首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 671 毫秒
1.
使用中国新一代FY-4A卫星、GPM卫星的降水雷达等多源观测数据,选择两次高原涡与西南涡相互作用的暴雨个例,分析了两涡作用下盆地中尺度降水云系的空间结构特征。结果表明:西南涡与高原涡耦合作用下产生中尺度对流复合体MCC云系,短时强降水主要发生在MCC发展至成熟阶段,强降水区的云顶亮温值低于-60℃,云顶高度在12 km左右;西南涡与高原涡相互作用时,云顶亮温低值区的中心位置和强度与同时刻强降水特征很好对应;降水云体中对流性降水粒子的反射率因子在低层快速增长,层云性降水粒子的反射率因子强度增长的区域为零度亮带层附近;对流性降水雨强远大于层云,其粒子半径也大于层云降水,而对流性降水粒子的浓度高于或等于后者;层云对总降水量的贡献大于对流云,且层云降水量表现出大小均匀的粒子积聚的结果;对流性降水率垂直分布柱状明显且有云墙,层云性降水率垂直分布呈不规则柱状且没有显著的云墙,降水率均随海拔高度的升高而减小,5 km以下对流层对总降水量的贡献最大。  相似文献   

2.
文中利用TRMM卫星的测雨雷达和微波成像仪探测结果,研究了1998年7月20日21时(世界时)和1999年6月9日21时发生在武汉地区附近和皖南地区的两个中尺度强降水系统的水平结构和垂直结构,以及TMI微波亮温对降水强弱和分布的响应。研究结果表明:这两个中尺度强降水系统中对流降水所占面积比层云降水面积小,但对流降水具有很强的降水率,它对总降水量的贡献超过了层云降水。降水水平结构表明,两个中尺度强降水系统由多个强雨团或雨带组成,它们均属于对流性降水;降水垂直结构分析表明,强对流降水的雨顶高度可达15km,强对流降水主体中存在垂直方向和水平方向非均匀降水率分布区,层云降水有清晰的亮度带,层云降水的上方存在多层云系结构。降水廓线分布表明:对流降水廓线与层云降水廓线有明显的区别,并且降水廓线清晰地反映了降水微物理过程的垂直分布。整个中尺度强降水系统中对流降水与层云降水的区别还反映在标准化的总降水率随高度的分布。微波信号分析表明:TMI85 GHz极化修正亮温,19.4与37.0,19.4与85.5,37.0与85.5 GHz的垂直极化亮温差均能较好地指示陆面附近的降水分布。  相似文献   

3.
基于PR和VIRS融合资料的东亚台风和非台风降水结构分析   总被引:1,自引:0,他引:1  
借助JAXA/EORC热带台风数据集资料,实现了台风区和非台风区的分离,在此基础上,利用热带测雨卫星搭载的测雨雷达和可见光/红外扫描仪的融合观测资料,对1998~2007年东亚雨季台风及非台风降水的气候特征和降水云红外信号特征进行了分析。结果表明:1)东亚台风降水强度谱较非台风降水谱更宽,特别是对流降水主要分布在5~20 mm/h之间;强降水更多,主要分布在东亚洋面。2)雨季东亚降水的主要形式是非台风层云降水,但台风降水对局地降水量的贡献也不容忽视,例如台湾以东附近洋面可达20%。3)台风降水云亮温海陆分布差异显著;其雨顶高度在4~9 km(层云)和4.5~12.5 km(对流)之间均有分布,较非台风降水雨顶高度谱更宽。4)不同等级的台风在降水强度、覆盖区域和云顶10.8μm亮温分布上差异大。  相似文献   

4.
利用热带测雨卫星(TRMM)的测雨雷达(PR)、微波辐射计(TMI)和闪电成像仪(LIS)资料分析2012年8月25日甘肃省一次较强冰雹过程。结果表明,本次过程受3个分散的β中尺度对流系统影响,对流云像素点约为层云的1/2,对流云平均降水率是层云的8.2倍。冰雹云回波顶高度近13 km,回波强度大于55 dBZ的最大高度为7.5 km左右,降水率大于45 mm·h^-1的云层厚度约7 km。降水廓线反映出降水率垂直分布不均匀,对流降水中50、10 mm·h^-1的降水率随着高度的升高先增加后减小,在9 km左右减小明显。此次冰雹过程的闪电发生临近处6 km雷达反射率高于40 dBZ,85 GHz极化修正亮温低于210 K。  相似文献   

