首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2011年夏季胶州湾表层溶解有机物荧光特征的时空变化   总被引:2,自引:0,他引:2  
利用三维荧光光谱技术(EEMs)结合平行因子分析(PARAFAC)的方法,对2011年8月至9月胶州湾表层海水溶解有机物荧光特征的时间与空间变化进行了研究。PARAFAC模型共鉴别出四个荧光组分:类蛋白质荧光组分(C1),陆源类腐殖质荧光组分(C2,C4)和海源类腐殖质荧光组分(C3)。类蛋白组分在调查期间的荧光强度最强(0.14±0.06),其余三个组分荧光强度相近(0.07±0.02,0.09±0.02,0.05±0.02)。这四种组分在8月下旬多雨期和9月上旬受径流影响的时期荧光强度较高,在9月下旬雨季影响消退后荧光强度显著降低。研究表明各组分荧光强度总体上与叶绿素a浓度显著正相关,与盐度负相关,说明胶州湾夏季FDOM浓度主要受降雨引发的生物活动影响。  相似文献   

2.
利用三维荧光光谱(EEMs)-平行因子分析法(PARAFAC)研究了春季(2020年5月)和秋季(2020年10月)莱州湾海域荧光溶解有机物(FDOM)的来源及时空分布特征。莱州湾海域FDOM由2类共4个荧光组分组成:C1、C4为类蛋白质组分,分别为色氨酸和酪氨酸;C2、C3为类腐殖质组分。并对各组分的来源及分布特征分析:春季FDOM分布主要受到陆源输入的影响,其中表层C1、C2、C3也受微生物活动影响。秋季表层C1、C2、C3分布受到陆源输入和浮游植物生产共同影响,秋季表层C4主要受生物现场生产影响,秋季底层C1、C2、C3主要受陆源输入影响,C4受陆源输入和浮游植物生产共同影响。各荧光组分在表层的季节性差异主要是由于春季部分FDOM经陆源输入后受偏南风作用,在莱州湾西部及南部海域扩散。FDOM在底层的季节性差异主要由于受到沉积物再悬浮的影响。HIX高值分布表明莱州湾西部和南部FDOM受陆源输入影响显著,BIX高值分布表明莱州湾远海FDOM受生物活动影响程度较高。总体上,陆源输入影响莱州湾FDOM分布的主要因素。本文利用三维荧光光谱-平行因子分析法(EEMs-PARAFAC)技术结合多元统计方法,分析了莱州湾春秋季FDOM的来源以及分布差异,为其他海区FDOM研究提供补充。  相似文献   

3.
秋季胶州湾有色溶解有机物荧光特性研究及其来源分析   总被引:1,自引:0,他引:1  
利用三维荧光光谱(EEMs)-平行因子分析(PARAFAC)技术研究了秋季胶州湾有色溶解有机物(CDOM)的荧光成分组成、分布特征及来源。PARAFAC模型解析出胶州湾CDOM由2类5个荧光组分组成,即类腐殖质成分C1(355nm/430nm)、C2(320nm/390nm)、C3(380nm/465nm)、C4(420(330)nm/505nm)及类蛋白质成分C5(280/325nm)。类腐殖质成分C1、C2、C3和C4的平面分布模式基本一致,呈现由近岸海域向湾中心海域逐渐减小的趋势,而类蛋白质成分C5则是由湾东北部近岸海域向西南部海域呈逐渐减小的趋势。分析表明,秋季胶州湾CDOM类腐殖质成分C1、C2、C3和C4的主要来源为陆源输入,而类蛋白质成分C5主要受城市排污的影响。系统聚类分析表明,以团岛南端和红岛西侧连线为界,所有采样站位被分为两类,分界线西部区域站位CDOM各荧光成分相对含量分别为C1:31.8%~35.5%,C2:30.3%~33.7%,C3:17.1%~20.2%,C4:4.5%~5.2%,C5:9.6%~12.5%;分界线东部区域站位CDOM各荧光成分相对含量分别为C1:30.6%~34.6%,C2:28.8%~32.7%,C3:17.0%~19.1%,C4:3.3%~4.8%,C5:12.1%~18.2%。西部区域CDOM具有较高的C4含量和较低的C5含量,大沽河等河流的陆源输入特征明显,而东部区域CDOM则具有较高的C5含量和较低的C4含量,反映该区域受城市排污影响显著。另外,秋季胶州湾CDOM的HIX范围为1.8~3.2之间,较小的腐殖化因子值反映了秋季胶州湾CDOM的腐殖化程度高较低,在环境中存在时间较短。  相似文献   

