首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrothermal reversal experiments have been performed on the upper pressure stability of paragonite in the temperature range 550–740 ° C. The reaction $$\begin{gathered} {\text{NaAl}}_{\text{3}} {\text{Si}}_{\text{3}} {\text{O}}_{{\text{1 0}}} ({\text{OH)}}_{\text{2}} \hfill \\ {\text{ paragonite}} \hfill \\ {\text{ = NaAlSi}}_{\text{2}} {\text{O}}_{\text{6}} + {\text{Al}}_{\text{2}} {\text{SiO}}_{\text{5}} + {\text{H}}_{\text{2}} {\text{O}} \hfill \\ {\text{ jadeite kyanite vapour}} \hfill \\ \end{gathered}$$ has been bracketed at 550 ° C, 600 ° C, 650 ° C, and 700 ° C, at pressures 24–26 kb, 24–25.5 kb, 24–25 kb, and 23–24.5 kb respectively. The reaction has a shallow negative slope (? 10 bar °C?1) and is of geobarometric significance to the stability of the eclogite assemblage, omphacite+kyanite. The experimental brackets are thermodynamically consistent with the lower pressure reversals of Chatterjee (1970, 1972), and a set of thermodynamic data is presented which satisfies all the reversal brackets for six reactions in the system Na2O-Al2O3-SiO2-H2O. The Modified Redlich Kwong equation for H2O (Holloway, 1977) predicts fugacities which are too high to satisfy the reversals of this study. The P-T stabilities of important eclogite and blueschist assemblages involving omphacite, kyanite, lawsonite, Jadeite, albite, chloritoid, and almandine with paragonite have been calculated using thermodynamic data derived from this study.  相似文献   

2.
The eclogite on Hareidland, western Norway, is among the largest eclogite bodies yet described. It occurs as a sheet-like body folded together with the surrounding metasedimentary gneisses of the basal gneiss complex of western Norway. The maximum surface extension of the body is about 6 km with the width varying between 0.2 and 1.5 km. Relations between bulk chemical variation and mineralogical variation suggest that the mafic rock now found as eclogite probably crystallized as a gabbroic rock. Field and mineralogical evidence suggests simultaneous later metamorphism of the gabbro and the surrounding gneisses at a temperature and load pressure near 625±30°C and 14 kb. The temperature estimate is based on a “thermometer” which uses the distribution coefficient, \({\text{K}}_{{\text{ga}} - {\text{cpx}}}^{{\text{Fe}}^{{\text{2 + }}} - {\text{Mg}}}\) . Whole rock Rb-Sr dating indicates about 1700 m.y. as the age of the metamorphism of the gneisses and therefore also the age of the eclogite. The Sr87/Sr86-ratios of a few biotite and amphibole-rich samples suggest a later partial Rb-Sr homogenization (Caledonian?) of the gneisses on Hareidland.  相似文献   

3.
We investigated rutile needles with a clear shape preferred orientation in garnet from (ultra) high-pressure metapelites from the Kimi Complex of the Greek Rhodope by electron microprobe, electron backscatter diffraction and TEM techniques. A definite though complex crystallographic orientation relationship between the garnet host and rutile was identified in that Rt[001] is either parallel to Grt<111> or describes cones with opening angle 27.6° around Grt<111>. Each Rt[001] small circle representing a cone on the pole figure displays six maxima in the density plots. This evidence together with microchemical observations in TEM, when compared to various possible mechanisms of formation, corroborates a precipitate origin. A review of exchange vectors for Ti substitution in garnet indicates that rutile formation from garnet cannot occur in a closed system. It requires that components are exchanged between the garnet interior and the rock matrix by solid-state diffusion, a process we refer to as “open-system precipitation” (OSP). The kinetically most feasible reaction of this type will dominate the overall process. The perhaps most efficient reaction involves internal oxidation of Fe2+ to Fe3+ and transfer from the dodecahedral to the octahedral site just vacated by $ {\text{Ti}}^{ 4+ }: 6\,{\text{M}}^{ 2+ }_{ 3} {\text{TiAl}}\left[ {{\text{AlSi}}_{ 2} } \right]{\text{O}}_{ 1 2} + 6\,{\text{M}}^{ 2+ }_{ 2, 5} {\text{TiAlSi}}_{ 3} {\text{O}}_{ 1 2} = 10\,{\text{M}}^{ 2+ }_{ 3.0} {\text{Al}}_{ 1. 8} {\text{Fe}}_{0. 2} {\text{Si}}_{ 3} {\text{O}}_{ 1 2} + {\text{M}}^{2+} + 2 {\text{e}}^{-} + 1 2\,{\text{TiO}}_{ 2} . $ OSP is likely to occur at conditions where the transition of natural systems to open-system behaviour becomes apparent, as in the granulite and high-temperature eclogite facies.  相似文献   