5.
9914号台风降水云系雨强的三维结构初探   总被引:12,自引:3,他引:12  
利用TRMM卫星的测雨雷达资料,研究了9914号台风降水云系在3个不同时次雨强的水平和垂直结构。结果表明:3个时次层状云降水在像素数量上及对总降水量的贡献上均比对流性降水大;3个时次层状云降水和对流性降水的平均雨强均随台风强度加强有较大的增幅;对流性降水与层状云降水的雨强的垂直廓线有明显的差别,但两类降水廓线本身在3个时次差别不大。对流性降水廓线按斜率不同大致分为3段,雨强均随高度减小,5~6km高度段减速最快。层状云降水廓线大致分为4段,在4.5km高度附近出现明显的亮带结构。  相似文献   

6.
2000—2007年登陆台风中闪电活动与降水特征   总被引:2,自引:1,他引:1       下载免费PDF全文
利用TRMM卫星LIS, PR和TMI资料,对2000—2007年41个登陆我国的台风中闪电活动和降水特征进行分析。结果表明:台风中的闪电活动整体较弱,相对而言,外雨带中的闪电活动最强,其次是眼壁,内雨带最弱,而眼壁的闪电密度最大。闪电活动沿台风径向有两个明显的高值区,主峰出现在距台风眼375 km的外雨带,次峰出现在距台风眼55 km的眼壁和内雨带相交的边界附近。台风中对流云降水面积远小于层云降水面积,其中外雨带中的对流云降水面积最大,其次是眼壁,内雨带最小;但对流降水对总降水量的贡献与层云相当。眼壁和内雨带中的对流云和层云的降水回波平均高度都小于外雨带。分析表明:TMI观测到的85.5 GHz极化修正亮温 (TPC85.5) 越低,闪电发生概率越大,外雨带具有最低的TPC85.5。有、无闪电发生区域的平均6 km高度雷达反射率因子和TPC85.5差异明显。台风区域内,闪电活动位置对应的平均6 km雷达回波强度普遍大于20 dBZ,而无闪电发生位置普遍低于30 dBZ。  相似文献   

7.
一次强对流活动中雷电与降水廓线特征研究   总被引:3,自引:0,他引:3  
马明  林锦冰  傅云飞 《气象学报》2012,70(4):797-805
利用热带测雨卫星的测雨雷达(PR)和闪电成像传感器(LIS)的逐轨探测结果,通过资料匹配处理方法,并配合常规气象资料,分析了2006年6月29日黄淮地区一次强对流活动中不同类型雷暴单体(Area,LIS探测资料认为近似于雷暴单体)的降水廓线,并分析了降水廓线与雷暴闪电频数的关系。结果表明:该强对流系统的雷暴单体可分为对流降水、层云降水、对流与层云混合降水3种雷暴单体,其中,混合降水雷暴单体数量最多,对流降水雷暴单体数和层云降水雷暴单体数量较少;并且雷暴单体中的闪电大多发生在对流降水区。结果还表明,不同闪电频数的雷暴单体相应的降水廓线差别明显:雷暴中闪电频数越大,5km以上高度廓线给出的雨强越大(对流降水廓线尤其如此),说明雷暴单体中闪电越多时,降水云冻结层以上存在的冰相粒子越多。  相似文献   

8.
基于TRMM资料的西南涡强降水结构分析   总被引:1,自引:0,他引:1  
利用热带测雨卫星TRMM资料和NCEP再分析资料,研究了2007年7月17日发生在四川东部和重庆西部地区的一次西南涡强降水系统的水平和垂直结构特征。结果表明,此次强降水系统由一个主降水云团(云带)和多个零散降水云团组成,属于对流性降水,强降水雨强大、范围广。降水系统中对流云降水的样本数量比层云降水少,但对流云降水的平均降水率大,对总降水量的贡献比层云大。对流云降水的雨强谱主要集中在1~50 mm·h-1范围内,而90%层云降水的雨强都在10 mm·h-1以下。从降水系统的垂直结构来看,强降水系统的雨顶高度可伸展到16 km,最大降水率位于地面上空2~6 km的大气层,降水强度的垂直和水平分布不均匀,对流层低层云滴的碰并增长过程对降水起主要作用。西南涡引发的强降水中不管是层云降水还是对流云降水,6 km高度以下降水量的贡献最大,不同高度降水量对总降水量贡献的大小随着高度的升高而减小。  相似文献   