4.
于2019年3月、7月和10月对长江口及邻近海域有色溶解有机物(CDOM)的分布及河口混合行为进行分析研究。通过对盐度、吸收光谱斜率S275~295、吸收系数aCDOM(355)以及叶绿素a的分析发现,在河口内低盐度区,7月淡水流量大,陆源输入量最大,aCDOM(355)值最高,3月CDOM来源主要受陆源输入和浮游植物生产活动的影响,aCDOM(355)值较10月高;在口外高盐度区,3月和7月的aCDOM(355)值相近,均低于10月,CDOM分布主要受浮游植物生产活动的影响。利用三维荧光光谱?平行因子分析方法共鉴定出4个荧光组分:类蛋白质组分C1(280/330 nm)、类腐殖质组分C2(300/350 nm)、类腐殖质组分C3(260/465 nm)和类腐殖质组分C4(320/410 nm)。在3月、7月及10月,4个荧光组分强度由长江口内到口外呈递减趋势,受陆源输入和浮游植物生产活动的影响,平均荧光强度的季节变化总体上来说,由大到小依次为7月、10月、3月。3个季节CDOM荧光组分均存在偏离理论稀释线的现象,说明CDOM的来源(陆源输入、沉积物再悬浮和现场生物活动)和去除(被颗粒物吸附、光降解和细菌降解)机制复杂多变,揭示了长江口区域CDOM在不同时空下的不保守混合行为。  相似文献   

5.
当前极端气候事件频发,引起了人们广泛的关注。然而,气候变化对中国典型河流溶解有机物(DOM)的影响尚且未得到充分的认识。2021年11月至2022年10月,每月于珠江下游广州段采集河水样品,并分析其中溶解有机碳(DOC)、发色溶解有机物(CDOM)和荧光溶解有机物(FDOM)的浓度和组成。采样期间, 2022年6月珠江流域遭遇百年一遇的洪水。结果显示,洪水大幅度降低了河水中的DOC和CDOM浓度,并提高了DOM的芳香化程度。尽管洪水对DOM浓度产生了明显的稀释效应,但通过分析FDOM组成,进一步发现FDOM中不同组分对洪水的响应存在较大差异。FDOM短激发波长(230~235nm)处的类蛋白质组分峰值在洪水期间出现高值;与此同时,长激发波长(280~285nm)的类蛋白质组分和激发波长在345nm处的类腐殖质组分峰值在洪水期间出现最低值。此外,与长江下游相比,珠江下游水体中往往具有较高的DOC和CDOM浓度、DOM芳香化程度以及CDOM分子量。研究将有助于进一步了解珠江等世界大河DOM浓度和组成的变化规律和控制机制,以及揭示极端洪水对大河DOM动态变化产生的影响。  相似文献   

6.
海洋荧光溶解有机物研究进展   总被引:15,自引:1,他引:15  
郭卫东  程远月  吴芳 《海洋通报》2007,26(1):98-106
海洋荧光溶解有机物(FDOM)是海洋有色溶解有机物中可产生荧光的组分,其理化性质对于海洋上层的水色遥感、光化学以及浮游植物的生产力和生态系统结构与功能等都有重要影响。总结了FDOM的3种荧光光谱分析技术及其特点,重点对其两种主要成分(类腐殖质和类蛋白质荧光物质)的荧光特性、分布变化以及来源、分布变化及其去除等进行了全面细致的综述,阐述了研究FDOM的海洋学意义,并对今后有待深入研究的重点问题作了展望。  相似文献   