4.
Elastic constants of single crystal MgO have been measured by the rectangular parallelepiped resonance (RPR) method at temperatures between 80 and 1,300 K. Elastic constants C ij (Mbar=103 kbar) and their temperature coefficients (kbar/K) are: $$\begin{gathered} {\text{ }}C_{{\text{11}}} {\text{ }}C_{{\text{12}}} {\text{ }}C_{{\text{44}}} {\text{ }}K_s {\text{ }}C_s \hfill \\ C_{ij} {\text{ 300 K 2}}{\text{.966 0}}{\text{.959 1}}{\text{.562 1}}{\text{.628 1}}{\text{.004}} \hfill \\ \partial C_{ij} {\text{/}}\partial T{\text{100 K }} - {\text{0}}{\text{.259 0}}{\text{.013 }} - {\text{0}}{\text{.072 }} - {\text{0}}{\text{.078 }} - {\text{0}}{\text{.136}} \hfill \\ {\text{ 300K }} - {\text{0}}{\text{.596 0}}{\text{.068 }} - {\text{0}}{\text{.122 }} - {\text{0}}{\text{.153 }} - {\text{0}}{\text{.332}} \hfill \\ {\text{ 800 K }} - {\text{0}}{\text{.619 0}}{\text{.009 }} - {\text{0}}{\text{.152 }} - {\text{0}}{\text{.200 }} - {\text{0}}{\text{.314}} \hfill \\ {\text{ 1,300 K }} - {\text{0}}{\text{.598 0}}{\text{.036 }} - {\text{0}}{\text{.130 }} - {\text{0}}{\text{.223 }} - {\text{0}}{\text{.218}} \hfill \\ \end{gathered} $$ By combining the present results with the previous data on the thermal expansivity and specific heat, the thermodynamic properties of magnesium oxide are presented and discussed. The elastic parameters of MgO at very high temperatures in the earth's lower mantle are also clarified.  相似文献   

5.
Mössbauer and polarized optical absorption spectra of the kyanite-related mineral yoderite were recorded. Mössbauer spectra of the purple (PY) and green yoderite (GY) from Mautia Hill, Tanzania, show that the bulk of the iron is Fe3+ in both varieties, with Fe2+/(Fe2++Fe3+) ratios near 0.05. Combining this result with new microprobe data for PY and with literature data for GY gives the crystallochemical formulae: $$\begin{gathered} ({\text{Mg}}_{{\text{1}}{\text{.95}}} {\text{Fe}}_{{\text{0}}{\text{.02}}}^{{\text{2 + }}} {\text{Mn}}_{{\text{0}}{\text{.01}}}^{{\text{2 + }}} {\text{Fe}}_{{\text{0}}{\text{.34}}}^{{\text{3 + }}} {\text{Mn}}_{{\text{0}}{\text{.07}}}^{{\text{3 + }}} {\text{Ti}}_{{\text{0}}{\text{.01}}} {\text{Al}}_{{\text{3}}{\text{.57}}} )_{5.97}^{[5,6]} \hfill \\ {\text{Al}}_{{\text{2}}{\text{.00}}}^{{\text{[5]}}} [({\text{Si}}_{{\text{3}}{\text{.98}}} {\text{P}}_{{\text{0}}{\text{.03}}} ){\text{O}}_{{\text{18}}{\text{.02}}} ({\text{OH)}}_{{\text{1}}{\text{.98}}} ] \hfill \\ \end{gathered}$$ and PY and $$\begin{gathered} ({\text{Mg}}_{{\text{1}}{\text{.98}}} {\text{Fe}}_{{\text{0}}{\text{.02}}}^{{\text{2 + }}} {\text{Mn}}_{{\text{< 0}}{\text{.001}}}^{{\text{2 + }}} {\text{Fe}}_{{\text{0}}{\text{.45}}}^{{\text{3 + }}} {\text{Ti}}_{{\text{0}}{\text{.01}}} {\text{Al}}_{{\text{3}}{\text{.56}}} )_{6.02}^{[5,6]} \hfill \\ {\text{Al}}_{{\text{2}}{\text{.00}}}^{{\text{[5]}}} [({\text{Si}}_{{\text{3}}{\text{.91}}} {\text{O}}_{{\text{17}}{\text{.73}}} {\text{(OH)}}_{{\text{2}}{\text{.27}}} ] \hfill \\ \end{gathered}$$ for GY. The Mössbauer spectra at room temperature contain one main doublet with isomer shifts and quadrupole splittings of 0.36 (PY), 0.38 (GY) and 1.00 (PY), 0.92 (GY) mm s?1, respectively. These values correspond to Fe3+ in six or five-fold coordination. The doublet components have anomalously large half widths indicating either accomodation of Fe3+ in more than one position (e.g., octahedraA1 and five coordinatedA2) or the yet unresolved superstructure. Besides strong absorption in the ultraviolet (UV) starting from about 25,000 cm?1, the polarized optical absorption spectra are dominated by strong bands around 16,500 and 21,000 cm?1 (PY) and a medium strong band at around 13,800 cm?1 (GY). Position and polarization of these bands, in combination with the UV absorption, explain the colour and pleochroism of the two varieties. The bands in question are assigned to homonuclear metal-to-metal charge transfer transitions: Mn2+(A1) Mn3+(A1′) ? Mn3+(A1) Mn2+(A1′) and Mn2+(A1) Mn3+(A2 ? Mn3+(A1) Mn2+(A2) in PY and Fe2+(A1) Fe3+(A1′) ? Fe3+(A1) Fe2+(A1′) in GY. The evidence for homonuclear Mn2+ Mn3+ charge transfer (CTF) is not quite clear and needs further study. Heteronuclear FeTi CTF does not contribute to the spectra. In PY, additional weak bands were resolved at energies around 17,700, 18,700, 21,000, and 21,900 cm?1 and assigned to Mn3+ in two positions. Weak bands around 10,000 cm?1 in both varieties are assigned to Fe2+ spin-alloweddd-transitions. Very weak and sharp bands, around 15,400, 16,400, 21,300, 22,100, 23,800, and 25,000 cm?1 are identified in GY and assigned to Fe3+ spin-forbiddendd-transitions.  相似文献   

