首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
Against a background of climate change, Macau is very exposed to sea level rise(SLR) because of its low elevation,small size, and ongoing land reclamation. Therefore, we evaluate sea level changes in Macau, both historical and, especially,possible future scenarios, aiming to provide knowledge and a framework to help accommodate and protect against future SLR. Sea level in Macau is now rising at an accelerated rate: 1.35 mm yr-1over 1925–2010 and jumping to 4.2 mm yr-1over 1970–2010, which outpaces the rise in global mean sea level. In addition, vertical land movement in Macau contributes little to local sea level change. In the future, the rate of SLR in Macau will be about 20% higher than the global average, as a consequence of a greater local warming tendency and strengthened northward winds. Specifically, the sea level is projected to rise 8–12, 22–51 and 35–118 cm by 2020, 2060 and 2100, respectively, depending on the emissions scenario and climate sensitivity. Under the +8.5 W m-2Representative Concentration Pathway(RCP8.5) scenario the increase in sea level by2100 will reach 65–118 cm—double that under RCP2.6. Moreover, the SLR will accelerate under RCP6.0 and RCP8.5, while remaining at a moderate and steady rate under RCP4.5 and RCP2.6. The key source of uncertainty stems from the emissions scenario and climate sensitivity, among which the discrepancies in SLR are small during the first half of the 21 st century but begin to diverge thereafter.  相似文献   

2.
There are a number of sources of uncertainty in regional climate change scenarios. When statistical downscaling is used to obtain regional climate change scenarios, the uncertainty may originate from the uncertainties in the global climate models used, the skill of the statistical model, and the forcing scenarios applied to the global climate model. The uncertainty associated with global climate models can be evaluated by examining the differences in the predictors and in the downscaled climate change scenarios based on a set of different global climate models. When standardized global climate model simulations such as the second phase of the Coupled Model Intercomparison Project (CMIP2) are used, the difference in the downscaled variables mainly reflects differences in the climate models and the natural variability in the simulated climates. It is proposed that the spread of the estimates can be taken as a measure of the uncertainty associated with global climate models. The proposed method is applied to the estimation of global-climate-model-related uncertainty in regional precipitation change scenarios in Sweden. Results from statistical downscaling based on 17 global climate models show that there is an overall increase in annual precipitation all over Sweden although a considerable spread of the changes in the precipitation exists. The general increase can be attributed to the increased large-scale precipitation and the enhanced westerly wind. The estimated uncertainty is nearly independent of region. However, there is a seasonal dependence. The estimates for winter show the highest level of confidence, while the estimates for summer show the least.  相似文献   

3.
Driven by the global model,Beijing Climate Center Climate System Model version 1.1(BCC_CSM1.1),climate change over China in the 21st century is simulated by a regional climate model(RegCM4.0)under the new emission scenarios of the Representative Concentration Pathways—RCP4.5 and RCP8.5.This is based on a period of transient simulations from 1950 to2099,with a grid spacing of 50 km.The present paper focuses on the annual mean temperature and precipitation in China over this period,with emphasis on their future changes.Validation of model performance reveals marked improvement of the RegCM4.0 model in reproducing present day temperature and precipitation relative to the driving BCC_CSM1.1 model.Significant warming is simulated by both BCC_CSM1.1 and RegCM4.0,however,spatial distribution and magnitude differ between the simulations.The high emission scenario RCP8.5 results in greater warming compared to RCP4.5.The two models project different precipitation changes,characterized by a general increase in the BCC_CSM1.1,and broader areas with decrease in the RegCM4.0 simulations.  相似文献   

4.
Climate changes in 21st century China are described based on the projections of 11 climate models under Representative Concentration Pathway (RCP) scenarios. The results show that warming is expected in all regions of China under the RCP scenarios, with the northern regions showing greater warming than the southern regions. The warming tendency from 2011 to 2100 is 0.06°C/10 a for RCP2.6, 0.24°C/10 a for RCP4.5, and 0.63°C/10 a for RCP8.5. The projected time series of annual temperature have similar variation tendencies as the new greenhouse gas (GHG) emission scenario pathways, and the warming under the lower emission scenarios is less than under the higher emission scenarios. The regional averaged precipitation will increase, and the increasing precipitation in the northern regions is significant and greater than in the southern regions in China. It is noted that precipitation will tend to decrease in the southern parts of China during the period of 2011-2040, especially under RCP8.5. Compared with the changes over the globe and some previous projections, the increased warming and precipitation over China is more remarkable under the higher emission scenarios. The uncertainties in the projection are unavoidable, and further analyses are necessary to develop a better understanding of the future changes over the region.  相似文献   