7.
北极孔斯峡湾表层沉积物中溶解有机质的来源与转化历史   总被引:7,自引:0,他引:7  
在北极地区孔斯峡湾采集28个表层沉积物样品,测定了其中水溶性有机质(也称溶解有机质,DOM)的分子量分布、紫外/可见吸收光谱和三维荧光光谱特征,并利用平行因子分析(PARAFAC)模型对DOM的荧光组分和来源进行了解析。结果表明:孔斯峡湾表层沉积物中有色溶解有机质(CDOM)及其中的荧光溶解有机质(FDOM)含量均从内湾向外湾方向呈逐渐累积的趋势,但CDOM中的FDOM所占比例逐渐减小,与DOM趋于老龄化密切相关。沉积作用减弱以及长期的光化学降解和微生物降解作用对此起主要贡献,并导致腐殖质和小分子组分在沉积物DOM中所占的比例呈逐渐递增的趋势。沉积物DOM包含陆源类腐殖质、自生源类腐殖质和类蛋白等三个荧光组分,但是其组成比例空间差异很大。吸收光谱斜率比(SR)随自生源所占百分比增加而减小,随DOM腐殖质组分中陆源与自生源的比值增加而增加;腐殖化指数(HIX)随类腐殖质与类蛋白质比值和水深的增加而增加,生物源指数(BIX)随自生源比例增加而增加。峡湾沉积物DOM的组成和来源存在着高度的空间差异,在冰川湾区由水体颗粒有机质(POM)的近期转化和迁移而来,而在峡湾中央及口门附近以较老的腐殖质为优势,主要源于水体DOM长期迁移和转化。研究表明,FDOM/CDOM,SR,HIX和BIX等构成的CDOM光谱指纹信息可以作为揭露沉积物溶解有机质来源及迁移转化历史的工具,对探索海洋与冰川相互作用影响下的峡湾环境演变有着重要意义。  相似文献   

8.
通过测定有色溶解有机物(CDOM)的吸收光谱和荧光光谱研究了2015年3月和7月长江口盐度梯度下CDOM的分布、组成、来源及河口混合行为等。利用激发发射矩阵荧光光谱(EEMs)并结合平行因子分析(PARAFAC),研究了CDOM的荧光组分特征,共识别出两类4个荧光组分组成,即类腐殖质荧光组分C1(260,375/490 nm)、C2(365/440 nm)、C3(330/400 nm)及类蛋白质荧光组分C4(295/345 nm)。结果表明,3月和7月,4种荧光组分的分布模式与总荧光强度都基本一致:从口内到口外,先升高后降低,且4种组分都在河口呈现不保守混合行为,在最大浑浊带处存在添加过程,达到峰值,在口外有去除过程。3月腐殖化指数HIX范围在1.12~7.19,而7月HIX的范围在0.87~6.71;生物指数BIX在3月范围在0.76~1.11,7月为0.62~1.15,表明3月CDOM的腐殖化程度较7月高,而自生贡献比例较7月略低。3月吸收系数α(355)的平均值为0.55 m-1 ,7月的略高,为0.61 m-1,表明7月长江口CDOM的含量略高。光谱斜率比值SR的季节性变化不大,都是近岸低,远岸高,表明CDOM的平均分子质量从口内到口外在逐渐增加。  相似文献   

9.
渤海有色溶解有机物的三维荧光光谱特征   总被引:1,自引:0,他引:1  
本文采用三维荧光光谱(FEEMs)技术, 结合FEEMs特定光谱区荧光区域积分(FRI)法, 测定了2010年9月中旬渤海23个站位不同层次的有色溶解有机物(CDOM)样品, 以探讨渤海CDOM组分的水平和垂直分布特征以及控制因素。FEEMs的总累计积分和各荧光团的荧光区域积分比例可作为表征海域CDOM分布特征的一个良好指标, 且优于常规的单点荧光法。结果表明, 渤海CDOM中含有类腐殖质荧光团A、B、C, 类色氨酸荧光团M, 以及类酪氨酸荧光团N。从沿海至外海, CDOM总累计积分值不断减小。其中紫外区类腐殖质A的荧光区域积分比例无显著变化; 可见区陆源类腐殖质B的荧光区域积分比例也不断减小, 表明陆源输入为沿海区域CDOM的主要来源; 而可见区海源类腐殖质C、类蛋白质荧光团M、N的荧光区域积分比例和叶绿素浓度不断升高, 显示了生物活动的贡献。从层次来看, 沿海CDOM的总累计积分为: 表层>底层>中层; 而外海CDOM的总累计积分呈相反趋势。其中, 紫外区类腐殖质A的荧光区域积分比例在整个海域最小, 垂直分布无明显变化; 可见区陆源类腐殖质B的荧光区域积分比例与沿海CDOM总累计积分相一致; 可见区海源类腐殖质C、类蛋白质M和N的荧光区域积分比例与外海CDOM总累计积分相一致, 这反映了CDOM的垂直分布是由光化学反应、生物作用和沉积物再悬浮共同控制的特性。  相似文献   