6.
The system Fe-Si-O: Oxygen buffer calibrations to 1,500K   总被引:1,自引:0,他引:1  
The five solid-phase oxygen buffers of the system Fe-Si-O, iron-wuestite (IW), wuestite-magnetite (WM), magnetite-hematite (MH), quartz-iron-fayalite (QIF) and fayalite-magnetite-quartz (FMQ) have been recalibrated at 1 atm pressure and temperatures from 800°–1,300° C, using a thermogravimetric gas mixing furnace. The oxygen fugacity, \(f_{{\text{O}}_{\text{2}} }\) was measured with a CaO-doped ZrO2 electrode. Measurements were made also for wuestite solid solutions in order to determine the redox behavior of wuestites with O/Fe ratios varying from 1.05 to 1.17. For FMQ, additional determinations were carried out at 1 kb over a temperature range of 600° to 800° C, using a modified Shaw membrane. Results agree reasonably well with published data and extrapolations. The reaction parameters K, ΔG r o , ΔH r o , and ΔS r o were calculated from the following log \(f_{{\text{O}}_{\text{2}} }\) /T relations (T in K): $$\begin{gathered} {\text{IW }}\log f_{{\text{O}}_{\text{2}} } = - 26,834.7/T + 6.471\left( { \pm 0.058} \right) \hfill \\ {\text{ }}\left( {{\text{800}} - 1,260{\text{ C}}} \right), \hfill \\ {\text{WM }}\log f_{{\text{O}}_{\text{2}} } = - 36,951.3/T + 16.092\left( { \pm 0.045} \right) \hfill \\ {\text{ }}\left( {{\text{1,000}} - 1,300{\text{ C}}} \right), \hfill \\ {\text{MH }}\log f_{{\text{O}}_{\text{2}} } = - 23,847.6/T + 13.480\left( { \pm 0.055} \right) \hfill \\ {\text{ }}\left( {{\text{1,040}} - 1,270{\text{ C}}} \right), \hfill \\ {\text{QIF }}\log f_{{\text{O}}_{\text{2}} } = - 27,517.5/T + 6.396\left( { \pm 0.049} \right) \hfill \\ {\text{ }}\left( {{\text{960}} - 1,140{\text{ C}}} \right), \hfill \\ {\text{FMQ }}\log f_{{\text{O}}_{\text{2}} } = - 24,441.9/T + 8.290\left( { \pm 0.167} \right) \hfill \\ {\text{ }}\left( {{\text{600}} - 1,140{\text{ C}}} \right). \hfill \\ \end{gathered}$$ These experimentally determined reaction parameters were combined with published 298 K data to determine the parameters Gf, Hf, and Sf for the phases wuestite, magnetite, hematite, and fayalite from 298 K to the temperatures of the experiments. The T? \(f_{{\text{O}}_{\text{2}} }\) data for wuestite solid solutions were used to obtain activities, excess free energies and Margules mixing parameters. The new data provide a more reliable, consistent and complete reference set for the interpretation of redox reactions at elevated temperatures in experiments and field settings encompassing the crust, mantle and core as well as extraterrestrial environments.  相似文献   

7.
Ephesite, Na(LiAl2) [Al2Si2O10] (OH)2, has been synthesized for the first time by hydrothermal treatment of a gel of requisite composition at 300≦T(° C)≦700 and \(P_{H_2 O}\) upto 35 kbar. At \(P_{H_2 O}\) between 7 and 35 kbar and above 500° C, only the 2M1 polytype is obtained. At lower temperatures and pressures, the 1M polytype crystallizes first, which then inverts to the 2M1 polytype with increasing run duration. The X-ray diffraction patterns of the 1M and 2M1 poly types can be indexed unambiguously on the basis of the space groups C2 and Cc, respectively. At its upper thermal stability limit, 2M1 ephesite decomposes according to the reaction (1) $$\begin{gathered} {\text{Na(LiAl}}_{\text{2}} {\text{) [Al}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{{\text{10}}} {\text{] (OH)}}_{\text{2}} \hfill \\ {\text{ephesite}} \hfill \\ {\text{ = Na[AlSiO}}_{\text{4}} {\text{] + LiAl[SiO}}_{\text{4}} {\text{] + }}\alpha {\text{ - Al}}_{\text{2}} {\text{O}}_{\text{3}} {\text{ + H}}_{\text{2}} {\text{O}} \hfill \\ {\text{nepheline }}\alpha {\text{ - eucryptite corundum}} \hfill \\ \end{gathered}$$ Five reversal brackets for (1) have been established experimentally in the temperature range 590–750° C, at \(P_{H_2 O}\) between 400 and 2500 bars. The equilibrium constant, K, for this reaction may be expressed as (2) $$log K{\text{ = }}log f_{{\text{H}}_{\text{2}} O}^* = 7.5217 - 4388/T + 0.0234 (P - 1)T$$ where \(f_{H_2 O}^* = f_{H_2 O} (P,T)/f_{H_2 O}^0\) (1,T), with T given in degrees K, and P in bars. Combining these experimental data with known thermodynamic properties of the decomposition products in (1), the following standard state (1 bar, 298.15 K) thermodynamic data for ephesite were calculated: H f,298.15 0 =-6237372 J/mol, S 298.15 0 =300.455 J/K·mol, G 298.15 0 =-5851994 J/mol, and V 298.15 0 =13.1468 J/bar·mol.  相似文献   