5.
The possible changes in the frequency of extreme temperature events in Hong Kong in the 21st century were investigated by statistically downscaling 26 sets of the daily global climate model projections (a combination of 11 models and 3 greenhouse gas emission scenarios, namely A2, A1B, and B1) of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. The models’ performance in simulating the past climate during 1971–2000 has also been verified and discussed. The verification revealed that the models in general have an acceptable skill in reproducing past statistics of extreme temperature events. Moreover, the models are more skillful in simulating the past climate of the hot nights and cold days than that of the very hot days. The projection results suggested that, in the 21st century, the frequency of occurrence of extremely high temperature events in Hong Kong would increase significantly while that of the extremely low temperature events is expected to drop significantly. Based on the multi-model scenario ensemble mean, the average annual numbers of very hot days and hot nights in Hong Kong are expected to increase significantly from 9 days and 16 nights in 1980–1999 to 89 days and 137 nights respectively in 2090–2099. On the other hand, the average annual number of cold days will drop from 17 days in 1980–1999 to about 1 day in 2090–2099. About 65 percent of the model-scenario combinations indicate that there will be on average less than one cold day in 2090–2099. While all the model-emission scenarios in general have projected consistent trends in the change of temperature extremes in the 21st century, there is a large divergence in the projections between difierent model/emission scenarios. This reflects that there are still large uncertainties in the model simulation of the future climate of extreme temperature events.  相似文献   

6.
This paper reviews recent progress in the development of the Beijing Climate Center Climate System Model(BCC-CSM) and its four component models(atmosphere,land surface,ocean,and sea ice).Two recent versions are described:BCC-CSM1.1 with coarse resolution(approximately 2.8125°×2.8125°) and BCC-CSM1.1(m) with moderate resolution(approximately 1.125°×1.125°).Both versions are fully coupled climate-carbon cycle models that simulate the global terrestrial and oceanic carbon cycles and include dynamic vegetation.Both models well simulate the concentration and temporal evolution of atmospheric CO_2 during the 20th century with anthropogenic CO2 emissions prescribed.Simulations using these two versions of the BCC-CSM model have been contributed to the Coupled Model Intercomparison Project phase five(CMIP5) in support of the Intergovernmental Panel on Climate Change(IPCC) Fifth Assessment Report(AR5).These simulations are available for use by both national and international communities for investigating global climate change and for future climate projections.Simulations of the 20th century climate using BCC-CSMl.l and BCC-CSMl.l(m) are presented and validated,with particular focus on the spatial pattern and seasonal evolution of precipitation and surface air temperature on global and continental scales.Simulations of climate during the last millennium and projections of climate change during the next century are also presented and discussed.Both BCC-CSMl.l and BCC-CSMl.l(m) perform well when compared with other CMIP5 models.Preliminary analyses indicate that the higher resolution in BCC-CSM1.1(m) improves the simulation of mean climate relative to BCC-CSMl.l,particularly on regional scales.  相似文献   

7.
The simulation of hydrological consequences of climate change has received increasing attention from the hydrology and land-surface modelling communities. There have been many studies of climate-change effects on hydrology and water resources which usually consist of three steps: (1) use of general circulation models (GCMs) to provide future global climate scenarios under the effect of increasing greenhouse gases, (2) use of downscaling techniques (both nested regional climate models, RCMs, and statistical methods) for "downscaling" the GCM output to the scales compatible with hydrological models, and (3) use of hydrologic models to simulate the effects of climate change on hydrological regimes at various scales. Great progress has been achieved in all three steps during the past few years, however, large uncertainties still exist in every stage of such study. This paper first reviews the present achievements in this field and then discusses the challenges for future studies of the hydrological impacts of climate change.  相似文献   