10.
西太平洋冬季上层水体有色溶解有机物的分布和转化特征   总被引:3,自引:1,他引:2  
王泽华  邹立  陈洪涛  史洁  杨阳 《海洋学报》2018,40(10):180-189
为深入解析西太平洋溶解有机碳的生物地球化学过程,本研究于2015年12月至2016年1月,开展了西太平洋上层水体有色溶解有机物(CDOM)吸收光谱和荧光光谱特征研究。研究结果表明,西太平洋上层水体CDOM吸收系数a(320)变化范围为0.01~1.07 m-1,平均值为0.18 m-1;其较高值位于100~200 m水层,表层的海水相对含量较低,主要以有机物的光化学分解为主。采用PARAFAC分析CDOM三维荧光光谱特征,得到1种类腐殖质组分C2(252(310 nm)/405 nm)及2种类蛋白组分C1(224(276 nm)/335 nm)和C3(224(260 nm)/300 nm),其中类腐殖质荧光组分占总荧光强度的11%~22%,蛋白质荧光组分占总荧光强度的78%~89%,蛋白质荧光中类色氨酸和类络氨酸组分对荧光强度的贡献相当。洋流在大尺度上控制西太平洋CDOM的分布特征,两流交界处和环流形成区域的CDOM相对含量较高,荧光信号较强。西太上层水体CDOM相对含量和荧光信息,与温度、盐度、DO和营养盐等理化因素之间的相关分析结果表明,CDOM主要成分类蛋白质的产生主要受上层水体初级生产过程控制。  相似文献   

11.
通过测定有色溶解有机物(CDOM)的吸收光谱、荧光光谱、溶解有机碳(DOC)浓度,探究了2014年夏季长江口CDOM的来源及河口混合行为。结合吸收系数a(355)、光谱斜率S275-295、比紫外吸光度SUVA254与盐度的关系,结果表明南港水道受黄浦江输入影响显著,北港水道由长江径流控制呈保守性混合行为,二者CDOM的物质结构性质较为相似。DOC的浓度可通过a(275)与a(295)模拟估算:ln[DOC]=4.94–0.87ln[a(275)]+0.90ln[a(295)],a(275)8.0 m–1;ln[DOC]=4.77–6.79ln[a(275)]+8.05ln[a(295)],a(275)≥8.0 m–1。模拟结果表明,在长江口及邻近海域,CDOM对DOC具有示踪意义。利用三维荧光光谱-平行因子分析(EEMs-PARAFAC)技术,可得到夏季长江口FDOM含有3个类腐殖质组分(C2,C4和C5)和3个类蛋白质组分(C1,C3和C6)。类腐殖质组分具有相似的来源及地球化学行为,且与a(355)及盐度存在显著相关性;类蛋白质组分则与a(355)及盐度之间无显著相关性,揭示其与区域内微生物的活动有关。  相似文献   

12.
4 种经济海藻脂肪酸组成分析   总被引:2,自引:1,他引:1  
采用改进的Bligh-Dyer法提取脂溶性成分,气相色谱-质谱联用法(GC-MS)进行分离和鉴定,C19:0内标确定总脂及各组分含量,研究了鼠尾藻(Sargassum thunbergii)、浒苔(Enteromorpha prolifera)、龙须菜(Gracilaria lemaneiformis)和红毛菜(Bangia sp.)4种经济海藻的脂肪酸组成及含量。结果表明,4种海藻都检测出C14-C22脂肪酸,总脂含量在12~19 mg/g之间,不饱和脂肪酸为主要组成成分,含量均超过60%。不饱和脂肪酸中以多不饱和脂肪酸(PUFAs)为主,富含n-3和n-6系列PUFAs,n-6与n-3系列PUFAs之比均低于2。比较4种海藻脂肪酸组成特点表明,鼠尾藻以C16、C18和C20为主要组成成分,具褐藻类脂肪酸组成特征;浒苔以C16和C18为主要组成成分,具绿藻类脂肪酸组成特征;龙须菜和红毛菜以C16和C20类脂肪酸为主,具典型红藻类脂肪酸组成特征,同时二者又有不同之处,分别显示真红藻与原始红藻脂肪酸组成的特点。  相似文献   