8.
The equilibrium $${\text{(1}} - y{\text{)Fe}}_{(s)} + \tfrac{{\text{1}}}{{\text{2}}}{\text{O}}_{{\text{2(g)}}} \rightleftarrows {\text{Fe}}_{{\text{1}} - y} {\text{O}}_{{\text{(}}s,{\text{ in MW)}}} $$ was studied by measuring oxygen potentials for a range of different magnesiowüstite compositions relative to those of the iron-wüstite system in an oxygen concentration cell involving yttria stabilized zirconia as the solid electrolyte. The temperature range covered was 1050 to 1400 K. Separate measurements of the mole fraction of trivalent iron in magnesiowüstite (x(Fe3+)) were made and the composition dependence ofx(Fe3+) was taken into account in calculations of the activity-composition relations of FeO, Fe2/3O and MgO.  相似文献   

9.
Oxygen Fugacity measurements were carried out on chromites from the Eastern Bushveld Complex (Maandagshoek) and are compared with former measurements on chromites from the western Bushveld Complex (Zwartkop Chrome Mine). These results together with those of Hill and Roeder (1974) yield the following conditions of formation for the massive chromitite layers: Western Bushveld Complex (Zwartkop Chrome Mine) $$\begin{gathered} Layer{\text{ }}T(^\circ C) p_{O_2 } (atm) \hfill \\ LG3{\text{ 1160}} - {\text{1234 10}}^{ - {\text{5}}} - 10^{ - 7.6} \hfill \\ LG4{\text{ 1175}} - {\text{1200 10}}^{ - 6.35} - 10^{ - 7.20} \hfill \\ LG6{\text{ 1162}} - {\text{1207 10}}^{ - 6.20} - 10^{ - 7.50} \hfill \\ \hfill \\ \end{gathered} $$ Eastern Bushveld Complex (Farm Maandagshoek) $$\begin{gathered} {\text{LXI 1115}} - {\text{1150 10}}^{ - 7.80} - 10^{ - 8.80} \hfill \\ ( = {\text{Steelpoort Seam)}} \hfill \\ {\text{LX 1125 10}}^{ - 8.25} \hfill \\ {\text{V 1120 10}}^{ - 8.55} \hfill \\ {\text{LII 1120 10}}^{ - 8.0} - 10^{ - 8.60} \hfill \\ \end{gathered} $$ The comparison of the data shows, that the chronitite layers within each particular sequence were formed under approximately identicalp o 2- andT-conditions. The chromites from the western Bushveld Complex, however, were formed at higher temperatures and higher oxygen fugacities than the chromites from the eastern Bushveld Complex. Fromp o 2-T-curves of disseminated chromites and the temperatures derived above, the following conditions of formation for the host rocks were obtained: Western Bushveld Complex $$T = 1200^\circ {\text{C; }}p_{{\text{o}}_{\text{2}} } = 10^{ - 7.25} - 10^{ - 7.50} $$ Eastern Bushveld Complex $$T = 1125^\circ {\text{C; }}p_{{\text{o}}_{\text{2}} } = 10^{ - 8.50} - 10^{ - 9.25} $$ Consequently, the host rocks in the Zwartkop-Chrome-Mine, were formed under higher temperatures and higher oxygen fugacities than the host rocks at Maandagshoek. The rock sequence in the Zwartkop-Chrome-Mine therefore originated in an earlier stage of the differentiation of the Bushveld magma. Comparison of the chromites from the host rocks with the chromites from massive layers supports Ulmer's (1969) thesis that an increase of the oxygen fugacity is responsible for the formation of massive chromitite layers. The values in this investigation show that increases of only about 0.5–1.0 log units are necessary to enhance chromitite layer formation.  相似文献   

10.
Three Al-Cr exchange isotherms at 1,250°, 1,050°, and 796° between Mg(Al, Cr)2O4 spinel and (Al, Cr)2O3 corundum crystalline solutions have been studied experimentally at 25 kbar pressure. Starting from gels of suitable bulk compositions, close approach to equilibrium has been demonstrated in each case by time studies. Using the equation of state for (Al, Cr)2O3 crystalline solution (Chatterjee et al. 1982a) and assuming that the Mg(Al, Cr)2O4 can be treated in terms of the asymmetric Margules relation, the exchange isotherms were solved for Δ G *, and . The best constrained data set from the 1,250° C isotherm clearly shows that the latter two quantities do not overlap within three standard deviations, justifying the choice of asymmetric Margules relation for describing the excess mixing properties of Mg(Al, Cr)2O4 spinels. Based on these experiments, the following polybaric-polythermal equation of state can be formulated: , P expressed in bars, T in K, G m ex and W G,i Sp in joules/mol. Temperature-dependence of G m ex is best constrained in the range 796–1,250° C; extrapolation beyond that range would have to be done with caution. Such extrapolation to lower temperature shows tentatively that at 1 bar pressure the critical temperature, T c, of the spinel solvus is 427° C, with dTc/dP≈1.3 K/kbar. The critical composition, X c, is 0.42 , and changes barely with pressure. Substantial error in calculated phase diagrams will result if the significant positive deviation from ideality is ignored for Al-Cr mixing in such spinels.  相似文献   