9.
第三次青藏高原观测试验中C波段垂直探测雷达于2014年7-8月在西藏那曲地区进行了连续探测,对获取的降水云廓线数据进行处理分析得到37个对流云体,提取包括对流强度CI(大气上升运动与下沉运动差)、云顶高度Hctop、35 d BZ回波区顶高Hz35、最大回波强度Zmax等13个特征参数。运用模糊聚类分析方法对对流降水云体特征参数进行深厚和浅薄对流云分类,其中Hctop和Hz35分类清晰,与CI分类的相似度超过0.8,使用一致性较好的三个特征参数CI、Hctop、Hz35对37个对流降水云进行聚类分析,得到9个深厚对流降水云体和28个浅薄对流降水云体。深厚对流云体中CI最大达到33 m·s-1、Hctop最深为12 km、Hz35高于5 km(距地高度AGL,下同);浅薄对流云中CI平均仅14 m·s-1、Hctop平均为2.5 km。在深厚对流云中0.8~1.5 km高度处常出现类似零度层亮带的回波强度和径向速度加强层,浅薄对流云体此特征不明显。结合天气雷达回波分析,深厚对流云体的水平分布多表现为对流单体嵌入到降水系统中,而浅薄对流云体则表现为孤立的爆米花分布。9次深厚对流累积地面降水量82.7 mm,占7-8月总降水量的28%,多伴有冰雹出现;28次浅薄对流累积地面降水量28.7 mm,降水贡献远小于深厚对流云。  相似文献   

10.
青藏高原和四川盆地夏季对流性降水特征的对比分析   总被引:3,自引:1,他引:2  
李典  白爱娟  薛羽君  王鹏 《气象》2014,40(3):280-289
本文利用TRMM(Tropical Rainfall Measure Mission)多种探测结果,针对青藏高原和四川盆地各两次对流性降水天气进行了对比分析,结果表明:(1)高原降水系统以对流云降水为主,弱降水样本数量高,由孤立零散的块状降水云团组成,对流中心离散,降水范围小,雨区极不均匀,垂直发展厚度浅薄,降水粒子数量少,雨滴小,潜热释放以地面以上2~5 km高度层为主,夏季近地面层冰晶粒子含量高,降水过程中云顶亮温与地表雨强之间的相关性差,云顶亮温越高的对流云团其闪电频数越高。(2)盆地降水系统强降水样本数量高,由一个主降水系统和周边零散的降水云团组成,降水范围大,对流中心相对集中,雨区较均匀,垂直发展厚度高,对流系统深厚,雨滴大并集中,潜热释放呈一致的双峰型结构,峰值分别出现在7和16km高度上,冰雹粒子在对流层较高层含量高,云顶亮温与地表雨强之间呈显著的负相关,盆地的闪电频数显著高于高原地区,且闪电活动主要集中在亮温偏低的降水云体中。  相似文献   

11.
In this paper, a hailstorm occurring on 9 May 1999 in Huanghuai region was studied by using the combined data from the precipitation radar (PR), microwave image (TMI), and visible infrared scanner (VIRS) on the Tropical Rainfall Measuring Mission (TRMM) satellite. According to the 3-orbit observations of 5-h duration from the TRMM satellite, the variation characteristics of the precipitation structures as well as cloud top temperature and microwave signals of the precipitating cloud were comprehensively analyzed during the evolution of hailstorm. The results show that the precipitation is obviously converted from early hail cloud with strong convection into the later storm cloud with weak convection. For hail cloud, there exists some strong convective cells, and the heavy solid precipitation is shown at the middle-top levels so that the contribution of rainfall amount above the freezing-layer to the column precipitation amount is rather larger than that within the melting-layer. However, for storm cloud, the convective cells are surrounded by the large area of stratiform precipitation, and the precipitation thickness gradually decreases, and the rainfall above the freezing-layer obviously reduces and the contribution of rainfall amount within the melting-layer rapidly increases. Therefore, the larger ratio of rainfall amount above the freezing layer to column precipitation amount is, the more convective the cloud is; reversely, the larger proportion of rainfall below the melting layer is, the more stable the stratiform cloud is. The different changing trends of microwave signals at different precipitation stages show that it is better to consider the structures and stages of precipitating cloud to choose the optimal microwave channels to retrieve surface rainfall.  相似文献   

