首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 414 毫秒
1.
浮体运动和海床土刚度是引起钢悬链式立管(steel catenary riser,简称SCR)管土相互作用的关键因素,将导致SCR触地区的疲劳损伤。以工作水深为1500 m的浮式平台上生产立管SCR为研究对象,基于法向抗力模型和侧向阻力模型建立管土作用模型,在环境载荷和浮体运动作用下,开展SCR与浮式平台的整体分析,研究海床土参数对SCR触地区动态响应和疲劳寿命的敏感性。通过改变海床土的不排水抗剪强度Su0、强度梯度ρ、吸力因子fsuc、吸力衰减参数λsuc以及再贯入系数λrep等,得到不同参数对触地区动力响应、疲劳寿命的影响规律。研究结果表明:①基于软黏土海床,随着不排水抗剪强度Su0的增加,触地区立管疲劳寿命减幅达到33.23%,敏感性最高;②吸力因子fsuc越大,立管疲劳寿命越小且减幅达23.77%,其敏感性较高;③随着再贯入系数λrep增大,触地区立管疲劳寿命增幅达到15.48%;④海床抗剪强度梯度ρ和吸力衰减参数λsuc对立管疲劳寿命影响较小。研究结论能为SCR设计分析及安全服役提供重要参考。  相似文献   

2.
A prediction model of the deepwater steel catenary riser VIV is proposed based on the forced oscillation test data, taking into account the riser-seafloor interaction for the cross-flow VIV-induced fatigue damage at touch-down point (TDP). The model will give more reasonable simulation of SCR response near TDP than the previous pinned truncation model. In the present model, the hysteretic riser-soil interaction model is simplified as the linear spring and damper to simulate the seafloor, and the damping is obtained according to the dissipative power during one periodic riser-soil interaction. In order to validate the model, the comparison with the field measurement and the results predicted by Shear 7 program of a full-scale steel catenary riser is carried out. The main induced modes, mode frequencies and response amplitude are in a good agreement. Furthermore, the parametric studies are carried out to broaden the understanding of the fatigue damage sensitivity to the upper end in-plane offset and seabed characteristics. In addition, the fatigue stress comparison at TDP between the truncation riser model and the present full riser model shows that the existence of touch-down zones is very important for the fatigue damage assessment of steel catenary riser at TDP.  相似文献   

3.
深海悬链线立管涡激疲劳损伤研究   总被引:1,自引:0,他引:1  
讨论海洋平台钢质悬链线式立管SCR(Steel Catenary Riser)的涡激疲劳损伤问题。对于悬链线立管外的流体,给出涡脱落频率和升力对立管作用的计算方法。悬链线立管采用索结构模型,进行动力学分析并利用模态叠加法对其进行动力响应分析。根据Palmgren-Miner线性累积损伤准则并结合S-N曲线,分析在不同流速下立管的涡激疲劳损伤。以工程中实际使用的1 500 m Spar海洋平台悬链线立管为例,对立管的涡激疲劳损伤进行了预报。并通过立管的参数研究,分别就立管外不同来流速度、立管壁厚、内部流体密度和柔性接头刚度对其疲劳损伤的影响进行了分析,得到了一些有意义的研究结果。  相似文献   

4.
The fatigue life of a steel catenary riser (SCR) near its touch-down zone (TDZ) is substantially affected by its interaction with the seabed. Therefore, accurate estimate of the fatigue life of a SCR requires the understanding and realistic modeling of this interaction. The interaction depends on several factors, such as soil properties, riser characteristics, and the development of trenching at the seabed. Existing approaches for modeling the seabed in interaction with a SCR approximate the behavior of the seabed soil by linear or nonlinear spring and dashpot, which represent the stiffness and damping of the soil, respectively. However, these approaches do not account for certain phenomena resulting from the plastic deformation of soil, such as trenching development at the seabed. In this study, a more realistic approach is developed for simulating the interaction between a SCR and the seabed. In addition to the use of a realistic P–y curve (where P stands for the supporting force of the seabed and y for the vertical penetration of the riser into the seabed) to simulate the soil deformation during its interaction with the riser, it considers the development of a trench caused by continuous impact of a riser on the seabed and then its feedback effect on the variation of the bending moment along the riser. It is found that the trenching development on the seabed may decrease the maximum variation of bending moment of a riser near its TDZ. Since the variation of bending moment dictates the fatigue damage to the SCR, the results based on this approach indicate that the trenching development at the seabed may increase the fatigue life of the SCR and hence it may have important application to the design of a SCR.  相似文献   