8.
A statistical regression downscaling method was used to project future changes in precipitation over eastern China based on Phase 5 of the Coupled Model Intercomparison Project (CMIPS) the Representative Concentration Pathway (RCP) scenarios simulated by the second spectral version of the Flexible Global Ocean- Atmosphere-Land System (FGOALS-s2) model. Our val- idation results show that the downscaled time series agree well with the present observed precipitation in terms of both the annual mean and the seasonal cycle. The regres- sion models built from the historical data are then used to generate future projections. The results show that the en- hanced land-sea thermal contrast strengthens both the subtropical anticyclone over the western Pacific and the east Asian summer monsoon flow under both RCPs. However, the trend of precipitation in response to warming over the 21 st century are different across eastern Chi- na under different RCPs. The area to the north of 32°N is likely to experience an increase in annual mean precipitation, while for the area between 23°N and 32°N mean precipitation is projected to decrease slightly over this century under RCP8.5. The change difference between scenarios mainly exists in the middle and late century. The land-sea thermal contrast and the associated east Asian summer monsoon flow are stronger, such that precipitation increases more, at higher latitudes under RCP8.5 compared to under RCP4.5. For the region south of 32°N, rainfall is projected to increase slightly under RCP4.5 but decrease under RCP8.5 in the late century. At the high resolution of 5 km, our statistically downscaled results for projected precipitation can be used to force hydrological models to project hydrological processes, which will be of great benefit to regional water planning and management.  相似文献   

9.
The projected temperature and precipitationchange under different emissions scenarios using Coupled Model Intercomparison Project Phase 5 models over the northwestern arid regions of China(NWAC) were analyzed using the ensemble of three high-resolution dynamical downscaling simulations: the simulation of the Regional Climate Model version 4.0(Reg CM4) forced by the Beijing Climate Center Climate System Model version 1.1(BCC_CSM1.1); the Hadley Centre Global Environmental Model version 3 regional climate model(Had GEM3-RA) forced by the Atmosphere-Ocean coupled Had GEM version 2(Had GEM2-AO); and the Weather Research and Forecasting(WRF) model forced by the Norwegian community Earth System Model(Nor ESM1-M). Model validation indicated that the multimodel simulations reproduce the spatial and temporal distribution of temperature and precipitation well. The temperature is projected to increase over NWAC under both the 4.5 and 8.5 Representative Concentration Pathways scenarios(RCP4.5 and RCP8.5, respectively) in the middle of the 21 st century, but the warming trend is larger under the RCP8.5 scenario. Precipitation shows a significant increasing trend in spring and winter under both RCP4.5 and RCP8.5; but in summer, precipitation is projected to decrease in the Tarim Basin and Junggar Basin. The regional averaged temperature and precipitation show increasing trends in the future over NWAC; meanwhile, the large variability of the winter mean temperature and precipitation may induce more extreme cold events and intense snowfall events in these regions in the future.  相似文献   

10.
WEI Ke  BAO Qing 《大气科学进展》2012,29(6):1200-1214
Responses of the East Asian winter monsoon(EAWM) in future projections were studied based on two core future projections of CMIP5 in coordinated experiments with the IAP-coupled model FGOALS2-s.The projected changes of EAWM in climatology,seasonality,and interannual variability are reported here;the projections indicated strong warming in winter season.Warming increased with latitude,ranging from 1 C to 3 C in the Representative Concentration Pathways simulation RCP4.5 projection(an experiment that results in additional radiative forcing of ~4.5 W m 2 in 2100) and from 4 C to 9 C in the RCP8.5 projection(an experiment that results in additional radiative forcing of ~8.5 W m 2 in 2100).The northerly wind along the East Asian coastal region became stronger in both scenarios,indicating a stronger EAWM.Accordingly,interannual variability(described by the standard deviation of temperature) increased around the South China Sea and lower latitudes and decreased over eastern China,especially in North China.The two EAWM basic modes,defined by the temperature EOF analysis over East Asia,were associated with the Arctic Oscillation(AO) and stratospheric polar vortex.The future projections revealed more total variance attributable to the secondary mode,suggesting additional influences from the stratosphere.The correlation between AO and the leading mode decreased,while the correlation between AO and the secondary mode increased,implying increased complexity regarding the predictability of EAWM interannual variations in future projections.  相似文献   