11.
Theoretical and practical considerations are combined to place limits on the iron content of an FePt alloy that is in equilibrium with silicate melt, olivine and a gas phase of known \(f_{{\text{O}}_{\text{2}} }\) . Equilibrium constants are calculated for the reactions: (1) $$2{\text{Fe}}^{\text{o}} + {\text{SiO}}_{\text{2}} + {\text{O}}_{\text{2}} \rightleftharpoons {\text{Fe}}_{\text{2}} {\text{SiO}}_{\text{4}}$$ (2) $${\text{Fe}}^{\text{o}} + \frac{1}{2}{\text{O}}_{\text{2}} \rightleftharpoons {\text{FeO}}$$ . These equilibria may be used to choose an appropriate iron activity for the FePt alloy of an experiment. The temperature dependence of the equilibrium constants is calculated from experimental data. The Gibbs free energy of reaction (1) obtained using thermochemical data is in close agreement with ΔGrxn calculated from the experimental data. Reaction (1) has the advantage that it is independent of the Fe2+/Fe3+ ratio of the melt, but is limited to applications where olivine is a crystallizing phase and requires a formulation for \(a_{{\text{SiO}}_{\text{2}} }^{{\text{liq}}}\) . Reaction (2) uses an empirical approximation for the FeO/Fe2O3 ratio of the liquid, and is independent of olivine saturation. However, it requires a formulation for a FeO liq . Either equilibrium constant may be used to calculate the appropriate FePt alloy in equilibrium with a silicate melt. If experiments are conducted at an \(f_{{\text{O}}_{\text{2}} }\) parallel that of a buffer assemblage, a small range of FePt alloys may be used over a large temperature interval. For example, an alloy containing from 6 % to 9 % Fe by weight is in equilibrium with olivine-saturated tholeiites and komatiites at the quartzfayalite-magnetite buffer over the temperature interval 1,400° C to 1,100° C. Lunar basalt liquids in equilibrium with olivine at 1/2 log unit below the iron-wüstite buffer require an FePt alloy that contains 30–50 wt. % iron over a similar temperature interval.  相似文献   

12.
A model to calculate activities in multisite solutions like spinels, from a general expression of the Gibbs free energy is developped. The free energy is written as that of a solution with ideal mixing of cations on each sublattice corrected by any suitable higher order terms. It is shown that activities of ith end-member can be simply written: $${\text{act (}}i{\text{) = (}}\gamma _i {\text{/}}\gamma _i^{\text{0}} {\text{)}}\mathop \prod \limits_j (N_j /N_j^0 )^{P(j,{\text{ }}i)} .$$ N j are site occupancy fractions; the γ i are equal to one for the ideal multisite model and depend only on the higher order corrections to this model; 0 indicate values for the i th end member. The exponents in the matrix P are integers and constants. The activities cannot be expressed explicitly as function of the macroscopic composition. The site occupancy fractions which minimize the Gibbs free energy must be calculated first solving a set of non linear equations which define the internal equilibrium conditions. The (Fe2+, Mg) (Al, Cr, Fe3+) spinel are used to illustrate these calculations. For multicomponent AB2O4 spinels activity expressions derived for the reference ideal multisite mixing model are: $${\text{act (AB}}_{\text{2}} {\text{O}}_{\text{4}} {\text{) = }}\frac{{({\text{A}})[{\text{B}}]^2 }}{{({\text{A}})_0 [{\text{B}}]_0^2 }}$$ (A): fraction of tetrahedral sites occupied by A2+; [B]: fraction of octahedral sites occupied by B3+. Because the site occupancy fractions at equilibrium are not independent (but related by the internal equilibrium relations) many equivalent expressions of the activities can be obtained. Finally approximations proposed in the literature to obtain simple explicit activity-concentration relationships are discussed.  相似文献   

13.
The electron spin resonance (ESR) spectrum of Cr3+ in a synthetic single crystal of forsterite doped with Cr2O3 was studied at room temperature in the X-band frequency range. The dependence of the observed spectra on the crystal orientation with respect to the applied magnetic field was investigated. The ESR spectra are described by the spin Hamiltonian \(H = \beta HgS + D(S_Z^{\text{2}} - {\text{1/3}}S{\text{(}}S{\text{ + 1)) + }}E{\text{(}}S_x^{\text{2}} - S_y^{\text{2}} {\text{)}}\) with S=3/2. The spin resonance reveals that the chromium ions are located at both the M1 and M2 positions. Other possible substitutional or interstitial Cr3+ positions may be possible, but were not observed. The site occupancy numbers of Cr3+ at M1 and M2 are roughly 1.2×10?4 and 0.8×10?4, respectively, assuming that chromium is oxidized completely. The preference of the chromium ions for M1 was interpreted qualitatively in terms of crystal field criteria. The rhombic and axial spin Hamiltonian parameters, D and E, and the directions of the magnetic axes obtained for M1 and M2 are consistent with the respective oxygen coordination polyhedra.  相似文献   

14.
A statistical mechanical analysis of the limiting laws for coupled solid solutions shows that the random model, in which the configurational entropy is calculated as if atoms mix randomly on each crystallographic site, is correct as a first approximation. In coupled solid solutions, since atoms of different valence substitute on the same sites, significant short-range order which reduces the entropy can be expected. A first-order correction is rigorously obtained for the entropy in dilute binary short-range ordered coupled solid solutions: $$\bar S^{{\text{XS}}} {\text{/R = }}Q\left( {{\text{e}}^{--H_{\text{A}} /{\text{R}}T} \left( {\frac{{H_{\text{A}} }}{{{\text{R}}T}} + 1} \right) - 1} \right)N_2^a N_4^b ,$$ where Q is the number of positions an associated cation pair can assume per formula unit, H A is the association energy per formula unit, and N 2 a and N 4 b are the site occupancy fractions for atoms 2 and 4 that are dilute on sites a and b. S XS is the configurational entropy minus the random model entropy. Aluminous pyroxenes on the joints diopside-jadeite and diopside-CaTs are examined as examples. A generalization for dilute multiple component solutions, including possible long-range ordering variations is given by: $$\frac{{\bar S^{{\text{XS}}} }}{{\text{R}}}{\text{ = }}\sum\limits_i {\sum\limits_j {\sum\limits_k {Q_i } } \left( {{\text{e}}^{--H_{\text{A}}^{j{\text{ }}k{\text{, }}i} /{\text{R}}T} \left( {\frac{{H_{\text{A}}^{j{\text{ }}k{\text{, }}i} }}{{{\text{R}}T}} + 1} \right) - 1} \right)N_j^l N_k^m ,} $$ where i labels each crystallographically distinct pair, j and k label atomic species, l and m label crystallographic sites, and the N's are site occupancy fractions for the solute atoms. A total association model is examined as well as the partial association and random models. Real solution behavior must lie between the total association model and the random model. Molecular models in which the ideal activity is proportional to a mole fraction, which in itself is not always unambiguously defined, do not lie in this range and furthermore have no physical justification.  相似文献   