5.
综合考虑了立管疲劳安全系数取值的相关因素——立管的安全等级、设计寿命、检验周期、载荷和损伤计算方法等的不确定性,提出了基于可靠度的疲劳安全系数确定方法,筛选了用于计算波致疲劳和VIV(涡激振动)疲劳的随机变量,给出了立管波致疲劳与VIV疲劳安全系数的计算流程,并以某SCR(钢悬链线立管)为例进行了安全系数计算。结果表明,该方法的计算结果优于传统的安全系数确定方法,尤其适合于特殊工程方案或新颖设计的立管疲劳校核。  相似文献   

6.
为了有效地考虑浮体慢漂运动对钢悬链线立管疲劳损伤的影响,提出了波频和慢漂运动组合作用下钢悬链线立管疲劳损伤简化计算的位置组合叠加法。其核心是:基于浮体慢漂运动概率分布选取若干典型慢漂位置,进行波频运动作用下钢悬链线立管动力响应分析;根据钢悬链线立管运动位置变化特征,截取若干慢漂位置对应的波频应力时程叠加到慢漂应力时程上,得到波频和慢漂运动的组合应力时程;编写基于雨流计数法的MATLAB程序处理立管各节点应力,采用海水环境下Do E.E型S-N曲线和Palmgren-Miner累积损伤准则计算立管各节点疲劳损伤。应用位置组合叠加法对某海域500 m水深的立管进行了疲劳分析,并与全耦合法、权重组合叠加法以及波频和慢漂疲劳损伤简单相加法的结果进行了对比,结果表明该方法具有较高的精度和效率。此外,进行了区域设定系数、波浪高度、波浪周期和土壤表面剪切强度等参数对组合作用下立管疲劳损伤的敏感性分析。  相似文献   

7.
Fatigue response of steel catenary risers (SCR) in the touchdown zone (TDZ) is significantly affected by riser-seabed interaction. Non-linear hysteretic riser-seabed interaction models have been recently developed to simulate the SCR cyclic embedment into the seabed. Despite the advancements achieved in the prediction of non-linear hysteretic riser-seabed interaction, several inconsistencies have been recently identified in the nodal performance of some of the popular models. These limitations need to be resolved by proposing new models or improving the existing models. However, it is necessary to evaluate the influence of the identified shortcomings of the existing models on the global performance of the riser. In this paper, the influence of nodal inconsistencies observed in a popular riser-seabed interaction model on the global performance of the riser was comprehensively examined in the TDZ. The riser embedment profile, cyclic contact stress, contact stress envelop, mean shear force, cyclic bending moment, and consequently the cumulative fatigue damage was investigated. The study showed that the soil model overestimates the riser embedment and other global responses. Recommendations were made to overcome the identified shortcomings of the existing models in future developments.  相似文献   

8.
Steel catenary risers (SCR) connect seabed pipelines and flow lines to floating structures used for oil and gas production in deep waters. Waves and currents induce motions of the structure and the risers. The repeated motions of the risers at the touchdown zone in turn induce loads on the seabed soil and might eventually cause fatigue damage to the risers. The analysis of riser fatigue damage is heavily dependent on the soil model. Soil behaviour at touchdown zone such as soil remoulding, stiffness degradation and deformation of the seabed at the touchdown zone further complicate the accurate assessment of riser fatigue damage, which is currently not appropriately quantified in existing design methods. This paper presents centrifuge model tests simulating the repeated vertical movement of a length of riser on clay seabed with increasing undrained shear strength with depth. During the tests, the pipe was subject to cyclic motion over fixed vertical displacement amplitude from an invert embedment of 0.5-3.5 pipe diameters into the soil. The test results show a significant progressive degradation of soil strength and diminution of excess pore water pressure with increasing number of riser penetration/uplift cycle. In view of the different types of environment loadings experienced by floating platforms and various soil conditions, tests were also conducted to investigate the effect of soil strength, riser displacement rate and loading mode on riser-soil interaction during repetitive penetration/uplift motion of the riser.  相似文献   

