首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
143Nd/144Nd,87Sr/86Sr and trace element results are reported for volcanic and plutonic rocks of the Aleutian island arc. The Nd and Sr isotopic compositions plot within the mantle array with εNd values of from 6.5 to 9.1 and87Sr/86Sr ratios of from 0.70289 to 0.70342. Basalts have mildly enriched light REE abundances but essentially unfractionated heavy REE abundances, while andesites exhibit a greater degree of light to heavy REE fractionation. Both the basalts and andesites have significant large ion lithophile element to light rare earth element (LILE/LREE) enrichments. Variations in the isotopic compositions of Nd and Sr are not related to the spatial distribution of volcanoes in the arc, nor are they related to temporal differences. εNd and87Sr/86Sr do not correlate with major element compositions but do, however, correlate with certain LILE/LREE ratios (e.g. BaN/LaN). Plutonic rocks have isotropic and trace element characteristics identical to some of the volcanic rocks. Rocks that make up the tholeiitic, calc-alkaline and alkaline series in the Aleutians do not come from isotopically distinct sources, but do exhibit some differing LILE characteristics.Given these elemental and isotopic constraints it is shown that the Aleutian arc magmas could not have been derived directly from homogeneous MORB-type mantle, or fresh or altered MORB subducted beneath the arc. Mixtures of partially altered MORB with deep-sea sediment can in principle account for the isotopic characteristics and most of the observed LILE/LREE enrichments. However, some samples have exceedingly high LILE/LREE enrichments which cannot be accounted for by sediment contamination alone. For these samples a more complex scenario is considered whereby dehydration and partial melting of the subducted slab, containing less than 8% sediment, produces a LILE-enriched (relative to REE) metasomatic fluid which interacts with the overlying depleted mantle wedge. The isotopic and LILE characteristics of the mantle are extremely sensitive to metasomatism by small percentages of added fluid, whereas major elements are not substantially effected, Major element compositions of Aleutian magmas are dominantly controlled by the partial melting of this mantle and subsequent crystal fractionation; whereas isotopic and LILE characteristics are determined by localized mantle heterogeneities.  相似文献   

2.
The isotopic compositions of Sr, Nd and Pb together with the abundances of Rb, Sr, U and Pb have been determined for mafic and felsic potassic alkaline rocks from the young Virunga volcanic field in the western branch of the East African rift system.87Sr/86Sr varies from 0.7055 to 0.7082 in the mafic rocks and from 0.7073 to 0.7103 in the felsic rocks. The latter all come from one volcano, Sabinyo. Sabinyo rocks have negative εNdvalues ofεNd = ?10. Nd and Sr isotopic variations in the basic potassic rocks are correlated and plot between Sabinyo and previously reported [1] compositions (εNd = +2.5;87Sr/86Sr≈ 0.7047) for Nyiragongo nephelinites. The Pb isotopic compositions for Sabinyo rocks are nearly uniform and average206Pb/204Pb≈ 19.4,207Pb/204Pb= 15.79–15.84,208Pb/204Pb≈ 41.2. The basic potassic rocks have similar206Pb/204Pb values but range in207Pb/204Pb and208Pb/204Pb from the Sabinyo values to less radiogenic compositions.Excellent correlations of87Sr/86Sr with Rb/Sr, 1/Sr and207Pb/206Pb for Sabinyo rocks suggest these to be members of a hybrid magma series. However, the nearly uniform Pb compositions for this series points to radiogenic growth of87Sr in the magma source region following an event which homogenized the isotopic compositions but not Rb/Sr. The Rb-Sr age derived from the erupted Sabinyo isochron-mixing line is consistent with the ~500 Myr Pb-Pb age from Nyiragongo [1], which suggests that this event affected all Virunga magma sources. The event can again be traced in the Pb-Pb, Pb-Sr and Nd-Sr isotopic correlations for all Virunga rocks, including Nyiragongo, when allowances are made for radiogenic growth subsequent to this mixing or incomplete homogenization event. Inferred parent/daughter element fractionations point to a metasomatic event during which a mantle fluid invaded two lithospheric reservoirs: a +εNd reservoir sampled by the Nyiragongo nephelinites and suggested to be the subcontinental mantle and a ?εNd reservoir sampled by the mafic and felsic potasssic volcanism. Whether this ?εNd reservoir is the crust, continental crustal material in the mantle or anomalous mantle cannot be decided from the data. The simplest answer, that this reservoir is the continental crust, seems to be at variance with experimental evidence suggesting a subcrustal origin for basic potassic magmas. Partial melting of the ancient metasomatised lithospheric domains and ensuing volcanism seems to be entirely a response to decompression and rising geotherms during rifting and thinning of the lithosphere.  相似文献   