15.
The ferric-ferrous ratio of natural silicate liquids equilibrated in air   总被引:1,自引:1,他引:1  
Results of chemical analyses of glasses produced in 46 melting experiments in air at 1,350° C and 1,450° C on rocks ranging in composition from nephelinite to rhyolite have been combined with other published data to obtain an empirical equation relating in \((X_{{\text{Fe}}_{\text{2}} {\text{O}}_{\text{3}} }^{{\text{liq}}} /X_{{\text{FeO}}}^{{\text{liq}}} )\) to T, \(\ln f_{{\text{O}}_{\text{2}} } \) and bulk composition. The whole set of experimental data range over 1,200–1,450° C and oxygen fugacities of 10?9.00 to 10?0.69 bars, respectively. The standard errors of temperature and \(\log _{10} f_{{\text{O}}_{\text{2}} } \) predictions from this equation are 52° C and 0.5 units, respectively, for 186 experiments.  相似文献   

16.
We investigated the dissolved major elements, $ {}^{87}{\text{Sr/}}{}^{86}{\text{Sr}},\;\delta {}^{34}{\text{S}}_{{\text{SO}}_{\text{4}} } ,\;{\text{and}}\;\delta {}^{18}{\text{O}}_{{\text{SO}}_{\text{4}} } $ composition of the Min Jiang, a headwater tributary of the Chang Jiang (Yangtze River). A forward calculation method was applied to quantify the relative contribution to the dissolved load from rain, evaporite, carbonate, and silicate reservoirs. Input from carbonate weathering dominated the major element composition (58–93%) and that from silicate weathering ranged from 2 to 18% in unperturbed Min Jiang watersheds. Most samples were supersaturated with respect to calcite, and the CO2 partial pressures were similar to or up to ~5 times higher than atmospheric levels. The Sr concentrations in our samples were low (1.3–2.5 μM) with isotopic composition ranging from 0.7108 to 0.7127, suggesting some contribution from felsic silicates. The Si/(Na* + K) ratios ranged from 0.5 to 2.5, which indicate low to moderate silicate weathering intensity. The $ \delta {}^{34}{\text{S}}_{{\text{SO}}_{\text{4}} } \;{\text{and}}\;\delta {}^{18}{\text{O}}_{{\text{SO}}_{\text{4}} } $ for five select samples showed that the source of dissolved sulfate was combustion of locally consumed coal. The silicate weathering rates were 23–181 × 103 mol/km2/year, and the CO2 consumption rates were 31–246 × 103 mol/km2/year, which are moderate on a global basis. Upon testing various climatic and geomorphic factors for correlation with the CO2 consumption rate, the best correlation coefficients found were with water temperature (r 2 = 0.284, p = 0.009), water discharge (r 2 = 0.253, p = 0.014), and relief (r 2 = 0.230, p = 0.019).  相似文献   

17.
The stability relations between cordierite and almandite in rocks, having a composition of CaO poor argillaceous rocks, were experimentally investigated. The starting material consisted of a mixture of chlorite, muscovite, and quartz. Systems with widely varying Fe2+/Fe2++Mg ratios were investigated by using two different chlorites, thuringite or ripidolite, in the starting mixture. Cordierite is formed according to the following reaction: $${\text{Chlorite + muscovite + quartz}} \rightleftharpoons {\text{cordierite + biotite + Al}}_{\text{2}} {\text{SiO}}_{\text{5}} + {\text{H}}_{\text{2}} {\text{O}}$$ . At low pressures this reaction characterizes the facies boundary between the albite-epidotehornfels facies and the hornblende-hornfels facies, at medium pressures the beginning of the cordierite-amphibolite facies. Experiments were carried out reversibly and gave the following equilibrium data: 505±10°C at 500 bars H2O pressure, 513±10°C at 1000 bars H2O pressure, 527±10°C at 2000 bars H2O pressure, and 557±10°C at 4000 bars H2O pressure. These equilibrium data are valid for the Fe-rich starting material, using thuringite as the chlorite, as well as for the Mg-rich starting mixture with ripidolite. At 6000 bars the equilibrium temperature for the Mg-rich mixture is 587±10°C. In the Fe-rich mixture almandite was formed instead of cordierite at 6000 bars. The following reaction was observed: $${\text{Thuringite + muscovite + quartz}} \rightleftharpoons {\text{almandite + biotite + Al}}_{\text{2}} {\text{SiO}}_{\text{5}} {\text{ + H}}_{\text{2}} {\text{O}}$$ . Experiments with the Fe-rich mixture, containing Fe2+/Fe2++Mg in the ratio 8∶10, yielded three stability fields in a P,T-diagram (Fig.1):
  1. Above 600°C/5.25 kb and 700°C/6.5 kb almandite+biotite+Al2SiO5 coexist stably, cordierite being unstable.
  2. The field, in which almandite, biotite and Al2SiO5 are stable together with cordierite, is restricted by two curves, passing through the following points:
    1. 625°C/5.5 kb and 700°C/6.5 kb,
    2. 625°C/5.5 kb and 700°C/4.0 kb.
  3. At conditions below curves 1 and 2b, cordierite, biotite, and Al2SiO5 are formed, but no garnet.
An appreciable MnO-content in the system lowers the pressures needed for the formation of almandite garnet, but the quantitative influence of the spessartite-component on the formation of almandite could not yet be determined. the Mg-rich system with Fe2+/Fe2++Mg=0.4 garnet did not form at pressures up to 7 kb in the temperature range investigated. Experiments at unspecified higher pressures (in a simple squeezer-type apparatus) yielded the reaction: $${\text{Ripidolite + muscovite + quartz}} \rightleftharpoons {\text{almandite + biotite + Al}}_{\text{2}} {\text{SiO}}_{\text{5}} {\text{ + H}}_{\text{2}} {\text{O}}$$ . Further experiments are needed to determine the equilibrium data. The occurence of garnet in metamorphic rocks is discussed in the light of the experimental results.  相似文献   