9.
In this study, a practical model is proposed to predict cross-flow (CF) and in-line (IL) vortex-induced vibrations of a flexible riser in time domain. The hydrodynamic force as a function of non-dimensional amplitude and frequency is obtained from the forced vibration experimental data of a two-dimensional cylinder. An empirical nonlinear damping model is used to simulate the hydrodynamic damping outside the experiment's range. Coupling effect of CF and IL-VIV is taken into account by implanting a magnification model for the IL hydrodynamic force associated with CF amplitude, and by increasing the non-dimensional amplitude corresponding to the IL hydrodynamic coefficient in the second excitation region. The experimental models of flexible riser under the uniform and sheared current are simulated to validate the proposed model. The predicted displacement, curvatures, excited modes and fatigue damage show reasonable agreement with the measured data.  相似文献   

10.
Steel catenary riser(SCR) is the transmission device between the seabed and the floating production facilities. As developments move into deeper water, the fatigue life of the riser can become critical to the whole production system, especially due to the vortex-induced vibration(VIV), which is the key factor to operational longevity. As a result, experimental investigation about VIV of the riser was performed in a large plane pool which is 60 m long, 36 m wide and 6.5 m deep. Experiments were developed to study the influence of current speed and seabed on VIV of SCR. The results show that amplitudes of strain and response frequencies increase with the current speed both in cross-flow(CF) and in-line(IL). When the current speed is high, multi-mode response is observed in the VIV motion. The amplitudes of strain in IL direction are not much smaller than those in CF direction. The seabed has influence on the response frequencies of riser and the positions of damage for riser.  相似文献   

11.
Steel catenary riser (SCR) is the transmission device between the seabed and the floating production facilities. As developments move into deeper water, the fatigue life of the riser can become critical to the whole production system, especially due to the vortex-induced vibration (VIV), which is the key factor to operational longevity. As a result, experimental investigation about VIV of the riser was performed in a large plane pool which is 60 m long, 36 m wide and 6.5 m deep. Experiments were developed to study the influence of current speed and seabed on VIV of SCR. The results show that amplitudes of strain and response frequencies increase with the current speed both in cross-flow (CF) and in-line (IL). When the current speed is high, multi-mode response is observed in the VIV motion. The amplitudes of strain in IL direction are not much smaller than those in CF direction. The seabed has influence on the response frequencies of riser and the positions of damage for riser.  相似文献   

12.
浮体运动是引起钢悬链式立管(steel catenary riser,简称SCR)动态响应和疲劳损伤的关键因素,目前研究SCR问题时,为简化计算往往仅考虑平台一阶运动,忽略二阶运动影响。而实际上不同浮体结构的二阶运动响应特征明显,拟以SCR服役张力腿平台(tension leg platform,简称TLP)为例,探讨浮体二阶运动对SCR触地区动态响应的影响。建立考虑海床刚度退化的管土作用模型以改进现有的CABLE3D RSI程序,通过编写程序接口,将有限元分析得到的平台实际运动响应导入,研究平台不同运动作用下SCR触地区的位移、动力响应及疲劳分布情况。根据波流作用方向将TLP二阶慢漂运动分为近端和远端漂移两种工况,发现二阶运动下立管与海床的作用范围会增大,且触地区不仅发生高频小幅振荡运动,同时伴随低频大幅运动响应;平台远端漂移时,管内张力敏感程度高,而近端漂移时触地区的弯矩显著增大,都会不同程度提高触地区的疲劳损伤率。研究可为服役不同浮体的SCR响应预测与疲劳分析提供参考和借鉴。  相似文献   