11.
The atmosphere?Cocean general circulation models (AOGCMs) used for the IPCC 4th Assessment Report (IPCC AR4) are evaluated for the Greenland ice sheet (GrIS) current climate modelling. The most suited AOGCMs for Greenland climate simulation are then selected on the basis of comparison between the 1970?C1999 outputs of the Climate of the twentieth Century experiment (20C3M) and reanalyses (ECMWF, NCEP/NCAR). This comparison indicates that the representation quality of surface parameters such as temperature and precipitation are highly correlated to the atmospheric circulation (500?hPa geopotential height) and its interannual variability (North Atlantic oscillation). The outputs of the three most suitable AOGCMs for present-day climate simulation are then used to assess the changes estimated by three IPCC greenhouse gas emissions scenarios (SRES) over the GrIS for the 2070?C2099 period. Future atmospheric circulation changes are projected to dampen the zonal flow, enhance the meridional fluxes and therefore provide additional heat and moisture to the GrIS, increasing temperature over the whole ice sheet and precipitation over its northeastern area. We also show that the GrIS surface mass balance anomalies from the SRES A1B scenario amount to ?300?km3/year with respect to the 1970?C1999 period, leading to a global sea-level rise of 5?cm by the end of the 21st century. This work can help to select the boundaries conditions for AOGCMs-based downscaled future projections.  相似文献   

12.
Tropical rainforest plays an important role in the global carbon cycle, accounting for a large part of global net primary productivity and contributing to CO2 sequestration. The objective of this work is to simulate potential changes in the rainforest biome in Central America subject to anthropogenic climate change under two emissions scenarios, RCP4.5 and RCP8.5. The use of a dynamic vegetation model and climate change scenarios is an approach to investigate, assess or anticipate how biomes respond to climate change. In this work, the Inland dynamic vegetation model was driven by the Eta regional climate model simulations. These simulations accept boundary conditions from HadGEM2-ES runs in the two emissions scenarios. The possible consequences of regional climate change on vegetation properties, such as biomass, net primary production and changes in forest extent and distribution, were investigated. The Inland model projections show reductions in tropical forest cover in both scenarios. The reduction of tropical forest cover is greater in RCP8.5. The Inland model projects biomass increases where tropical forest remains due to the CO2 fertilization effect. The future distribution of predominant vegetation shows that some areas of tropical rainforest in Central America are replaced by savannah and grassland in RCP4.5. Inland projections under both RCP4.5 and RCP8.5 show a net primary productivity reduction trend due to significant tropical forest reduction, temperature increase, precipitation reduction and dry spell increments, despite the biomass increases in some areas of Costa Rica and Panama. This study may provide guidance to adaptation studies of climate change impacts on the tropical rainforests in Central America.  相似文献   

13.
A large component of present-day sea-level rise is due to the melt of glaciers other than the ice sheets. Recent projections of their contribution to global sea-level rise for the twenty-first century range between 70 and 180 mm, but bear significant uncertainty due to poor glacier inventory and lack of hypsometric data. Here, we aim to update the projections and improve quantification of their uncertainties by using a recently released global inventory containing outlines of almost every glacier in the world. We model volume change for each glacier in response to transient spatially-differentiated temperature and precipitation projections from 14 global climate models with two emission scenarios (RCP4.5 and RCP8.5) prepared for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The multi-model mean suggests sea-level rise of 155 ± 41 mm (RCP4.5) and 216 ± 44 mm (RCP8.5) over the period 2006–2100, reducing the current global glacier volume by 29 or 41 %. The largest contributors to projected global volume loss are the glaciers in the Canadian and Russian Arctic, Alaska, and glaciers peripheral to the Antarctic and Greenland ice sheets. Although small contributors to global volume loss, glaciers in Central Europe, low-latitude South America, Caucasus, North Asia, and Western Canada and US are projected to lose more than 80 % of their volume by 2100. However, large uncertainties in the projections remain due to the choice of global climate model and emission scenario. With a series of sensitivity tests we quantify additional uncertainties due to the calibration of our model with sparsely observed glacier mass changes. This gives an upper bound for the uncertainty range of ±84 mm sea-level rise by 2100 for each projection.  相似文献   