3.
Cheong-Bin  Kim  V. J. Rajesh    M. Santosh 《Island Arc》2008,17(1):26-40
Abstract Geochemical and Sr–Nd–Pb isotope characteristics, as well as K–Ar geochronology of a massive pitchstone (volcanic glass) stock erupted into Late Cretaceous lapilli tuff and rhyolite in the Gohado area, southwestern Okcheon Belt, South Korea, are reported. The pitchstones are highly evolved with SiO2 contents ranging from ~72 to 73 wt%, K2O/Na2O ratios of 1.04–1.23 and low MgO/FeOt values (0.17–0.20). The pitchstones are weakly peraluminous and the ASI (molar Al2O3/Na2O + K2O + CaO) values are significantly lower than 1.1. The pitchstones also display a general calc‐alkaline nature with significant alkali contents. The rare earth elements (REE) compositions show moderately fractionated nature with (La/Yb)N ranging from 11 to 16. Chondrite normalized REE patterns show relative enrichment of light REE over heavy REE and moderate Eu anomaly (Eu/Eu* ratio varies from 0.53 to 0.57). A distinct negative Nb anomaly is observed for all pitchstones on a primitive mantle normalized trace element diagram, typical of subduction‐related magmatism and crustal‐derived granites. All these features are characteristic of I‐type granites derived from a continental arc. The pitchstones have Zr contents of 98.5–103.5 ppm with zircon thermometry yielding temperatures of 749–755°C (mean 752°C). The K–Ar analyses of representative pitchstone samples yielded ages of 58.7 ± 2.3 and 62.4 ± 2.1 Ma with a mean age of 61 Ma. The rocks show nearly uniform initial 87Sr/86Sr isotopic ratios of 0.7104–0.7106 and identical 143Nd/144Nd initial ratio of 0.5120. The rocks display negative εNd (61 Ma) values of ?12. The depleted mantle model ages (TDM) range from 1.54 Ga to 1.57 Ga. The Pb isotope ratios are 206Pb/204Pb = 18.522–18.552, 207Pb/204Pb = 15.642–15.680 and 208Pb/204Pb = 38.794–38.923. These ratios suggest that the Gohado pitchstones were formed in a continental arc environment by partial melting of a 1.54 Ga to 1.57 Ga parental sources of lower crustal rocks probably of mafic or intermediate compositions.  相似文献   

4.
Subsurface carbonatite at Elk Creek, Nebraska has been recognized in drill core taken from a depth interval of 630 to at least 950 ft. The core in this interval consists of carbonated breccia and phlogopite-bearing carbonate rock. Total REE, P2O5 and Nb2O5 data are consistent with “average” values for carbonatite.87Sr/86Sr ratios from the carbonate fraction range from 0.7030 to 0.7055 for fifteen of eighteen samples (total Sr varies from 300 to 3500 ppm;X= 1800ppm); the remaining three samples have87Sr/86Sr and total Sr values of 0.7085 : 40 ppm; 0.7064 : 92 ppm; 0.7067 : 252 ppm; these samples may be mixed with sedimentary carbonate and/or contaminated by other non-carbonatite material.The Elk Creek carbonatite is of special interest because of its position with respect to tectonic elements in basement rocks. It occurs in the center of gravity and magnetic anomalies over the approximate axis of the Nemaha anticline and is apparently aligned with the Riley County, Kansas, carbonatite-bearing kimberlites. It is far removed from the E-W-trending “38th parallel” lineament along which occur numerous kimberlites and carbonatites.  相似文献   