12.
TRMM卫星对一次冰雹降水过程的观测分析研究   总被引:7,自引:2,他引:7  
何文英  陈洪滨 《气象学报》2006,64(3):364-376
利用TRMM卫星上时空匹配较好的测雨雷达(PR)、微波成像仪(TMI)、可见光和红外扫描仪(VIRS)观测资料,研究了1999年5月9日发生在黄淮地区的一次冰雹降水过程。根据卫星接连3个轨道的观测,综合分析了此次强对流降水过程在不同阶段的降水结构、云顶亮温和降雨厚度以及相应的微波亮温变化特征。观测分析表明,此次降水过程由对流很强的冰雹降水逐渐演变到对流渐弱的暴雨降水。冰雹降水阶段,云中有多个强对流单体,云体中高层有大量的固态降水粒子,使得中高层降水量在降水柱含量中贡献远大于融化层降水量的贡献;暴雨降水阶段,若干对流单体被大面积的层云降水包围,降水高度逐渐降低,云体中高层降水量明显减少,融化层降水量对柱含量的贡献明显增加。降水率廓线中不同高度的降水量对降水柱含量贡献的比较表明:中高层降水量占的比例越大,降雨云对流越强,反之,融化层降水量占的比例越大,降雨云越趋向为稳定的层云。微波亮温信号在不同降雨阶段随雨强的响应程度大不相同,这表明在反演地面降雨时,最好结合降雨云的结构特征及其发展阶段,针对不同降雨类型选取最为有效的微波通道组合来建立最佳反演模式。  相似文献   

13.
0302号(鲸鱼)台风降水和水粒子空间分布的三维结构特征   总被引:5,自引:8,他引:5  
由于缺乏关于台风结构信息的高分辨率资料,即探测台风云系内部结构特征的技术限制,造成了进一步理解台风的动力传送特征的困难.作者用热带测雨卫星(TRMM,Tropical Rainfall Measuring Mission)的测雨雷达(PR,Precipitation Radar)和TRMM微波图像仪(TMI,TRMM Microwave Imager)资料详细研究了"鲸鱼"台风(0302号)于2003年4月16日1105 UTC的降水和降水云系中各种水粒子的三维结构特征.通过分析发现该时刻:(1)台风降水中大部分区域为层性降水(占总降水面积的85.5%),对流性降水占总降水面积的13.1%,但对流性降水的贡献却达到41.8%,所以,虽然对流性降水所占面积比例很少,但是它对总降水量的贡献却很大.(2)60%降水主要集中在距离台风中心100 km以内的区域,约占总降水量的60%.(3)各种水粒子含量随着与台风中心距离的增加而减少.降水云系中水粒子最大含量出现高度与水粒子的种类和与台风中心的距离有关.最后,分析了台风降水和降水云系中三维分布的成因.  相似文献   

14.
基于热带测雨卫星探测的东亚降水云结构特征的研究   总被引:4,自引:0,他引:4  
利用热带测雨卫星的测雨雷达(TRMMPR)、微波成像仪(TMI)、可见光和红外辐射计(VIRS)、闪电成像仪(LIS)对降水云的综合探测结果,结合全球降水气候计划降水资料(GPCP)和中国气象台站雨量计观测资料,分析了东亚降水分布特点,并比较了TRMMPR与GPCP及地面雨量计观测结果的差异;揭示了中国中东部大陆、东海和南海对流降水和层云降水平均降水廓线的季节变化特征及物理意义,以及TMI高频和低频微波信号对地表降水率变化的响应特点;通过对中尺度强降水系统、锋面气旋降水系统和热对流降水系统的个例分析,探明了降水结构及其与闪电活动的关系、降水云顶部信息与地表雨强之间的关系。  相似文献   

15.
TRMM卫星对青藏高原东坡一次大暴雨强降水结构的研究   总被引:3,自引:0,他引:3  
利用热带测雨卫星(TRMM)探测资料,NCEP、ERA-Interim再分析资料,结合C波段多普勒雷达和其他地面观测资料,研究了2013年7月21日发生在青藏高原东坡的一次大暴雨强降水结构。结果表明,高能、高湿的不稳定大气在700 hPa切变线及地面辐合线的触发下产生了此次大暴雨,降水具有明显的强对流性质。从水平结构来看,降水系统由成片的层云雨团中分散分布的多个对流性雨团组成,对流样本数远少于层云,但平均雨强是层云的4.7倍,对总降水的贡献达到25.6%;以超过10 mm/h雨强为强度标准,3个20-50 km、回波强度在45-50 dBz的β中尺度对流雨团零散地分布在主雨带中,对应 < 210 K的微波辐射亮温区和≥ 32 mm/h的地面强降水;对流降水的雨强谱集中在1-50 mm/h,其中20-30 mm/h的雨强对总雨强的贡献最大,这与中国东部降水有着显著区别,而90%的层云降水的雨强均小于10 mm/h。从垂直结构来看,对流降水云呈柱状自地面伸展,平均雨顶高度随地面雨强的增强而不断升高(5-12 km),强降水中心区域的质心在2-6 km;降水廓线反映出强降水系统中降水主要集中在6 km以下高度范围,且降水强度在垂直方向分布不均匀,对流降水和层云降水的强度随高度升高的总趋势是趋于减弱,但在一定高度范围内,对流降水强度随高度升高而增大,并且在多个地表雨强廓线中都有体现。此外,地基雷达的探测结果也表明了强降水的低质心特点及显著的逆风区演变特征,这是对TRMM PR探测的验证和补充。   相似文献   