13.
Steel catenary risers (SCRs) are usually cost-effective solutions in the development of offshore fields and the transferring of the hydrocarbons from the seabed to the floating facilities. These elements are subjected to the fatigue loads particularly in the touchdown zone (TDZ), where the oscillating SCR is exposed to cyclic contact with the seabed. The slug-induced oscillation is a significant contributor to the fatigue loads in the TDZ. The cyclic seabed soil softening under the wave-induced riser oscillations and the gradual penetration of the SCR into the seabed are widely accepted to have a significant influence on SCR fatigue performance. However, this has never been investigated for slug-induced oscillations due to the lack of integrated access to comprehensive numerical models enabling the simulation of the riser slugging and nonlinear hysteretic riser-seabed interaction at the same time. In this paper, an advanced interface was developed and verified using the multi-point moving tie constraint in order to examine the influence of cyclic seabed soil softening on slug-induced oscillations of SCR. The interface was integrated with a pre-developed user subroutine for modeling of the nonlinear hysteretic riser-seabed interaction and incorporated into a global SCR model in ABAQUS. A comprehensive parametric study was conducted to investigate the influence of slug characteristics and nonlinear seabed soil model on slug-induced, wave-induced, and combined wave/slug induced oscillations of SCR in the TDZ. It was observed that the nonlinear seabed model could significantly affect the embedment of the SCR into the seabed under the slug-induced oscillations and consequently improve the fatigue life. The developed user interface was found to be a strong framework for modeling riser slugging.  相似文献   

14.
The pipe-soil interactions at shoulders can significantly affect the vortex-induced vibrations (VIV) of free-spanning pipes in the subsea. In this paper, the seabed soil reacting force on the pipe is directly calculated with a nonlinear hysteretic soil model. For the VIV in the middle span, a classic van der Pol wake oscillator is adopted. Based on the Euler-Bernoulli beam theory, the vibration equations of the pipe are obtained which are different in the middle span and at the two end shoulders. The static configuration of the pipe is firstly calculated and then the VIV is simulated.The present model is validated with the comparisons of VIV experiment, pipe-soil interaction experiment and the simulation results of VIV of free-spanning pipes in which the seabed soil is modelled with spring-dashpots. With the present model, the influence of seabed soil on the VIV of a free-spanning pipe is analyzed. The parametric studies show that when the seabed soil has a larger suction area, the pipe vibrates with smaller bending stresses and is safer.While with the increase of the shear strength of the seabed soil, the bending stresses increase and the pipe faces more danger.  相似文献   

15.
This study proposed a method to obtain hydrodynamic forces and coefficients for a flexible riser undergoing the vortex-induced vibration (VIV), based on the measured strains collected from the scale-model testing with the Reynolds numbers ranging from 1.34E5 to 2.35E5. The riser is approximated as a tensioned spatial beam, and an inverse method based on the FEM of spatial beam is adopted for the calculation of hydrodynamic forces in the cross flow (CF) and inline (IL) directions. The drag coefficients and vortex-induced force coefficients are obtained through the Fourier Series Theory. Finally, the hydrodynamic characteristics of a flexible riser model undergoing the VIV in a uniform flow are carefully investigated. The results indicate that the VIV amplifies the drag coefficient, and the drag coefficient does not change with time when the CF VIV is stable. Only when the VIVs in the CF and IL directions are all steady vibrations, the vortex-induced force coefficients keep as a constant with time, and under “lock-in” condition, whether the added-mass coefficient changes with time or not, the oscillation frequency of the VIV keeps unchanged. It further shows that the CF excitation coefficients at high frequency are much smaller than those at the dominant frequency, while, the IL excitation coefficients are in the same range. The axial distributions of the excitation and damping region at the dominant frequency and high frequency are approximately consistent in the CF direction, while, in the IL direction, there exists a great difference.  相似文献   

16.
The effects of different helical strake coverage on the vortex-induced vibration (VIV) of a model flexible riser were studied experimentally, with the aim of further improving the understanding of VIV responses. Uniform and linearly sheared currents were simulated to study response parameters such as non-dimensional displacement, fatigue damage, suppression efficiency, and the comprehensive evaluation is further studied. Test results of the bare model for a uniform current showed that the behavior of both the standing wave and traveling wave dominated VIV displacement. However, for a linearly sheared current, traveling wave behavior dominated VIV displacement in the high-velocity range. The results of the straked model tests indicated that the response was strongly dependent upon the amount of coverage of helical strakes. The flexible riser with 75% strake coverage gave the best comprehensive evaluation in a uniform current, and 50% strake coverage gave the best comprehensive evaluation in a linearly sheared current.  相似文献   