5.
Abstract The petrogenesis of the Ulsan carbonate rocks in the Mesozoic Kyongsang Basin of South Korea, which have previously been interpreted as limestone of Paleozoic age, is reconsidered in the present study. Within the Kyongsang Basin, a small volume of carbonate rocks, containing a magnetite deposit and spatially associated ultramafic rocks, is surrounded by sedimentary, volcanic and granitic rocks of the Mesozoic age. The simple cross‐cutting relationships and other outcrop features of the area indicate that the carbonate rocks are an intrusive phase and younger than the other surrounding Mesozoic rocks. The Ulsan carbonates have low concentrations of rare earth elements (REE) and trace elements with the carbon and oxygen isotope values in the range of δ13CPDB = 2.4 to 4.0‰ and δ18OSMOW = 17.0 to 19.5‰. Outcrop evidence and geochemical signatures indicate that the Ulsan carbonates were formed from crustal carbonate melts, which were generated by the melting/fluxing of crustal carbonate materials, caused by the emplacement‐related processes of alkaline A‐type granitic rocks. Compared to typical mantle‐derived carbonatites associated with silica‐undersaturated, strongly peralkaline systems, the relatively small size and geochemical characteristics of the Ulsan carbonates reflect carbonatite genesis in a silica‐saturated, weakly alkali intrusive system. Major deep‐seated tectonic fractures formed by the collapse of the cauldron or the rift system associated with the opening of the East Sea (Japan Sea) might have facilitated the ascent of the crustal carbonate melts.  相似文献   

6.
Late Cenozoic volcanism in Baja California records the effects of cessation of subduction at a previously convergent, plate margin. Prior to 12.5 m.y., when subduction along the margin of Baja ceased, the predominant volcanic activity had a calc-alkaline signature, ranging in composition from basalt to rhyolite. Acidic pyroclastic activity was common, and possibly represented the westermost, distal edge of the Sierra Madre Occidental province. After 12.5 m.y., however, the style and composition of the magmatic products changed dramatically. The dominant rock type within the Jaraguay and San Borja volcanic fields is a magnesian andesite, with up to 8% MgO at 57% SiO2, low Fe/Mg ratios, and high Na/K ratios. These rocks have unusual trace-element characteristics, with high abundances of Sr (up to 3000 ppm), low contents of Rb; K/Rb ratios are very high (usually over 1000, and up to 2500), and Rb/Sr ratios are low (less than 0.01). Furthermore, Lan/Ybn ratios are high, consistent with derivation from a mantle source with fractionated REE patterns. 87Sr/86Sr ratios are less than 0.7048, and usually less than 0.7040, whereas the pre-12.5 m.y. lavas have 87Sr/86Sr ratios between 0.7038 and 0.7063. We have previously termed these rocks bajaites, in order to distinguish them from other magnesian andesites. Bajaites also occur in southernmost Chile and the Aleutian Islands, areas which also have histories of attempted or successful ridge subduction.It is proposed that the bajaite series is produced during the unusual physico-chemical conditions operating during the subduction of young oceanic lithosphere, or subduction of a spreading centre. During normal subduction, the oceanic crust dehydrates, releasing volatiles (water, Rb and other large-ion lithophile elements) into the overlying wedge. Subduction of younger crust will result in a progressive decrease, and eventual cessation of the transfer of volatiles when subduction stops. Thermal rebound of the mantle may cause the slab to melt, perhaps under eclogitestable conditions. The resulting melt will be heavy-REE-depleted, perhaps dacitic, but will otherwise inherit MORB-like Rb/Sr and K/Rb ratios. The ascending melt will react with the mantle to form the source of the bajaitic rocks. Furthermore, any amphibole in the mantle, stabilised during the higher PH2O conditions of earlier subduction, will break down and contribute a high-K/Rb ratio component.The implications of this study are that firstly, the subducted slab does not contribute a highly fractionated REE component in most modern arcs (i.e. the slab does not melt); secondly, Rb has a very short residence time in the mantle, and its abundance in arc rocks is a direct reflection of the input from the dehydrating slab; and thirdly, bajaitelike rocks may provide recognition of attempted or successful ridge subduction in the geologic past.  相似文献   