14.
The influence of changes in winds over the Amundsen Sea has been shown to be a potentially key mechanism in explaining rapid loss of ice from major glaciers in West Antarctica, which is having a significant impact on global sea level. Here, Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model data are used to assess twenty-first century projections in westerly winds over the Amundsen Sea (U AS ). The importance of model uncertainty and internal climate variability in RCP4.5 and RCP8.5 scenario projections are quantified and potential sources of model uncertainty are considered. For the decade 2090–2099 the CMIP5 models show an ensemble mean twenty-first century response in annual mean U AS of 0.3 and 0.7 m s?1 following the RCP4.5 and RCP8.5 scenarios respectively. However, as a consequence of large internal climate variability over the Amundsen Sea, it takes until around 2030 (2065) for the RCP8.5 response to exceed one (two) standard deviation(s) of decadal internal variability. In all scenarios and seasons the model uncertainty is large. However the present-day climatological zonal wind bias over the whole South Pacific, which is important for tropical teleconnections, is strongly related to inter-model differences in projected change in U AS (more skilful models show larger U AS increases). This relationship is significant in winter (r = ?0.56) and spring (r = ?0.65), when the influence of the tropics on the Amundsen Sea region is known to be important. Horizontal grid spacing and present day sea ice extent are not significant sources of inter-model spread.  相似文献   

15.

This study assesses the hydroclimatic response to global warming over East Asia from multi-model ensemble regional projections. Four different regional climate models (RCMs), namely, WRF, HadGEM3-RA, RegCM4, and GRIMs, are used for dynamical downscaling of the Hadley Centre Global Environmental Model version 2–Atmosphere and Ocean (HadGEM2-AO) global projections forced by the representative concentration pathway (RCP4.5 and RCP8.5) scenarios. Annual mean precipitation, hydroclimatic intensity index (HY-INT), and wet and dry extreme indices are analyzed to identify the robust behavior of hydroclimatic change in response to enhanced emission scenarios using high-resolution (12.5 km) and long-term (1981–2100) daily precipitation. Ensemble projections exhibit increased hydroclimatic intensity across the entire domain and under both the RCP scenarios. However, a geographical pattern with predominantly intensified HY-INT does not fully emerge in the mean precipitation change because HY-INT is tied to the changes in the precipitation characteristics rather than to those in the precipitation amount. All projections show an enhancement of high intensity precipitation and a reduction of weak intensity precipitation, which lead to a possible shift in hydroclimatic regime prone to an increase of both wet and dry extremes. In general, projections forced by the RCP8.5 scenario tend to produce a much stronger response than do those by the RCP4.5 scenario. However, the temperature increase under the RCP4.5 scenario is sufficiently large to induce significant changes in hydroclimatic intensity, despite the relatively uncertain change in mean precipitation. Likewise, the forced responses of HY-INT and the two extreme indices are more robust than that of mean precipitation, in terms of the statistical significance and model agreement.

  相似文献   

16.
Sao Tome and Principe is a small insular African country extremely vulnerable to rising sea levels and impacts such as inundation, shore line change, and salt water intrusion into underground aquifers. Projections of climate change have considered coarse model resolutions. The objective of this work is to dynamically downscale the global model projections to 4-km resolution and to assess the climate change in the Sao Tome and Principe islands. The global climate projections are provided by the Canadian Earth System Model under two Representative Concentration Pathways greenhouse gas scenarios, RCP4.5 and RCP8.5. The downscaling is produced by the Eta regional climate model. The baseline period is taken between 1971 and 2000, and the future climate period is taken between 2041 and 2070. The 2-m temperature simulations show good agreement with station data. The model simulates temperature more accurately than precipitation. The precipitation simulations systematically show underestimation and delay of the rainy and the dry seasons by about 1 month, a feature inherited from the global climate model. In the middle of the 21st century, projections show the strongest warming in the elevated parts of the Sao Tome Island, especially in February under RCP8.5. Warmer nights and warmer days become more frequent in the islands when compared with those in the present. While under RCP4.5, precipitation increases in the islands; under RCP8.5, it decreases everywhere in both islands. Heavy precipitation rates should increase, especially in the south-southwestern parts of the Sao Tome islands. Detailed spatial variability of the temperature and precipitation changes in the islands can only be revealed at very high spatial model resolution. Implications for the potential energy production from two major river basins are assessed in this work.  相似文献   

