首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Benthic mucilaginous aggregates are frequently formed in various parts of the Mediterranean basin, as in the Tyrrhenian and Adriatic Seas. Notwithstanding their wide spatial distribution, the role played by these aggregates in the biogeochemical cycling of organic matter is still largely unknown.The characteristics of the benthic aggregates examined in the present study showed that they are different from other mucilaginous aggregates, such as the “pelagic” ones that can form in the same areas in the water column and subsequently sediment to the seafloor. The aggregates are usually formed of structures of the filamentous macroalgae Acinetospora crinita, Chrysonephos lewisii and Nematochrysopsis marina. The elemental composition of the aggregates showed a marine macrophyte origin on the basis of the bulk organic matter content of the aggregates. Carbohydrates and proteins account for 26.6 to 55.9% of the organic carbon in the mucilage, respectively. Monosaccharide composition of exopolysaccharides in the mucilage aggregates revealed a characteristic pattern, with galactose, xylose or mannose and fucose as the major components. The relatively high content of deoxysugars is another distinctive feature. The abundant sulphate and uronic groups present in the polysaccharides in addition to their macromolecular dimensions and elongation contribute to inter-chain aggregation. Electron microscopic observations suggest that the polysaccharide fraction is the main macromolecular component in the formation of the persistent gel network in the aggregates.  相似文献   

2.
Meteorological and oceanographic conditions in the Northern Adriatic Sea in a year notable for massive mucilage formation (2004) were compared with those in years where this phenomenon did not occur (2003, 2005 and 2006) to suggest possible links. The months preceding the mucilage event in 2004 were considered the ‘incubation period’ and were characterized by a strong freshet in May which increased the water column stability. Winter cooling and scarcity of freshwater inputs from the Po River triggered the dense water formation and intrusion in the northern basin. Weak southeasterly winds and an increase in surface seawater temperatures contributed to maintain and reinforce the water column stability, and at the same time an intense diatom spring bloom created the conditions for accumulation of organic matter. The interplay of climatological forcings and biological processes caused temporal variations of dissolved organic carbon (DOC) and particulate organic carbon (POC) in the basin, with POC playing an important role in the aggregation process, as suggested by its increase relative to DOC before massive mucilage formation. We therefore suggest that high POC/total particulate nitrogen ratios in the suspended particulate organic fraction, a steep increase of POC/Chlorphyll a, and the decreased DOC/POC ratios represent ‘early warning’ signals of the main processes that lead to mucilage events in the Northern Adriatic Sea.  相似文献   

3.
Massive mucilage events occur in the Northern Adriatic Sea presumably by cytoplasmic excretions from deteriorated diatoms. During three such events in the summer of 1991, 1997 and 1998 the presence of reduced sulfur species (RSS) was determined in samples of macroaggregate using electrochemical methods (in-phase alternating current (AC) and linear sweep voltammetry). The detected levels of sulfur, expressed as equivalent to sulfide concentrations, were about 200 nM. In the same mucilage samples, concentrations of organic matter were determined in the range from 60 to 600 mg/l of total organic carbon (TOC). The physico-chemical properties of organic matter in the macroaggregates correspond to those of polysaccharides of very high molecular mass. Scanning confocal laser microscopy (SCLM) and fluorescent molecular probes for sugars (the lectins concanvaline A (Con-A)) showed the transformation of polysaccharide polymer structure resulting in the formation of very stable filaments and layers after the treatment of mucilage samples with sodium sulfide. Commercial polysaccharides of bacterial and algal origin (xanthan, carrageenans types I and II, dextran-T-500) have been used to simulate macroaggregate formation under laboratory conditions after treatment with sodium sulfide. Raman spectroscopy indicated that for all model polysaccharides used, sulfide interaction occurred, as evidenced by visible change of the O–H stretching region in the vibration spectra of the water molecules.Our data suggest that the aggregated polysaccharides from the Adriatic Sea are: (1) structurally affected by addition of sulfide as was the case for most of the model polysaccharides, and (2) the stabilizing effect of sulfide on the aggregated polysaccharides is due to the formation of sulfur-organic compounds.  相似文献   