7.
Abstract Whole‐rock chemical and Sr and Nd isotope data are presented for gabbroic and dioritic rocks from a Cretaceous‐Paleogene granitic terrain in Southwest Japan. Age data indicate that they were emplaced in the late Cretaceous during the early stages of a voluminous intermediate‐felsic magmatic episode in Southwest Japan. Although these gabbroic and dioritic rocks have similar major and trace element chemistry, they show regional variations in terms of initial Sr and Nd isotope ratios. Samples from the South Zone have high initial 87Sr/86Sr (0.7063–0.7076) and low initial Nd isotope ratios (?Nd, ?2.5 to ?5.3); whereas those from the North Zone have lower initial 87Sr/86Sr (usually less than 0.7060) and higher Nd isotope ratios (?Nd, ?0.8 to + 3.3). Regional variations in Sr and Nd isotope ratios are similar to those observed in granitic rocks, although gabbroic and dioritic rocks tend to have slightly lower Sr and higher Nd isotope ratios than granitic rocks in the respective zones. Limited variations in Sr and Nd isotope ratios among samples from individual zones may be attributed partly to a combination of upper crustal contamination and heterogeneity of the magma source. Contamination of magmas by upper crustal material cannot, however, explain the observed Sr and Nd isotope variations between samples from the North and South Zones. Between‐zone variations would reflect geochemical difference in magma sources. The gabbroic and dioritic rocks are enriched in large ion lithophile elements (LILE) and depleted in high field strength elements (HFSE), showing similar normal‐type mid‐ocean ridge basalt (N‐MORB) normalized patterns to arc magmas. Geochronological and isotopic data may suggest that some gabbroic and dioritic rocks are genetically related to high magnesian andesite. Alternatively, mantle‐derived mafic or intermediate rocks which were underplated beneath the crust may be also plausible sources for gabbroic and dioritic rocks. The magma sources (the mantle wedge and lower crust) were isotopically more enriched beneath the South Zone than the North Zone during the Cretaceous‐Paleogene. Sr and Nd isotope ratios of the lower crustal source of the granitic rocks was isotopically affected by mantle‐derived magmas, resulting in similar initial Sr and Nd isotope ratios for gabbroic, dioritic and granitic rocks in each zone.  相似文献   

8.
Subduction‐related volcanic rocks are widespread in the Central Pontides of Turkey, and represented by the Hamsaros volcanic succession in the Sinop area to the north. The volcanic rocks display high‐K calc‐alkaline, shoshonitic and ultra‐K affinities. 40Ar/39Ar age data indicate that the rocks occurred during the Late Cretaceous (ca 82 Ma), and the volcanic suites were coeval. Primitive mantle‐normalized trace element patterns of all the lavas are characterized by strong enrichments in large ion lithophile elements (LILE) (Rb, Ba, K, and Sr), Th, U, Pb, and light rare earth elements (LREE; La, Ce) and prominent negative Nb, Ta, and Ti anomalies, all typical of subduction‐related lavas. There is a systematic increase in the enrichment of incompatible trace elements from the high‐K calc‐alkaline lavas through the shoshonitic to the ultra‐K lavas. In addition, the shoshonitic and ultra‐K lavas have significantly higher 87Sr/86Sr (0.70666–0.70834) and lower 143Nd/144Nd (0.51227–0.51236) initial ratios than coexisting high‐K calc‐alkaline lavas (87Sr/86Sr 0.70576–0.70613, 143Nd/144Nd 0.51245–0.51253). Geochemical and isotopic data show that the shoshonitic and ultra‐K rocks cannot be derived from the high‐K calc‐alkaline suite by any shallow level differentiation process, and point to a derivation from distinct mantle sources. The shoshonitic and ultra‐K rocks were derived from metasomatic veins related to melting of recycled subducted sediments, but the high‐K calc‐alkaline rocks from a lithospheric source metasomatized by fluids from subduction zone.  相似文献   

9.
Rb/Sr isotopic data are presented for three different mantle-derived rock types from a single quarry in the Kiama area in southeastern Australia. These rocks comprise a latite (249 Ma), a basanitic dyke (191 Ma) and mantle-derived xenoliths entrained in the basanitic dyke. Interpretation of the Rb/Sr data with other geochemical results shows that significant crustal contamination of either the latite or the basanite is unlikely. It is suggested that metasomatic mantle events may closely coincide with the production of basaltic magma. Basaltic activity in this area in the late Permian, early Jurassic and Tertiary would imply that a high heat flow may have persisted in southeastern Australia over this time span.87Sr/86Sr values of the rocks studied are within the range of intraplate basalts worldwide and support the concept of a REE-enriched upper mantle beneath eastern Australia.  相似文献   