16.
汪会  郭学良 《气象学报》2018,76(6):996-1013
为了加强对青藏高原深对流云垂直结构的深入认识,利用TRMM、CloudSat和Aqua多源卫星观测资料及地基垂直指向雷达(C波段调频连续波雷达和KA波段毫米波云雷达)资料,对第三次青藏高原大气科学试验期间2014年7月9日13-16时(北京时)发生在那曲气象站附近的深厚强对流云和那曲气象站以西100 km左右的深厚弱对流云的垂直结构特征进行了分析,得到的结果如下:(1)深厚强对流云和深厚弱对流云的水平尺度均较小(10-20 km),垂直发展高度较高(15-16 km,均指海拔高度);深厚强对流云在0℃层以下雷达反射率因子递增非常快,表明对流云内固态降水粒子下落至0℃层以下后融化过程有很重要的作用;在对流减弱阶段有明显的0℃层亮带出现,亮带位于5.5 km左右(距地1 km);(2)对比TRMM测雨雷达和C波段调频连续波雷达观测到的雷达反射率因子,发现TRMM测雨雷达在11 km以下存在高估;(3)深对流云主要为冰相云,云内10 km以上主要是丰富小冰粒子,而10 km以下是较少的大冰晶粒子;深厚强对流云和深厚弱对流云的微物理过程都主要包括混合相过程和冰化过程,混合相过程分为两种:一种是-25℃(深厚强对流云)或-29℃(深厚弱对流云)高度以下以凇附增长为主,另一种是该高度以上主要以冰晶聚合、凝华增长为主,该过程冰晶粒子有效半径增长较快。这些空基和地基的观测证据进一步揭示了青藏高原深对流云的垂直结构特征,为模式模拟青藏高原深对流云的检验提供了依据。   相似文献   

17.
李芳  李南  万瑜 《山东气象》2020,40(4):69-76
为研究GPM(Global Precipitation Measurement)资料对台风雨带降水结构的探测能力,利用GPM卫星资料、地基雷达资料和地面降水实况对2018 年第18号台风“温比亚”影响山东期间的降水结构进行分析。结果表明:台风螺旋雨带造成的降水远大于台风外围云系产生的降水;台风螺旋雨带的雨顶高度大于外围云系的雨顶高度,基本在7 km以上,最大雨顶高度达到15 km;台风螺旋雨带及其外围云系都以层云和对流云降水为主,其中螺旋雨带中对流云降水所占比例高于外围云系,对流云的平均降水率是层云的3倍左右,对流云降水对应近地面降水率和雨顶高度的大值区;台风螺旋雨带的降水柱与外围云系中的降水柱相比,具有数量多、密度大、高度高的特点,这与台风螺旋雨带中对流发展旺盛有关;2A DPR数据产品对降水估测具有较好的指示意义。研究结果为用GPM产品估测降水结构提供了参考依据。  相似文献   

18.
傅云飞  潘晓  刘国胜  李锐  仲雷 《大气科学》2016,40(1):102-120
本文利用热带测雨卫星(TRMM, Tropical Rain Measuring Mission)第七版逐日逐轨测雨雷达(PR, Precipitation Radar)及可见光和红外扫描仪(VIRS, Visible and Infrared Scanner)的融合数据集,研究了夏季青藏高原上降水类型的特征.统计结果表明第七版PR降水回波强度及降水率廓线资料(2A25)仍旧误判青藏高原上以层云降水为主(比例高达85%);以云顶相态定义的青藏高原降水类型统计表明,冰相云顶和冰水混合相云顶的降水分别占43%和56%;以降水回波顶高度定义的降水类型统计表明,深厚弱对流降水和浅薄降水分别占77%和22%,而深厚强对流降水仅占1%.空间分布的统计表明,冰相云顶降水和冰水混合相云顶降水的频次和强度自高原西部向高原东部和东南部增加,其降水回波顶高度自高原西、中部向东部降低.深厚强对流降水和浅薄降水的频次由西向东增加,而深厚弱对流降水频次分布是西少、北少、南多,高原南部比北部的深厚弱对流降水频次高出近1倍;深厚弱对流降水和浅薄降水的平均强度也表现了自高原西部、中部向东部的增大,而其降水回波顶高度分布则相反.总体上,夏季青藏高原降水频次和强度自西向东增多和增大,而云顶和降水回波顶高度则相反.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号