4.
Chrysophaeum taylorii Lewis & Bryan (Pelagophyceae) is a mucilage‐producing benthic microalga that has recently begun to spread in the Mediterranean Sea, where a range expansion is occurring. This paper presents the results of three field experiments that aimed to increase the knowledge on mucilage provision mechanisms for this benthic microalga and to evaluate the importance of mucilage in its range expansion. By means of two correlative field experiments (several years of data were considered to encompass the variability of mucilage cover) we found that, on the sea bottom, mucilage cover does not depend on epilithic cell density and that both its cover and settling are affected by water flow. We also tested the hypothesis that cells embedded in floating mucilage fall on the underlying substratum, where their abundance depends on water flow. To this aim, in the field we manipulated the presence of floating mucilaginous aggregates in cages with different levels of exposure to winds. The abundance of C. taylorii cells on the substratum under cages with mucilage was compared with that of two control treatments: cages without mucilage and mucilage in still water, in the field and lab, respectively. The results suggested that mucilage can represent an excellent strategy for the species to disperse, as C. taylorii cells fall from the floating mucilage and, if the water flow is unimportant, settle on hard substrata just underneath the cage. This study enriches the portfolio of knowledge of the dispersal strategies of microalgae and contributes to the understanding of the spread of invasive species.  相似文献   

5.
In this contribution we document an anomalous mucilage growth which occurred in June 2003 along the rocky cliffs of the Portofino Promontory (Ligurian Sea, NW Mediterranean Sea), and we describe its dynamics and its negative effects on many benthic taxa. The zooxanthellate scleractinian Cladocora caespitosa underwent ‘bleaching’ and about 40% of biomass of the erect algae was detached by mucilage ‘lianas’ created and strengthened by bottom currents. The 2003 event differed from any other previously occurred in the northern Tyrrhenian Sea, in that the mucilage aggregates were formed by the free‐living form of the Phaeophyceae Acinetospora crinita (Harvey) Kornmann, a not usually dominant species in mucilage aggregates from the north Tyrrhenian Sea. The damage suffered by the benthic organisms living in this area was curtailed by a severe storm, occurred in July, which removed the mucilage to deeper depths, preventing irreversible damages. Only slow growing, perennant organisms, such as corallinales or scleractinians, were seriously affected, but a survey carried out 1 year later, in June 2004, allowed to appreciate a complete recovery of those organisms. This anomalous mucilage event occurred in coincidence of the 2003 European heatwave, and the anomalous temperature increase of seawater has to be regarded as the major contributing event that led to the mucilage outbreak.  相似文献   

6.
Water–particle interactions, particle behaviour and short-time scale variability were assessed at a coastal station adjacent to the Emilia Romagna Region (Adriatic Sea) using dissolved and particulate 234Th analyses. The water column was sampled six times between March and September 1997. Measurements showed that 234Th is actively scavenged by particles but the dissolved fraction is always prevalent. Changes in hydrological conditions affect to some degree thorium activities and residence times. Dissolved thorium inventories slowly increased from May to July, then decreased in August, and increased again in September. In July, the formation of a sharp pycnocline associated with low productivity led to high dissolved and very low particulate 234Th activities due to inefficient scavenging. The presence of mucilaginous aggregates, observed in both August and September, may have played a role in scavenging of thorium. In September at 16 m depth, the highest 234Th particulate activity of the study period was measured, probably due to the presence of mucilage. However, the thorium deficit was scarce, due to the small sinking velocity of these aggregates. Both steady-state and non-steady state models were used to calculate residence times for the whole water column and its topmost part (10 m) obtaining strictly comparable results. Residence times in the whole water column are small, ranging from 15 to 45 and from 0.5 to 24 d for dissolved and particulate thorium, respectively.  相似文献   