17.
Marine risers are susceptible to sustained vortex-induced vibration (VIV) because of their slenderness and light damping. Commonly used tools for analyzing VIV and the associated fatigue damage are based on the finite element method and rely on simplifying assumptions on the riser's physical model, the flow conditions, and characteristics of the response. In order to assess the influence of VIV and to ensure the integrity of the riser, field monitoring campaigns are often undertaken wherein data loggers such as strain sensors and/or accelerometers are installed on such risers. Given the recorded riser's dynamic response, empirical techniques can be used in VIV-related fatigue estimation. These empirical techniques make direct use of the measurements and are intrinsically dependent on the actual current profiles. Damage estimation can be undertaken for the different current profiles encountered and can account explicitly even for complex riser response characteristics. With a significant amount of data, “short-term” fatigue damage probability distributions, conditional on current, can be established. If the relative frequency of different current types is known from a separate metocean study, the short-term fatigue damage distributions can be combined with the current distributions to yield an integrated “long-term” fatigue damage model, which then can be used to predict the long-term cumulative fatigue damage for the instrumented riser. Non-parametric statistical techniques (that do not assume a specific function for the underlying distribution as parametric techniques do) are employed to describe the short-term fatigue damage data. In this study, data from the Norwegian Deepwater Programme (NDP) model riser experiments are used to demonstrate the effectiveness of empirical procedures and non-parametric statistics applied to field measurements to predict long-term fatigue damage, life, and probability of fatigue failure.  相似文献   

18.
钢悬链线立管(SCR)与海床土体的接触问题对立管的疲劳寿命影响很大.运用ANSYS有限元软件中的接触单元模拟SCR与海床接触处的相互作用,考虑海床土体的非线性,建立SCR与海床系统有限元模型,并同已有的等价梁-弹簧模型进行了比较和验证.运用该模型进行计算分析,探讨了管道重量、土体模型和摩擦系数等对管道入土深度和弯矩的影响,为进一步研究SCR与海床的相互作用提供参考.  相似文献   

19.
Laboratory tests were conducted on a flexible riser with and without helical strakes. The aim of the present work is to further understand the response performance of the vortex induced vibration(VIV) for a riser with helical strakes. The experiment was accomplished in the towing tank and the relative current was simulated by towing a flexible riser in one direction. Based on the modal analysis method, the displacement responses can be obtained by the measured strain. The strakes with different heights are analyzed here, and the response parameters like strain response and displacement response are studied. The experimental results show that the in-line(IL) response is as important as the cross-flow(CF) response, however, many industrial analysis methods usually ignore the IL response due to VIV. The results also indicate that the response characteristics of a bare riser can be quite distinct from that of a riser with helical strakes, and the response performance depends on the geometry on the helical strakes closely. The fatigue damage is further discussed and the results show that the fatigue damage in the CF direction is of the same order as that in the IL direction for the bare riser. However, for the riser with helical strakes, the fatigue damage in the CF direction is much smaller than that in the IL direction.  相似文献   

20.
高云  付世晓  曹静  陈一帆 《海洋工程》2015,29(5):673-690
Laboratory tests were conducted on a flexible riser with and without helical strakes. The aim of the present work is to further understand the response performance of the vortex induced vibration (VIV) for a riser with helical strakes. The experiment was accomplished in the towing tank and the relative current was simulated by towing a flexible riser in one direction. Based on the modal analysis method, the displacement responses can be obtained by the measured strain. The strakes with different heights are analyzed here, and the response parameters like strain response and displacement response are studied. The experimental results show that the in-line (IL) response is as important as the cross-flow (CF) response, however, many industrial analysis methods usually ignore the IL response due to VIV. The results also indicate that the response characteristics of a bare riser can be quite distinct from that of a riser with helical strakes, and the response performance depends on the geometry on the helical strakes closely. The fatigue damage is further discussed and the results show that the fatigue damage in the CF direction is of the same order as that in the IL direction for the bare riser. However, for the riser with helical strakes, the fatigue damage in the CF direction is much smaller than that in the IL direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号