18.
Although orthopyroxene (Opx) is present during a wide range of magmatic differentiation processes in the terrestrial and lunar mantle, its effect on melt trace element contents is not well quantified. We present results of a combined experimental and computational study of trace element partitioning between Opx and anhydrous silicate melts. Experiments were performed in air at atmospheric pressure and temperatures ranging from 1,326 to 1,420°C in the system CaO–MgO–Al2O3–SiO2 and subsystem CaO–MgO–SiO2. We provide experimental partition coefficients for a wide range of trace elements (large ion lithophile: Li, Be, B, K, Rb, Sr, Cs, Ba, Th, U; rare earth elements, REE: La, Ce, Nd, Sm, Y, Yb, Lu; high field strength: Zr, Nb, Hf, Ta, Ti; transition metals: Sc, V, Cr, Co) for use in petrogenetic modelling. REE partition coefficients increase from $ D_{\text{La}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.0005 Although orthopyroxene (Opx) is present during a wide range of magmatic differentiation processes in the terrestrial and lunar mantle, its effect on melt trace element contents is not well quantified. We present results of a combined experimental and computational study of trace element partitioning between Opx and anhydrous silicate melts. Experiments were performed in air at atmospheric pressure and temperatures ranging from 1,326 to 1,420°C in the system CaO–MgO–Al2O3–SiO2 and subsystem CaO–MgO–SiO2. We provide experimental partition coefficients for a wide range of trace elements (large ion lithophile: Li, Be, B, K, Rb, Sr, Cs, Ba, Th, U; rare earth elements, REE: La, Ce, Nd, Sm, Y, Yb, Lu; high field strength: Zr, Nb, Hf, Ta, Ti; transition metals: Sc, V, Cr, Co) for use in petrogenetic modelling. REE partition coefficients increase from $ D_{\text{La}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.0005 $ D_{\text{La}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.0005 to $ D_{\text{Lu}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.109 $ D_{\text{Lu}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.109 , D values for highly charged elements vary from $ D_{\text{Th}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0026 $ D_{\text{Th}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0026 through $ D_{\text{Nb}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0033 $ D_{\text{Nb}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0033 and $ D_{\text{U}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0066 $ D_{\text{U}}^{{{\text{Opx}} {\hbox{-}} {\text{melt}}}} \sim 0.0066 to $ D_{\text{Ti}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.058 $ D_{\text{Ti}}^{{\text{Opx}} {\hbox{-}} {\text{melt}}} \sim 0.058 , and are all virtually independent of temperature. Cr and Co are the only compatible trace elements at the studied conditions. To elucidate charge-balancing mechanisms for incorporation of REE into Opx and to assess the possible influence of Fe on Opx-melt partitioning, we compare our experimental results with computer simulations. In these simulations, we examine major and minor trace element incorporation into the end-members enstatite (Mg2Si2O6) and ferrosilite (Fe2Si2O6). Calculated solution energies show that R2+ cations are more soluble in Opx than R3+ cations of similar size, consistent with experimental partitioning data. In addition, simulations show charge balancing of R3+ cations by coupled substitution with Li+ on the M1 site that is energetically favoured over coupled substitution involving Al–Si exchange on the tetrahedrally coordinated site. We derived best-fit values for ideal ionic radii r 0, maximum partition coefficients D 0, and apparent Young’s moduli E for substitutions onto the Opx M1 and M2 sites. Experimental r 0 values for R3+ substitutions are 0.66–0.67 ? for M1 and 0.82–0.87 ? for M2. Simulations for enstatite result in r 0 = 0.71–0.73 ? for M1 and ~0.79–0.87 ? for M2. Ferrosilite r 0 values are systematically larger by ~0.05 ? for both M1 and M2. The latter is opposite to experimental literature data, which appear to show a slight decrease in $ r_{0}^{{{\text{M}}2}} $ r_{0}^{{{\text{M}}2}} in the presence of Fe. Additional systematic studies in Fe-bearing systems are required to resolve this inconsistency and to develop predictive Opx-melt partitioning models for use in terrestrial and lunar magmatic differentiation models.  相似文献   