7.
The release of ammonium from the photochemical degradation of dissolved organic matter (DOM) has been proposed by earlier studies as a potentially important remineralisation pathway for refractory organic nitrogen. In this study the photochemical production of ammonium from Baltic Sea DOM was assessed in the laboratory. Filtered samples from the Bothnian Bay, the Gulf of Finland and the Arkona Sea were exposed to UVA light at environmentally relevant levels, and the developments in ammonium concentrations, light absorption, fluorescence and molecular size distribution were followed. The exposures resulted in a decrease in DOM absorption and loss of the larger sized fraction of DOM. Analysis of the fluorescence properties of DOM using parallel factor analysis (PARAFAC) identified 6 independent components. Five components decreased in intensity as a result of the UVA exposures. One component was produced as a result of the exposures and represents labile photoproducts derived from terrestrial DOM. The characteristics of DOM in samples from the Bothnian Bay and Gulf of Finland were similar and dominated by terrestrially derived material. The DOM from the Arkona Sea was more autochthonous in character. Photoammonification differed depending on the composition of DOM. Calculated photoammonification rates in surface waters varied between 121 and 382 μmol NH4+ L− 1 d− 1. Estimated areal daily production rates ranged between 37 and 237 μmol NH4+ m− 2 d− 1, which are comparable to atmospheric deposition rates and suggest that photochemical remineralisation of organic nitrogen may be a significant source of bioavailable nitrogen to surface waters during summer months with high irradiance and low inorganic nitrogen concentrations.  相似文献   

8.
Suspended particulate matter samples were collected from the water column, the bottom nepheloid layer and the ‘ fluffy layer ’ from four stations along a coastal-basin transect in the Pomeranian Bight, western Baltic Sea. Sampling was performed nine times between October 1996 and December 1998 for various analyses, including electron probe x-ray micro analysis for detailed mineralogical investigations.Specific vertical patterns of clay mineral distributions were found. Suspended particulate matter (SPM) in the bottom nepheloid layer and the ‘ fluffy layer ’ overlying sediments was enriched in organic carbon and hydrated three layer clay minerals, whereas the non-aggregated SPM was dominated by quartz and biogenic opal. It appears that separation effects operate during aggregation of mineral particles and organic matter in repeated cycles of resuspension and settling. No clear seasonal variations in the composition of the SPM were found, in spite of high spatial and temporal variability of biological and physical variables. The results suggest that preferential incorporation, possibly aided by microbiological colonization, of hydrated three layer silicates into the organic flocs is a process that occurs under a wide range of conditions. Because aggregates sink faster than individual particles, aggregate formation led to a relative enrichment of illite and smectite in the near-bottom layers. Considering the affinity of organic contaminants and heavy metals to organic matter, the selective removal of aggregated organic matter and hydrated three-layer clay minerals from the water column and enhanced transport in the near-bottom fluffy layer may be a natural cleansing mechanism operating in the shallow waters of the bight.  相似文献   

9.
The DYFAMED sediment trap station in the Ligurian Sea (NW Mediterranean) has been active since 1986 and today comprises the longest time‐series of downward particle flux in the Mediterranean Sea. As such, it provides valuable information on the interannual variability of the particle flux, and also documents possible recent changes in the NW Mediterranean pelagic ecosystems. We report an unprecedented episode of downward flux of mucilaginous material at the DYFAMED station during summer 2002 in association with singular hydrometeorological conditions. The rain of mucilaginous aggregates clogged a PPS5 sediment trap at 260 m depth and was also clearly detected at 1080 m depth. The possible factors governing the development and sinking of the mucilaginous material are discussed. A very sharp increase of sea surface temperature during June and the presence of freshened waters in the surface the following month resulted in a stronger than usual stratification of the upper water column throughout the summer season. We suggest that the steepness of the vertical density gradient was responsible for the unusual accumulation of mucous aggregates. Additionally, a diatom bloom took place during the nutrient‐depleted conditions typical of summer, a factor which may have contributed to feed the pycnocline with transparent exopolymer substances. A storm occurring in the beginning of August relaxed the stratification and promoted the deposition of the mucilaginous aggregates accumulated in the upper water column during the preceding months. Important similarities of ambient conditions preceding the apparition of mucilaginous material in our open‐sea site and those reported in the Adriatic Sea during major mucilage events, suggest that general climatic conditions, rather than local factors, drive the occurrence of major accumulations of mucilaginous material in the water column at both sub‐basins of the Mediterranean Sea. In this regard, the strength of the air temperature increase during the onset of the stratified season is proposed as a major controlling factor.  相似文献   