17.
This paper examines changes in rainfall effectiveness indices of the Awun basin in Nigeria during the late twenty-first century for agricultural applications with outputs from high-resolution regional climate model (RCM) simulations. The RCM simulations are driven by two global climate models for a reference period (1985–2004) and a future period (2080–2099) and for RCP4.5 (a scenario with some mitigation) and RCP8.5 (a business as usual scenario) forcings. Simulations are provided for the control (1985–2004) and scenario (2080–2099) periods. Observations from synoptic station are used for bias-correction. Three indices being local onset date, seasonality index (SI), and hydrologic ratio (HR) are analyzed. Onset and HR are tested with two evapotranspiration (ETp) models. Farmers’ perceptions are also collected to validate trends of rainfall indices for the present-day climate. We found that onset dates do not depend much on the ETp models used, and farmers’ perceptions are consistent with predicted rainfall patterns. Present-day climate trend shows an early onset. However, onset is projected to be late in future and the delay will be magnified under the business as usual scenario. Indeed, average onset date is found on the 5th May for present-day while in the future, a delay about 4 and 8 weeks is projected under RCP4.5 and RCP8.5 scenarios respectively. SI is between 0.80 and 0.99, and HR is less than 0.75 for all scenarios, meaning respectively that (i) the rainy season will get shorter and (ii) the area will get drier in the future compared to the present-day. Local stakeholders are forewarned to prepare for potential response strategies. A continuous provision of forecast-based rainfall indices to support farmer’s decision making is also recommended.  相似文献   

18.
A fast simple climate modelling approach is developed for predicting and helping to understand general circulation model (GCM) simulations. We show that the simple model reproduces the GCM results accurately, for global mean surface air temperature change and global-mean heat uptake projections from 9 GCMs in the fifth coupled model inter-comparison project (CMIP5). This implies that understanding gained from idealised CO2 step experiments is applicable to policy-relevant scenario projections. Our approach is conceptually simple. It works by using the climate response to a CO2 step change taken directly from a GCM experiment. With radiative forcing from non-CO2 constituents obtained by adapting the Forster and Taylor method, we use our method to estimate results for CMIP5 representative concentration pathway (RCP) experiments for cases not run by the GCMs. We estimate differences between pairs of RCPs rather than RCP anomalies relative to the pre-industrial state. This gives better results because it makes greater use of available GCM projections. The GCMs exhibit differences in radiative forcing, which we incorporate in the simple model. We analyse the thus-completed ensemble of RCP projections. The ensemble mean changes between 1986–2005 and 2080–2099 for global temperature (heat uptake) are, for RCP8.5: 3.8 K (2.3 × 1024 J); for RCP6.0: 2.3 K (1.6 × 1024 J); for RCP4.5: 2.0 K (1.6 × 1024 J); for RCP2.6: 1.1 K (1.3 × 1024 J). The relative spread (standard deviation/ensemble mean) for these scenarios is around 0.2 and 0.15 for temperature and heat uptake respectively. We quantify the relative effect of mitigation action, through reduced emissions, via the time-dependent ratios (change in RCPx)/(change in RCP8.5), using changes with respect to pre-industrial conditions. We find that the effects of mitigation on global-mean temperature change and heat uptake are very similar across these different GCMs.  相似文献   

19.
We present climate responses of Representative Concentration Pathways (RCPs) using the coupled climate model HadGEM2-AO for the Coupled Model Intercomparison Project phase 5 (CMIP5). The RCPs are selected as standard scenarios for the IPCC Fifth Assessment Report and these scenarios include time paths for emissions and concentrations of greenhouse gas and aerosols and land-use/land cover. The global average warming and precipitation increases for the last 20 years of the 21st century relative to the period 1986-2005 are +1.1°C/+2.1% for RCP2.6, +2.4°C/+4.0% for RCP4.5, +2.5°C/+3.3% for RCP6.0 and +4.1°C/+4.6% for RCP8.5, respectively. The climate response on RCP 2.6 scenario meets the UN Copenhagen Accord to limit global warming within two degrees at the end of 21st century, the mitigation effect is about 3°C between RCP2.6 and RCP8.5. The projected precipitation changes over the 21st century are expected to increase in tropical regions and at high latitudes, and decrease in subtropical regions associated with projected poleward expansions of the Hadley cell. Total soil moisture change is projected to decrease in northern hemisphere high latitudes and increase in central Africa and Asia whereas near-surface soil moisture tends to decrease in most areas according to the warming and evaporation increase. The trend and magnitude of future climate extremes are also projected to increase in proportion to radiative forcing of RCPs. For RCP 8.5, at the end of the summer season the Arctic is projected to be free of sea ice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号