10.
Geochemistry and petrogenesis of ophiolites from Northern Pindos (Greece)   总被引:1,自引:0,他引:1  
The ophiolitic complex of Northern Pindos (Greece) contains ocean-floor basalts and low-Ti mafic rocks. The former rocks are similar to recent mid-ocean ridge basalts with a light REE depletion and a La/Yb ratio < 2. The low-Ti rocks resemble boninites in their high Mg and very low Ti and Zr contents and in their REE patterns which have convex-downwards shape with a slight light REE enrichment. However, their Zr/Ti, Ti/V and Zr/Y ratios are lower than in boninites. Both rock-types could be generated by dynamic partial melting of a rising upper mantle diapir. Slight enrichment in light REE, Sr, Rb and Ba in low-Ti rocks could be the result of either metasomatic or alteration processes. Although a subduction zone origin of the sequence is possible, the geochemical data do not necessarily imply such a setting.  相似文献   

11.
We report REE and minor element distributions for perovskites from seven kimberlites (South Africa and U.S.A.). The REE (1.6–6.3 oxides wt.%) are always strongly light REE enriched, often with Ce > La (chondrite-normalized), and show an expected close correlation with whole-rock analyses. Where examined, perovskite contains far more REE than coexisting apatite, by about an order of magnitude. Calculations indicate that iron is mostly present as Fe3+ and is low (1.0–2.9 wt.% Fe2O3) compared with perovskite from carbonatite complexes such as Oka (4.4 wt.% FeO [3]). In addition to established Nb (0.3–1.7 oxide wt.%), geochemically interesting elements encountered include Zr (up to 1.5 oxide wt.%), Ba and Sr (up to 0.2, 0.4 oxide wt.% respectively). Specific geological applications suggest a possible genetic link between Wesselton pipe and Benfontein Sills kimberlites, and that carbonate-rich dikes in the Premier mine were derived from kimberlites. The overall similarities with incompatible element-rich titanates in veined mantle peridotites suggest a more direct link between kimberlite magmatism and mantle metasomatism.  相似文献   

12.
RB-Sr and Sm-Nd isotopic and trace-element-abundance values have been determined for 15 mafic and intermediate rocks from six Pleistocene volcanic centres of the Fly-Highlands province. 87Sr/86Sr and N d values range from 0.70362 to 0.70540, and +1.9 to +5.9, respectively. These new data can be accounted for by contamination of mantle-derived magmas by the continental crust through which the magmas have risen. They do not, however, preclude derivation of some of the Sr and Nd from subducted crust, nor are they inconsistent with Sr and Nd enrichments having taken place by means of mantle metasomatic events. Nevertheless, there is no Benioff zone beneath the Fly-Highlands province (although there is geological evidence for Cretaceous subduction). A preferred interpretation is that uncontaminated, mantle-derived magmas are related to the Pliocene crustal uplift that caused the development of the highlands and which formed in response to a mid-Tertiary continent/island-arc collision.  相似文献   

13.
Major, trace element and Sr-isotope compositions are reported for a suite of lavas coming from the area of Commenda in the SE Vulsinian district. The analyzed samples have all low silica contents and variable but generally high CaO, MgO and FeOt. Based on K2O% and K2O/Na2O ratio, the rocks from Commenda can be classified as belonging to the Potassic Series (KS) and the High-potassium Series (HKS). The HKS rocks appear to have derived by cristal/liquid fractionation from the most mafic types with separation of olivine and clinopyroxene and then of clinopyroxene + leucite. The most primitive HKS rocks have aphyric texture and high Mg-values, Cr and Ni contents which are close or within the range of values of magmas formed by partial melting of periodititic mantle sources. The KS rocks have lower incompatible element contents as the HKS rocks with similar degree of evolution.The variations of Sr-isotopic ratios of the analyzed rocks and of other Vulsinian lavas, indicate that the basic HKS Vulsinian rocks did not interact significantly with the continental crust. Instead, the KS appears to have evolved by combined crystal fractionation and assimilation processes, starting from parental magmas which had87Sr/86Sr ratio not significantly lower than that found in the less evolved rocks of the suite.The most primitive HKS rocks from Commenda have hygromagmatophile element distribution pattern characterized by high ratio of LILE/HFSE with negative anomalies of Ta and Ti, resembling closely those of other Roman mafic volcanics. The primitive geochemical characteristics of the Commenda rocks exclude that these features are the products of interaction with the crust and provide a further support to the hypothesis of a genesis within a subduction-modified mantle source.  相似文献   