10.
Particulate biogenic barium (bio-Ba) fluxes obtained from three instrumented arrays moored in the Alboran Sea, the westernmost basin in the Mediterranean Sea, are presented in this study. The mooring lines were deployed over almost 1 year, from July 1997 to May 1998, and were equipped with sediment traps at 500–700 m depth, 1000–1200 m depth and 30 m above the seafloor (1000–2200 m). The results obtained support the growing body of evidence that the relationship between particulate bio-Ba and Corg throughout the water column in margin systems is clearly different from this relation in the open ocean. In the Alboran Sea, the annual averaged bio-Ba fluxes range from 0.39 to 1.07 μmol m−2 day−1, with mean concentrations of 1.31–1.69 μmol g−1 and bio-Ba/Corg ratios lower than in the open ocean. The low bio-Ba values obtained also indicate that calculating bio-Ba is extremely sensitive to the detrital Ba/Al ratio of each sample. The lithogenic Ba fraction in the Alboran Sea continental margin area contributes between 24% and 85% of the total Ba. Increased bio-Ba export efficiency was observed after periods of high primary productivity and suggests that the processes limiting the bio-Ba formation in the study area relate to settling dynamics of organic matter aggregates. Furthermore, the ballasting effect of the abundant lithogenic and carbonate particles may limit decomposition of organic matter aggregates and enhance the transfer of particles rich in Corg and relatively poor in bio-Ba to the deep seafloor. Lateral input of freshly sedimented biogenic material, including particulate bio-Ba, has been observed on the lower continental slope in the western Alboran Sea. These observations emphasize that the use of the bio-Ba as a proxy of export productivity from the surface ocean must be used cautiously in highly dynamic environments such as those in the Alboran Sea.  相似文献   

11.
Studies on aggregate formation and size distribution in relation to bottom water composition and flow regime were carried out in November 1994 at two transects in the inner and outer Mecklenburg Bight (Baltic Sea). The bottom water sampler ‘BIOPROBE' (BWS) was used to collect 10-dm3 water samples at 5, 10, 20 and 40 cm above the seabed. The outer transect samples tended to be more influenced by the open western Baltic Sea, whereas the inner transect samples were more affected by the coastal hydrography. Aggregate size distribution was investigated using a newly developed particle camera allowing identification of particles down to 150 μm size. Increasing concentrations of total particulate matter (TPM), particulate organic carbon (POC) and chlorophyll pigment equivalents (CPE) towards the seafloor together with a low proportion of POC/TPM (<5%) implied that the material was of resuspended origin. Aggregate size in both transects was positively correlated with TPM, transparent exopolymer particles (TEP) and bacterial cell abundance. Higher particle concentrations and aggregate numbers in the outer transect indicated a higher resuspension frequency, or lateral advection processes. The higher concentration of aggregates at the outer transect may reflect the larger amount of near-bottom transported material.  相似文献   