19.
Five geobarometers involving cordierite have been formulated for quantitative pressure sensing in high grade metapelites. The relevant reactions in the FeO-Al2O3-SiO2 (±H2O) system are based on the assemblages (A) cordierite-garnet-sillimanite-quartz, (B) cordierite-spinel-quartz, (C) cordierite-garnet-spinel-sillimanite, (D) cordierite-garnet-orthopyroxene-quartz and (E) cordierite-orthopyroxene-sillimanite-quartz. Application of the barometric formulations to a large number of granulite grade rocks indicates that the cordierite-garnet-sillimanite-quartz equilibrium is widely applicable and registers pressures which are in good agreement with the “consensus” pressure estimates. The dispersion in the computed P values, expressed as one standard deviation, is within ±1.2 kbar. The geobarometers (B) and (C) also yield pressures which are reasonable and compare well with those computed from equilibrium (A). The estimated pressures from (D) and (E), both involving orthopyroxene, are at variance with these estimates. It has been argued that the discrepancy in pressures obtained from these geobarometers stems from an inadequate knowledge of activity-composition relations and/or errors in input thermodynamic data of aluminous orthopyroxene. The convergence of pressure values estimated from the barometric formulations, especially (A), (B) and (C), implies that the present formulations are more dependable than the existing formulations and are also capable of setting limits on P values in response to varying $$\begin{gathered} {\text{1/2Fe}}_{\text{2}} {\text{Al}}_{\text{4}} {\text{Si}}_{\text{5}} {\text{O}}_{{\text{18}}} \hfill \\ {\text{ = 1/3Fe}}_{\text{3}} {\text{Al}}_{\text{2}} {\text{Si}}_{\text{3}} {\text{O}}_{{\text{12}}} {\text{ + 2/3Al}}_{\text{2}} {\text{SiO}}_{\text{5}} {\text{ + 5/6SiO}}_{\text{2}} {\text{. (A)}} \hfill \\ {\text{1/2Fe}}_{\text{2}} {\text{Al}}_{\text{4}} {\text{Si}}_{\text{5}} {\text{O}}_{{\text{18}}} {\text{ = FeAl}}_{\text{2}} {\text{O}}_{\text{4}} {\text{ + 5/2SiO}}_{\text{2}} {\text{. (B)}} \hfill \\ {\text{Fe}}_{\text{2}} {\text{Al}}_{\text{4}} {\text{Si}}_{\text{5}} {\text{O}}_{{\text{18}}} {\text{ + FeAl}}_{\text{2}} {\text{O}}_{\text{4}} \hfill \\ = {\text{Fe}}_{\text{3}} {\text{Al}}_{\text{2}} {\text{Si}}_{\text{3}} {\text{O}}_{{\text{12}}} {\text{ + 2Al}}_{\text{2}} {\text{SiO}}_{\text{5}} {\text{. (C)}} \hfill \\ {\text{1/2Fe}}_{\text{2}} {\text{Al}}_{\text{4}} {\text{Si}}_{\text{5}} {\text{O}}_{{\text{18}}} {\text{ + Fe}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} \hfill \\ = {\text{Fe}}_{\text{3}} {\text{Al}}_{\text{2}} {\text{Si}}_{\text{3}} {\text{O}}_{{\text{12}}} {\text{ + 3/2SiO}}_{\text{2}} .{\text{ (D)}} \hfill \\ {\text{1/2Fe}}_{\text{2}} {\text{Al}}{}_{\text{4}}{\text{Si}}_{\text{5}} {\text{O}}_{{\text{18}}} \hfill \\ = 1/2{\text{Fe}}_{\text{2}} {\text{Si}}_{\text{2}} {\text{O}}_{\text{6}} {\text{ + Al}}_{\text{2}} {\text{SiO}}_{\text{5}} {\text{ + 1/2SiO}}_{\text{2}} .{\text{ (E)}} \hfill \\ \end{gathered}$$ . The present communication addresses the calibration, applicability and reliability of these barometers with reference to granulite facies metapelites.  相似文献   

20.
Crystals of challacolloite, KPb2Cl5, and hephaistosite, TlPb2Cl5, from volcanic sublimates formed on the crater rim of the “La Fossa Crater” at Vulcano, Aeolian Archipelago, Italy, were investigated. Chemical compositions were ${\left( {{\text{K}}_{{0.93}} {\text{Tl}}_{{0.02}} } \right)}_{{\Sigma = 0.95}} {\text{Pb}}_{{2.04}} {\left( {{\text{Cl}}_{{4.90}} {\text{Br}}_{{0.11}} } \right)}_{{\Sigma = 5.01}} $ and ${\text{Tl}}_{{0.94}} {\text{Pb}}_{{2.01}} {\left( {{\text{Cl}}_{{4.91}} {\text{Br}}_{{0.14}} } \right)}_{{\Sigma = 5.05}} $ , respectively. Single crystal X-ray measurements showed monoclinic symmetry for both phases, space group P21/c, with the following unit-cell parameters: a = 8.8989(4), b = 7.9717(5), c = 12.5624(8) Å, β = 90.022(4)°, V = 891.2(1) Å3, Z = 4 (challacolloite) and a = 9.0026(6), b = 7.9723(6), c = 12.5693(9) Å, β = 90.046(4)°, V = 902.1(1) Å3, Z = 4 (hephaistosite). The structure refinements converge to R = 3.99% and R = 3.86%, respectively. The effects of Br?Cl and K?Tl substitutions on the structure of these natural compounds have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号