14.
Zircon U-Pb results of basalt from the Dashizhai Town in Inner Mongolia, NE China, shows that the basaltic lava was erupted at 439±3 Ma, much older than the “Permian basalts” as previously thought. These rocks show arc-type trace element patterns (i.e., Nb-Ta depletion and light REE and large ion lithophile element enrichment) and unradiogenic Sr and highly radiogenic Nd and Hf isotope compositions. They can be subdivided into two petrogenetic groups: Group 1 basalts have relatively high TiO2, MgO and compatible elements and low Sr and Th, characterized by mid-oceanic ridge basalt (MORB)-type Sr-Nd-Hf isotope compositions (87Sr/86Sr(i)=0.7028−0.7032, εNd(t)=+9.8−+11.2, εHf(t)=+16.1−+18.4). Group 2 has lower TiO2, MgO and compatible elements and higher Sr and Th, and relatively evolved Sr-Nd-Hf isotope compositions (87Sr/86Sr(i)=0.7037−0.7038, εNd(t)=+5.7−+7.3, εHf(t)=+12.6−+13.0). Both groups were interpreted as melts derived from a metasomatized mantle wedge formed during the subduction of Paleo-Asian Ocean. The mantle source for Group 1 was probably a highly isotopically depleted oceanic mantle modified by predominant slab fluids; whereas subducted sediments had an important contribution to the melting source for Group 2. The petrogenesis of the Dashizhai basalts provides clear evidence for early Paleozoic subduction of the Paleo-Asian Ocean, and the highly radiogenic Nd and Hf compositions in these rocks suggest that these lavas and their possible intrusive counterparts were one of the important components for Phanerozoic crustal growth. Our and previous studies on the “Dashizhai Formation” volcanic rocks yield an unrealistic eruption range of 440-270 Ma for different rock types, we thus advise to disassemble the previously defined “Dashizhai Formation” into multiple lithologic units and to reinterpret the spatial and temporal distributions of different volcano-sedimentary associations. Supported by National Basic Research Program of China (Grant No. 2006CB403504)  相似文献   

15.
Early Permian (272 ± 2 Ma) diabase dikes from the Linxi area in central Inner Mongolia of NE China have high MgO (10.4 – 12.3 wt%), Cr (301 – 448 ppm) and Ni (167 – 233 ppm) concentrations, and show enrichments in large ion lithophile element (LILE) and light rare earth elements (REE) but depletions in high field strength element (HFSE, e.g., Nb and Ta), with depleted mantle‐type Sr [87Sr/86Sr (i) = 0.70315 – 0.70362], Nd [εNd (t) = +6.8 – +7.4], Pb [206Pb/204Pb (i) = 18.10 – 18.16] and zircon Hf [εHf (t) = +14.7 – +19.1] isotopic compositions, but slightly higher zircon δ18O (5.2 – 6.0 ‰ with an average of 5.7 ‰) than normal mantle. The combined geochemical data indicate their derivation from a depleted mantle metasomatized by recycled crustal component. Elemental and isotopic modeling results suggest that the primary magma was produced through 5 % to 10 % melting of a depleted mantle, which contained approximately 1 % sediment fluid released from the subducted paleo‐Asian Ocean. Considering the widespread distribution of contemporaneous mafic rocks across the central Inner Mongolia, which show REE patterns from E‐MORBs to normal MORBs, we propose a petrogenetic link between the Early Permian mafic magmatism and a back‐arc extension in response to northward subduction of the paleo‐Asian Ocean. The Permian mafic magmatism and the new age constraints from the metamorphic and sedimentary records in this area tend to indicate the ultimate closure of the paleo‐Asian Ocean by the end of Paleozoic.  相似文献   

16.
~~Characteristics of the mantle source region of sodium lamprophyres and petrogenetic tectonic setting in northeastern Hunan,China~~  相似文献   