12.
Over 50 seawater samples from two different sites—Barcelona (Spain) and Banyuls-sur-Mer (France)—were analyzed in order to study the extent and postulate the processes driving the enrichment of hydrophobic organic pollutants in the sea surface microlayer (SML). A number of individual polychlorinated biphenyl (PCB) congeners (41) were measured to study their partitioning between the particulate (fraction > 0.7 μm) and the dissolved + colloidal phases (fraction < 0.7 μm), with the latter being differentiated into estimated dissolved and colloidal phases. In addition, several organochlorine pesticides were also measured, namely, HCB, α-HCH, γ-HCH, 4,4′-DDE, 4,4′-DDD and 4,4′-DDT. The presence of PCB congener profiles found in the SML suggests a dynamic coupling with the atmosphere in Banyuls sampling site, whereas offshore Barcelona the presence of highly chlorinated congeners was due to persistent sediment resuspension. The average PCB concentration in the SML dissolved + colloidal phase were higher in Banyuls (7.8 ng L 1) than in Barcelona (3.6 ng L 1) samples, but in the particulate phase concentrations were higher in Barcelona (3.2 ng L 1) to that of Banyuls (1.4 ng L 1). However, PCB concentrations in the SML generally also showed large variability. Enrichment factors of PCBs and other organochlorine compounds in the SML with respect to the underlying water column ranged from 0.2 to 7.4. This may be explained for both the dissolved + colloidal and particulate phases by the enrichment in the SML of organic carbon (OC) as discerned from particle–water and colloid–water partitioning.  相似文献   

13.
Chiara  Welker Paola  Nichetto 《Marine Ecology》1996,17(1-3):473-489
Abstract. An extended reappearance of mumus aggregates in the Northern Adriatic Sea in 1991 gave rise to the hypothesis of a possible influence of the mucus, settled on the bottom, on benthic flora and fauna.
This work investigates the variations in the microphytobenthic community in three stations of the Gulf of Trieste (AA1, AA2, AA3) during 1991, when mucous aggregates were present, and during the two following years, when no such aggregates were observed.
Water samples were collected by N iskin bottle in the bottom layer for nutrient analysis, and sediment samples were collected by divers. The diatom species and cell densities were determined under an inverted microscope. All the data were processed with the aim to evaluate community composition and possible relations with the presence of mucous aggregates in 1991.
The results showed a general decrease of benthic diatoms from 1991 to 1993, both in quality and quantity, for all the investigated sites. Statistical analyses on microphytobenthos, hydrological parameters, and nutrient concentrations indicated differences among the considered years. The microphytobenthic community in summer 1991 appeared to be quite different from those of the other years. The density of benthic diatoms was apparently not correlated with nutrient availability in the bottom layer, but was rather influenced by changes in temperature.
The presence of a dense microphytobenthic community in 1991 might be explained by a combination of adequate conditions related to the presence of mucous aggregates, including a more undisturbed substratum caused by the interruption of dredging, decreased grazing pressure due to a declined filtering capacity of epifauna, and nutrient-rich sediment for extra nutrient disposal remineralized at the mucus-sediment interface. The mucilage aggregates therefore apparently stimulated the microphytobenthic community, in contrast to the effects on the benthic macrofauna, which were perturbed by the mucus.  相似文献   

14.
Recent electrochemical measurements have shown that iron (Fe) speciation in seawater is dominated by complexation with strong organic ligands throughout the water column and have provided important thermodynamic information about these compounds. Independent work has shown that iron exists in both soluble and colloidal fractions in the Atlantic Ocean. Here we have combined these approaches in samples collected from a variety of regimes within the Atlantic Ocean. We measured the partitioning of Fe between soluble (< 0.02 μm) and colloidal (0.02 to 0.4 μm) size classes and characterized the concentrations and conditional stability constants of Fe ligands within these size classes. Results suggest that equilibrium partitioning of Fe between soluble and colloidal ligands is partially responsible for the distribution of Fe between soluble and colloidal size classes. However, a significant fraction of the colloidal Fe was inert to ligand exchange as soluble Fe concentrations were generally lower than values predicted by a simple equilibrium partitioning model.In surface waters, strong ligands with conditional stability constants of 1013 relative to total inorganic Fe appeared to dominate speciation in both the soluble and colloidal fractions. In deep waters these ligands were absent, and instead we found ligands with stability constants 12–15 fold smaller that were predominantly in the soluble pool. Nevertheless, significant levels of colloidal Fe were found in these samples, which we inferred must be inert to coordination exchange.  相似文献   