13.
刘可  杨琳  杨桂朋  张婧 《海洋学报》2020,42(10):121-131
对2018年秋季西太平洋130°E断面上层水体有色溶解有机物(CDOM)的光学特性及光降解行为进行了研究。结果表明,西太平洋上层水体CDOM的吸收系数a(320)变化范围为0.025~0.64 m?1,平均值为(0.20±0.08) m?1;a(320)在表层相对较低,主要与表层CDOM的光漂白去除有关;在100~200 m水层较高,主要与次表层的生物活动有关。利用三维荧光光谱?平行因子分析技术,识别出两种荧光组分:类酪氨酸组分C1和海洋类腐殖质组分C2。C1主要源于棉兰老冷涡?上升流所带来的营养物质对浮游植物生产活动和微生物活动的促进作用;C2主要源于黑潮所带来的海洋类腐殖的输入。光化学降解实验发现,CDOM吸收值的损失主要发生在紫外波段;光照60 h后,类酪氨酸组分相较于海洋类腐殖质组分更易发生光降解;且光降解是西太平洋海域CDOM的重要去除途径。  相似文献   

14.
珠江口磨刀门溶解有机物CDOM 三维荧光光谱特征   总被引:1,自引:0,他引:1  
采用三维荧光对珠江口磨刀门夏秋季有色溶解有机物(CDOM)时空变化进行研究,分析其组成及荧光强度。结果表明, CDOM 三维荧光峰谱包括 UV 类腐殖质 A、陆源 Vis 类腐殖质 C 和海源 Vis类腐殖质M,以及类蛋白质T。在入海过程中,其组成未发生变化,但其荧光强度随盐度增加逐渐减小,反映了CDOM主要来源是陆源,并且主要受海水物理稀释控制,是一种典型的保守混合行为。在定点站位涨落潮周期中, CDOM的荧光强度不仅受到海水稀释的作用,表层水体CDOM受到紫外线的光降解作用,同时中层水体CDOM受到浮游植物的影响,反映了盐度、紫外线强度、生物活动对CDOM具有的共同影响。  相似文献   

15.
本研究利用吸收光谱和荧光激发-发射矩阵光谱-平行因子分析(EEMs-PARAFAC),研究了养马岛附近海域海水中有色溶解有机质(CDOM)的浓度、组成、来源和生物可利用性,并估算了浮游植物生长繁殖对CDOM及具有生物可利用性CDOM的贡献。结果表明,表、底层海水中CDOM浓度(以吸收系数a350计)平均值分别为1.62±0.42 m-1和1.30±0.47 m-1,光谱斜率(S275-295)平均值分别为0.022±0.003 nm-1和0.023±0.003 nm-1。利用PARAFAC模型识别出4种荧光组分,分别为陆源类腐殖酸C1、类色氨酸C2、类酪氨酸C3和微生物源类腐殖酸C4。荧光指数(FIX)、腐殖化指数(HIX)和生物指数(BIX)显示,CDOM受陆源输入和海洋自生源的综合影响。降解实验结果显示,表、底层海水中生物可利用性CDOM百分比(%△a350)平均值分别为(23.36%±17.94%)和(8.93%±20.30%)。C1、C2和C4组分的荧光强度在培养之后降低,而C3组分的荧光强度上升。各荧光组分生物可利用性依次递减的顺序为:%△C1(23.75%±8.96%)>%△C4(20.83%±11.71%)>%△C2(11.67%±38.87%)>%△C3(-29.61%±39.90%),显示培养之后CDOM的平均分子量和腐殖化程度降低。表层海水中a350、%△a350与Chl a之间存在显著线性相关关系,据此可以估算出浮游植物生长繁殖对CDOM的贡献为36.9%,对具有生物可利用性CDOM的贡献为85.0%。  相似文献   

16.
于2016年1—2月对黄渤海海域的有色溶解有机物(CDOM)进行了现场调查,通过分析CDOM的吸收和荧光特性,研究了CDOM在黄渤海的分布、荧光组分、来源。结果表明:CDOM吸收系数a(355)的水平变化范围为0.21~0.74m-1,呈现出近岸高、远岸低的分布趋势。光谱斜率比SR的水平分布总体呈现多源头、多中心的分布特征。a(355)在35°N断面总体呈现出近岸高、远岸低,表层低、底层高的分布。利用EEMs-PARAFAC对6种组分进行分析:C1(230/295)、C3(260/315)、C6(285(230)/335)为类蛋白质荧光组分,C2(295/485)、C4(305/380)、C5(345(270)/430)为类腐殖质荧光组分。荧光组分在渤海受陆源输入影响较大,水平分布上呈现出渤海的荧光平均值高于黄海的荧光平均值,且呈近岸高、远岸低的分布趋势。  相似文献   