17.
Zilong  Li  Yoshiaki  Tainosho  Jun-Ichi  Kimura  Kazuyuki  Shiraishi 《Island Arc》2005,14(4):636-652
Abstract The Mefjell plutonic complex consists of 500–550‐Ma Pan‐African plutonic rocks, which intrude into the Precambrian crystalline basement in the Sør Rondane Mountains, East Antarctica, and forms part of the Sør Rondane Suture Zone. The complex comprises syenitic and granitic (mostly monzogranitic) rocks, and is characterized by the presence of iron‐rich hydrous mafic minerals and primary ilmenite, both of which imply its formation at high temperature and under low oxygen fugacity conditions. The syenitic rocks are metaluminous, and are high in alkalis, K2O/Na2O, Al2O3, FeOt/(FeOt + MgO) (0.88–0.98), K/Rb (800–1000), Ga (18–28 p.p.m.), Zr (up to 2100 p.p.m.) and Ba. They also have a low Mg? (Mg/[Mg + Fe2+]), Rb, Sr, Nb, Y and F, low to moderate light rare earth element (LREE)/heavy rare earth element (HREE) ratios and positive Eu anomalies in their rare earth element (REE) patterns. The granitic rocks are metaluminous to peraluminous, and have a high Rb content, high Sr/Ba and LREE/HREE ratios, low K/Rb and negative Eu anomalies. Most of the syenitic and granitic rocks have Y/Nb ratios greater than 1.2, and are depleted in Nb, Ti and Sr on the primitive mantle‐normalized spider diagrams, indicating a crustal origin with subduction zone signatures. We interpret both the syenitic and granitic rocks to be derived from an iron‐rich lower crustal source by dehydration melting induced by the heat of mantle‐derived basaltic intrusion, after which they then underwent limited fractional crystallization. The Mefjell plutonic complex has a high Zr content and tectonic discrimination diagram signatures indicative of normal A‐type granitic rocks. Both rock suites may have been generated under the same postorogenic tectonic setting. The Mefjell syenitic rocks are chemically comparable to charnockites in the Gjelsvikjella and western Mühlig‐Hofmannfjella areas of East Antarctica, whereas the granitic rocks are comparable to aluminous A‐type granitic rocks in South India, which were emplaced during formation and evolution of the Gondwanaland supercontinent.  相似文献   

18.
K, Rb and Sr concentrations and Sr isotopic compositions were determined for the Dai granitic rocks of trondhjemitic composition occurring in a serpentinite mass in the Nagato tectonic zone formed in the Late Paleozoic era, and for the granitic rocks of quartz dioritic composition recently dredged from the seamount of the Kyushu-Palao Ridge. Both granitic rocks are characterized by low abundances of K and Rb, low K2O/Na2O ratios, high K/Rb ratios, low Rb/Sr ratios and low initial87Sr/86Sr ratios. These characteristics suggest that strong similarities may exist between the Dai granitic rocks and the dredged granitic rocks, and that the Dai granitic rocks may be classified as oceanic plagiogranite. These oceanic plagiogranites may plausibly represent single-stage mantle-derived granites, possibly from the suboceanic mantle.  相似文献   

19.
TheTonglingarea,whichiscalledtheChineseCopperCapital,isoneofthemostimportantnon-ferrousmetalproducersinChina(e.g.Cu,AuandAg,especiallyCu).ManyresearchershavenotedthatthemetaldepositsarecloselyrelatedtotheMesozoicintrusiverocksinthisarea.Therefore,theTongl…  相似文献   

20.
Post-glacial tholeiitic basalts from the western Reykjanes Peninsula range from picrite basalts (oldest) to olivine tholeiites to tholeiites (youngest). In this sequence there are large systematic variations in rare earth element (REE) abundances (La/Sm normalized to chondrites ranges from 0.33 in the picrite basalts to 1.25 in the fissure tholeiites) and corresponding variations in 143Nd/144Nd (0.51317 in the picrite basalts to 0.51299 in the fissure tholeiites). The large viaration in 143Nd/144Nd, more than one-third the total range observed in most ocean islands and mid-ocean ridge basalts (MORB), is accompanied by only a small variation in 87Sr/86Sr (0.7031–0.7032). These 87Sr/86Sr ratios are within the range of other Icelandic tholeiites, and distinct from those of MORB.We conclude that the mantle beneath the Reykjanes Peninsula is heterogeneous with respect to relative REE abundances and 143Nd/144Nd ratios. On a time-averaged basis all parts of this mantle show evidence of relative depletion in light REE. Though parts of this mantle have REE abundances and Nd isotope ratios similar to the mantle source of “normal” MORB, 87Sr/86Sr is distinctly higher. Unlike previous studies we find no evidence for chondritic relative REE abundances in the mantle beneath the Reykjanes Peninsula; in fact, the data require significant chemical heterogeneity in the hypothesized mantle plume beneath Iceland, as well as lateral mantle heterogeneity from the Reykjanes Ridge to the Reykjanes Peninsula. The compositional range of the Reykjanes Peninsula basalts is consistent with mixing of magmas produced by different degrees of melting in different parts of the heterogeneous mantle source beneath the Reykjanes Peninsula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号