15.
Historical data of total dissolved inorganic carbon (CT), together with nitrate and phosphate, have been used to model the evolution of these constituents over the year in the Atlantic water of the Norwegian Sea. Changes in nutrient concentration in the upper layer of the ocean are largely related to biological activity, but vertical mixing with the underlying water will also have an impact. A mixing factor is estimated and used to compute the entrainment of these constituents into the surface water from below. After taking the mixing contribution into account, the resulting nutrient concentration changes are attributed to biological production or decay. The results of the model show that the change in CT by vertical mixing and by biological activity based on nutrient equivalents needs another sink to balance the carbon budget. It cannot be the atmosphere as the surface water is undersaturated with respect to carbon dioxide and is, thus, a source of CT in this region. Inasmuch as the peak deficit of carbon is more than a month later than for the nutrients, the most plausible explanation is that other nitrogen and phosphate sources than the inorganic salts are used together with dissolved inorganic carbon during this period. As nitrate and phosphate show a similar trend, it is unlikely that the explanation is the use of ammonia or nitrogen fixation but rather dissolved organic nitrogen and phosphate, while dissolved organic carbon is accumulating in the water.  相似文献   

16.
The isotopic composition (δ13C and δ15N) and organic carbon (OC) and total nitrogen (TN, organic plus inorganic) content of 37 carbonate-free surficial sediments of the subtropical Pearl River estuary and the adjacent shelf of South China Sea (SCS) was determined. The δ13C values indicate that the sediment organic material is a mixture from two sources, terrestrial and marine. Several of the sediments have extremely low (< 4) OC / TN ratios, which could be due to low OC contents and/or to a significant fraction of the TN present as inorganic nitrogen adsorbed on clays. In general, the spatial patterns of OC, TN, δ13C and δ15N are similar. Values are low at the river mouth and on the western coast, suggesting proportionally greater accumulation of terrestrial particulate organic matter relative to marine phytodetritus, which is limited by low productivity in the turbid plume of the Pearl River. Algal-derived organic carbon (al-OC) content is estimated to be low (≤ 0.06%) at the river mouth and higher (up to 0.57%) on the adjacent inner shelf based on a mixing model of end members.  相似文献   

17.
Neutral aldoses as source indicators for marine snow   总被引:2,自引:0,他引:2  
The chemical characteristics of aggregating material in the marine environment are largely unknown. We investigated neutral aldose (NA) abundance and composition in aggregation of marine snow and other organic matter (OM) size fractions in the field. Four sample sets were fractionated using membrane filtration and ultrafiltration into the following size fractions: particulate material, high-molecular-weight (HMW) material, and low-molecular-weight (LMW) material. We also collected three sample sets of marine-snow aggregates. Each sample set contained small, medium, and large aggregate size fractions and each size fraction consisted of 25–50 aggregates. For 7 marine-snow samples and for each water-sample size fraction, we determined monomeric and polymeric NA concentration, NA yield (amount of NA-C normalized to organic carbon), and composition; total organic carbon (TOC) concentration; transparent exopolymer particles (TEP) concentration, and TEP propensity (TEP concentration after inducing TEP formation in filtered samples). This is the first study to include compound-specific NA determinations on these four marine OM size fractions.The mass balances of organic carbon and NA indicated that there were no serious contamination or loss problems. Concentrations, yields, and NA mol fractions in water samples were similar to results from other studies. Glucose and galactose had the highest relative abundance in all size fractions. The NA yield increased with increasing molecular weight or particle size for all fractions except marine snow. The NA yield increased in the order: LMW< marine snow< HMW< particles. Marine snow had a higher average NA yield than the LMW fraction, but lower than particle and HMW-fractions. This indicates that OM in marine snow could have been diagenetically derived from particulate and HMW-fractions, that is, marine snow may include material from the particulate and the colloidal phase.TEP concentration or TEP propensity was positively correlated with concentrations of all individual NAs as well as the sum NA concentrations, indicating that TEP contains neutral sugars in addition to the acidic polysaccharides stained in the determination of TEP concentrations.Despite the relatively low NA yield in marine snow, marine snow was enriched in NA when compared with seawater, with enrichment factors of 34–225 (average 125). By combining data from this study with data from other studies, we estimate that < 10% of carbohydrates in marine snow comprise NAs.There was no clear correlation between marine-snow aggregate size and NA yield, that is, there appears to be no general age difference between small and large marine-snow aggregates. NA composition was similar among different marine-snow size fracions collected during the same day, indicating that aggregation/disaggregation reactions resulted in homogenizing NA composition in marine-snow aggregates of all sizes. The NA composition of marine snow was different from that of other OM size fractions, indicating either that bacterial degradation has modified the composition of marine snow to a larger extent than other OM size fractions or that marine snow is formed through the aggregation of selected subcomponents of OM.  相似文献   