17.
有色溶解有机物(CDOM)是海洋碳循环的重要组成部分,其来源、组成和特性是揭示复杂的河口过程的重要依据。本文选取北方河口地区有机碳的主要贡献者,芦苇和海洋微藻,研究其生产的CDOM的吸收光谱和荧光光谱特征。结果显示,芦苇和海洋微藻CDOM吸光度随波长缩短呈指数增长,Sg值与M值之间呈对数型正相关;采用PARAFAC方法解析CDOM荧光三维谱图(EEMs),共识别出3种荧光组分:类色氨酸、类酪氨酸和类腐殖质。芦苇和海洋微藻新溶出或分泌的类酪氨酸组分,其结构基本相同;细胞破碎裂解产生的类色氨酸组分,其结构存在一定差异;类腐殖质组分来源于芦苇和海洋微藻细胞分泌物质降解或细胞破碎裂解产物。  相似文献   

18.
刘广发  林均民  林枫 《海洋科学》2006,30(11):23-27
以羟基磷灰石柱层析法从小珊瑚藻(Corallinapilulifera)中提取出藻红蛋白,其纯度可达A565/A280大于3,得率为0.173g/kg。该藻红蛋白在498nm和565nm处有两处荧光激发峰,为双峰型。荧光发射光谱检测表明藻红蛋白在pH5.0~10.0溶液中具有较高的稳定性,其中以pH6.0和pH10.0的稳定性最高。该藻红蛋白对光照敏感,光照度800lx照射17h后荧光基本消失。对氧化剂(H2O2)敏感,在9℃以0.1%的H2O2处理24h,荧光基本消失。藻红蛋白不耐高温,80℃处理0.5h,导致蛋白液褪色,荧光消失。  相似文献   

19.
采用现场实测和室内培养两种方式测定了甲藻、赤潮异弯藻、叉角藻、海洋蓝绿藻等赤潮和新月菱形藻、叉鞭金藻、塔胞藻、扁藻和小球藻等非赤潮藻类光谱曲线.采用度量太阳激发的叶绿素荧光峰高度的归一化荧光高度法,建立了不同藻类归一化荧光高度与叶绿素浓度的关系.荧光高度计算方法是将红光波段的反射率最大值(Rmaxred)和R685分别归一化到560 nm处的R560和560 nm附近整个光谱曲线的最大值R560 max上或675 nm处的R675和675 nm附近的最小值R675mini上.结果表明,不同藻类的Rmaxred/R560max和Rmaxred/R675mini与叶绿素a的相关系数分别比R685/R560和R685/R675与叶绿素的相关系数高,但在海洋现场测量中由于近岸二类水体其他水色组分以及大气校正误差的影响,Rmaxred/R675mini和R685/R675更适合于实测的叶绿素浓度估算.采用三种统计回归方程建立了不同藻类归一化荧光高度与叶绿素浓度关系,除个别藻种外,大部分的相关系数在0.9以上,其中FLH=a+(Chla)b回归方程得到的相关系数优于其他两种方法,相关系数大于0.93,这表明藻类水体的荧光特性和叶绿素浓度之间的普遍关系是非线性的.  相似文献   

20.
为探究近海养殖水体溶解性有机质(dissolved organic matter,DOM)的荧光特征及环境指示意义,以山东省东营市凡纳滨对虾池塘为研究对象,利用三维荧光光谱-平行因子分析(EEMs-PARAFAC)技术对2020年9月14日至10月17日凡纳滨对虾池塘养殖水体中DOM的荧光特征进行了分析,以期揭示其来源及环境指示意义。结果表明,养殖池水体DOM有4种荧光组分,包括1种类蛋白质物质(C4)和3种类腐殖酸物质(C1、C2与C3),前者作为养殖池水体DOM特有组分,且其荧光强度高于对照池各组分。养殖池水体DOM总荧光强度、总有机碳和溶解有机碳含量于采样时期均明显高于对照池。综合3种荧光指数(FI、BIX、HIX),对照池和养殖池水体DOM以内源输入为主,自生源特征明显。对照池和养殖池水体DOM组分与营养盐(氮、磷营养盐为主)具有显著相关性,表明DOM组分的产生与利用和营养盐的消耗与生成过程相耦合。养殖池DOM组分C1和C4与chl a呈显著正相关性,表明浮游藻类是养殖水体DOM类蛋白质和类腐殖酸物质的重要来源。该研究揭示了养殖水体有机质高度积累,对养殖环境的富营养化带来潜在威胁,同时为进一步揭示养殖水体DOM的光化学性质提供了科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号