., the interaction among nonlinear waves, composite breakwater and seabed. Numerical results suggest that the stability of a composite breakwater is affected by not only downward shear flow generating on the seaward slope face of the rubble mound but, also, a high and dense pore water pressure gradient inside the rubble mound and seabed foundation.  相似文献   

17.
Based on the open source code OpenFOAM,a three-dimensional model is presented for simulation of the interaction between waves and rubble mound breakwater with armor units.The armor units with their real geometries are depicted through computational grids.The volume-averaged RANS equation and the seepage equation containing nonlinear term are used to describe the percolation in the core and underlayer of the breakwater.Grids independence analysis are carried out,the horizontal and vertical grid size are recommended to take as one-fifteenth of the mean nominal diameter D50 of the armor units and one-fifteenth of the wave height respectively.Random wave overtopping of rubble mound breakwater with armor units is simulated through the proposed model.The results show good agreement between the simulated and measured overtopping discharge rates for different types of armor units.The developed numerical model can be used to evaluate the random wave overtopping in design of rubble mound breakwater with artificial armor blocs.  相似文献   

18.
This paper describes on the one hand parametric tests on wave overtopping for a steep rubble mound breakwater in Zeebrugge, Belgium. On the other hand the comparison between prototype measurements at the breakwater and their scale reproductions in two laboratories is dealt with. The objective is to gain information on possible scale and model effects for wave overtopping from this comparison. The prototype measurements are described together with the resulting dataset of 11 storms where wave overtopping occurred. Scale models and the laboratory measurements are described into detail mentioning similarities and differences to the prototype. Several model effects are identified and special attention is given to wind effects and to the placement pattern of the armour units, respectively. Monte Carlo simulations have been performed to get an idea about the influence of selected model uncertainties. Finally, scale effects are discussed and the influence of model and scale effects for the performed tests is quantified. Recommendations on how to treat these effects are presented.  相似文献   

19.
The numerical model COBRAS-UC [Losada, I.J., Lara, J.L., Guanche,R., Gonzalez-Ondina, J.M. (2008). Numerical analysis of wave overtopping of rubble mound breakwaters. Coastal Engineering, Vol 55 (1), 47–62.] is used to carry out a two-dimensional analysis of wave induced loads on coastal structures. The model calculates pressure, forces and moments for two different cross-sections corresponding to a low-mound and a conventional rubble-mound breakwater with a crown-wall under regular and irregular incident wave conditions. Predicted results are compared with experimental information provided in Losada et al. [Losada, I.J., Lara, J.L., Guanche,R., Gonzalez-Ondina, J.M. (2008). Numerical analysis of wave overtopping of rubble mound breakwaters. Coastal Engineering, Vol 55 (1), 47–62.] and Lara et al. [Lara, J.L., Losada, I.J., Guanche, R. (2008). “Wave interaction with low mound breakwaters using a RANS model”. Ocean engineering (35), pp 1388–1400; doi:10.1016/j.oceaneng.2008.05.006.] on a 1:20 scale. Good agreement is found, and the differences between both typologies are explained in detail. Additionally, numerical results are also compared with several semi-empirical formulae recommended for design at both the 1:20 model scale and two prototype cross-sections. Results suggest that COBRAS-UC is able to provide realistic stability information that can be used to complete the approach based on currently existing methods and tools.  相似文献   

20.
基于开源程序REEF3D,通过建立高精度二维数值波浪水槽,系统研究了聚焦波浪在浅堤上传播变形的规律,着重分析了聚焦波浪通过浅堤的水动力过程及能量变化规律,讨论了不同波浪要素对聚焦波浪传播特性的影响。除此之外,还考虑了双浅堤布置对聚焦波浪传播变形的影响。研究结果表明:极端波浪通过浅堤时,堤顶水深越小,波浪主频能量衰减越显著。在给定堤顶水深条件下,聚焦点与浅堤的相对位置对聚焦波浪能量的衰减影响较小。在双浅堤布置条件下,随着浅堤间距的增加,上下游浅堤的相互影响逐渐减弱,高频段的波浪能量也随之减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号