18.
19.
The physico-chemical speciation of organic carbon and selected metals was measured during a coastal bloom in Ekhagen Bay, Baltic Sea, using ultrafiltration.One important objective with the study was to see if any depletion of trace metals could be measured in the directly bioavailable fraction (<1000 Da, the soluble low molecular weight fraction, LMW) during a plankton bloom. Filters with five different cut-offs were used (1 kD (1000 Da), 5 kD, 10 kD, 100 kD and 0.22 μm) in order to delineate the size distribution of colloidal organic carbon (COC) and trace metals.During the bloom in May, LMW Al, Co, Cu, Mn and Ni concentrations decreased although the colloidal and particulate concentrations were relatively high. Data show that desorption of colloidal and particulate bound trace metals to the LMW fraction was slower than the process depleting the LMW fraction.Estimates of the maximum active uptake of Cu, Ni and Mn by the phytoplankton, and the loss of non-bioactive Al from the LMW fraction, indicate that processes other than active uptake by phytoplankton must contribute to the observed depletion of trace metals in the LMW fraction. Hence, in order to estimate the bioavailable pool of trace metals for plankton during bloom conditions, these other processes must be understood and quantified.Transparent Exopolymeric Particles (TEP, reflecting sugar-rich phytoplankton exudates) increased around eight times during the plankton bloom. We hypothesize that the formation of TEP is a process that might be important for the transfer of trace metals from the LMW to the particulate fraction during the phytoplankton bloom, but the significance of TEP for this depletion in Baltic Sea surface water remains to be shown.  相似文献   

20.
Production of chromophoric dissolved organic matter by Sargasso Sea microbes   总被引:13,自引:0,他引:13  
Time series of chromophoric dissolved organic matter (CDOM) light absorption coefficients indicate a local origin for a large fraction of the CDOM in the upper water column of the Sargasso Sea. In the present study, we demonstrate that CDOM is produced in bacterial culture experiments using Sargasso Sea water and naturally occurring microbial assemblages. Seawater cultures were prepared and grown at in situ temperatures in the dark for periods of weeks. Selected cultures were treated with amendments including inorganic nutrients, glucose, phytoplankton exudates, and zooplankton excretia. In all experiments, when bacterial biomass increased, CDOM increased during the first week of the experiment, followed by a decrease over a longer period of time. Cultures amended with both glucose and inorganic nitrogen and phosphorus produced more CDOM than controls or cultures amended with glucose or inorganic nutrients alone. However, when complex DOM substrates (derived from phytoplankton or zooplankton cultures) were added to seawater cultures, there was a net accumulation of CDOM over the course of the experiments. These data suggest that, in addition to microbial growth, the quality of the substrate plays an important role in net CDOM production. ‘New’ CDOM produced in culture was spectroscopically similar to CDOM appearing below the surface during summer stratification. The results of the present study support a new paradigm for CDOM in the open ocean, which allows for local origin and significant dynamics. Appreciation of CDOM dynamics will, in turn, add to our understanding of microbial productivity, photochemical rate processes, and ultraviolet radiation availability in the global ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号